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Abstract: With the rapid increase in the number of cyber-attacks, detecting and preventing malicious
behavior has become more important than ever before. In this study, we propose a method for
detecting and classifying malicious behavior in host process data using machine learning algorithms.
One of the challenges in this study is dealing with high-dimensional and imbalanced data. To address
this, we first preprocessed the data using Principal Component Analysis (PCA) and Uniform Manifold
Approximation and Projection (UMAP) to reduce the dimensions of the data and visualize the
distribution. We then used the Adaptive Synthetic (ADASYN) and Synthetic Minority Over-sampling
Technique (SMOTE) to handle the imbalanced data. We trained and evaluated the performance of
the models using various machine learning algorithms, such as K-Nearest Neighbor, Naive Bayes,
Random Forest, Autoencoder, and Memory-Augmented Deep Autoencoder (MemAE). Our results
show that the preprocessed datasets using both ADASYN and SMOTE significantly improved the
performance of all models, achieving higher precision, recall, and F1-Score values. Notably, the best
performance was obtained when using the preprocessed dataset (SMOTE) with the MemAE model,
yielding an F1-Score of 1.00. The evaluation was also conducted by measuring the Area Under the
Receiver Operating Characteristic Curve (AUROC), which showed that all models performed well
with an AUROC of over 90%. Our proposed method provides a promising approach for detecting
and classifying malicious behavior in host process data using machine learning algorithms, which
can be used in various fields such as anomaly detection and medical diagnosis.

Keywords: behavior detection; anomaly detection; cyber security; machine learning

1. Introduction

With the popularization of smartphones, there has been a rapid growth of cyberspace,
resulting in the development of an information society where all tasks are carried out in
cyberspace [1]. However, such progress also provides attackers with a good opportunity to
act maliciously.

Just three days after the Ukrainian invasion, on 27 February, cyber-attacks on the
Ukrainian government/military increased by 196%, and in Russia, cyber-attacks on or-
ganizations increased by 4%. As shown in Figure 1, the weekly average cyber-attacks
on the education/research industry increased by 18% compared to the previous year, fol-
lowed by a 20% increase in the weekly average cyber-attacks on the government/military
industry [2].

Cyber-attacks continue to increase every year, and many efforts are being made to
prevent and detect them. Within companies, the usual way for ordinary employees to detect
cyber-attacks is to install virus vaccines, malware prevention, and spyware prevention
software on all devices that can be connected to cyberspace. This method involves running
checks every midnight or overnight to prevent attacks. The disadvantage of this method
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is that it searches for known malicious files or computer memory [3]. Many studies for
detecting cyber-attacks utilize pre-classified data by attack types [4–9]. This is an effective
method for defending against known attacks. However, it is vulnerable to new attacks such
as Advanced Persistent Threats (APT). A cyber-attack detection method that maintains
and monitors detection logs identifies suspicious processes and regularly backs up and
stores logs can provide some protection against APT attacks. However, cyber-attacks
can be executed within minutes or even seconds, faster than human behavior. Thus, it is
impossible to perfectly respond to APT attacks. In addition, monitoring detection logs
requires shift work, resulting in high labor costs. To address this situation, automated
technologies for detecting malicious behavior are necessary.
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This paper emphasizes the critical importance of detecting and preventing cyber-
attacks in today’s information society, where nearly all tasks are performed in cyberspace.
It analyzes the limitations of existing methods that rely on pre-classified data by attack
types and underscores the need for automated technologies to detect malicious behavior. To
that end, the study proposes an approach that utilizes various machine learning algorithms
to classify data as either malicious or normal. The proposed methodology integrates tech-
nologies such as machine learning algorithms to improve the performance of the models.
The results of this study provide a valuable contribution to the field of cybersecurity.

In this study, we propose a method to detect malicious behavior (abnormal behavior)
that occurs in cyber-attacks such as APT attacks in real-time using machine learning. To
this end, we review related studies on cyber-attack detection based on behavior in Section 2
and introduce machine learning models for training normal and abnormal activity data.
In Section 3, we describe the test environment for the experiments, and introduce and
collect normal and abnormal activity data for a specific application. We then preprocess
the normal and abnormal activity data and train the model. In Section 4, we present the
experimental results, and in the final Section 5, we provide a summary of the study, future
works, and practical applications.

2. Related Works
2.1. Research on Behavior-Based Cyber-Attack Detection

Aslan, O., et al. [10] proposed a malware detection system that operates in a cloud com-
puting environment. The system’s behavior-based detection agents generate behaviors and
features, considering system calls, system call types, system call paths, system resources,
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and various file types. To generate the training data, the authors collected malware samples
from various sources including Das Malwerk, MalwareBazaar, Malware DB, Malware
Benchmark, Malshare, Tekdefense, ViruSign, VirusShare, and KernelMode [11–18]. They
then used machine learning algorithms such as J48 [19], Random Forest (RF) [20], logistic
model trees (LMT) [21], and K-Nearest Neighbors (KNN) [22] to detect malicious behavior.

Jones, C.B., et al. [23] proposed an online anomaly detection method using the existing
Adaptive Resonance Theory (ART) [24] algorithm. They deployed an intrusion detection
system (IDS) in a real environment to collect behavioral data from hosts over a period
of 72 h, including both normal and abnormal data. Adversarial behavior was identified
through the analysis of ART algorithms.

Sarker, I.H. [25] proposed a Cyberlearning model to detect various types of attacks and
anomalies such as Denial-of-Service (DoS), backdoors, and worms. When training the model,
datasets such as UNSW-NB15 [26] and NSL-KDD [27] were used, and malicious behavior
patterns were learned using Naïve Bayes (NB) [28], Linear Discriminant Analysis (LDA) [29],
KNN, Extreme Gradient Boosting (XGBoost) [30], RF, Support Vector Machines (SVM) [31],
Adaptive Boosting (AdaBoost) [32], Stochastic Gradient Descent (SGD) [33], and Logistic
regression (LR) [34]. The model successfully detected various types of attacks.

Ibrahim, W.N.H., et al. [35] developed a botnet detection system that focused on
identifying command and control servers based on network behavior. The authors used
a flow-based behavior analysis that aggregated packet headers at 1-s intervals to analyze
network traffic. The dataset used in this experiment was the CTU-13 dataset [36], which
contains network traffic captured at CTU University, Czech Republic, in 2011 and labeled as
Normal, Attack, or Background. The dataset includes various botnet types with centralized
or decentralized structures and different protocols. The authors designed a structure- and
protocol-independent botnet detection system that leveraged machine learning algorithms
such as KNN, SVM, and Multilayer Perceptron (MLP) [37]. Through this analysis, they
were able to detect whether packets were encapsulated, such as passing through a Virtual
Private Network tunnel.

Wang, S., et al. [38] developed a graph-based invariant modeling approach for detect-
ing malware called MatchGNet. To generate training data, the authors downloaded 10,000
known malicious programs and 10,000 benign programs from VirusTotal and extracted API
call sequences and system events from each. They converted the data into heterogeneous
graphs and used it to train the MatchGNet model. In addition, 5000 unknown malware
and 5000 legitimate programs were downloaded from the Malware Zoo [13] and converted
into heterogeneous graphs as well. MatchGNet was compared with other machine learning
algorithms such as SVM, LR, MLP, and Graph Convolution Network (GCN) [39]. The
proposed approach demonstrated high accuracy, achieving 97% in detecting malware.

Han, X., et al. [40] proposed an intelligent persistent threat detection model called
UNICORN, which is based on behavioral analysis to identify APT attacks. To collect data
for their study, the authors used a dynamic analysis tool called Cuckoo Sandbox to execute
20,000 known malicious programs and 20,000 benign programs. UNICORN was then
applied to simulated and actual APT attack scenarios, demonstrating a 30% increase in
accuracy compared to previous detection methods.

Ranjan, R., et al. [41] proposed a user behavior analysis system by combining big data
analysis of application layer logs with RF algorithms. They collected application layer logs
generated by web servers and web applications for a total of 12 months from January 2019
to December 2019. The system involved data preprocessing, data transformation, data
analysis using RF algorithm, and result visualization. This approach could distinguish
malicious users from normal users more accurately than existing signature-based methods
and had the advantage of real-time detection and blocking. However, there were limitations
in data collection, machine learning algorithms, and results visualization.

In related studies, there are research papers that propose behavior-based detection
methods for detecting cyber-attacks, as shown in Table 1. However, most of these studies
have focused on detecting anomalous behaviors in host data using system call data, and
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machine learning algorithms such as KNN and SVM are commonly used for detection
(Aslan, O., et al. [10]; Sarker, I.H. [25]; Ibrahim, W.N.H., et al. [35]; Wang, S., et al. [38]).
To make these detection methods more robust, cyber-attacks should be detected based on
process data of applications used in hosts. Therefore, in this study, anomalous behavior
is detected in real-time based on application process data, which is a different approach
from that used in other studies. These studies have laid the groundwork for behavior-
based cyber-attack detection using various data sources, machine learning algorithms, and
techniques. However, there are some limitations that can be addressed in future research,
such as improving data collection, validating algorithm performance, enhancing result
visualization, and expanding the scope of detection methods to cover a wider range of cyber
threats. By addressing these limitations, this paper presents a more efficient and resilient
behavior-based detection algorithm that offers enhanced protection against cyber-attacks.

Table 1. Behavior-based data and detection methods in related works.

Study Data Detection Technique Limitations

Aslan, O., et al. [10] Host (System calls, . . . ) [11–19] J48 [19], RF [20], LMT [21], KNN [22] No analysis of false positives/negatives

Jones, C. B., et al. [23] IDS Data, Host (System calls, . . . ) [23] ART [24] Limited to online anomaly detection

Sarker, I. H. [25] UNSW-NB15 [26], NSL-KDD [27]
RF [20], KNN [22], NB [28], LDA [29],
XGBoost [30], SVM [31], AdaBoost
[32], SGD [33], LR [34]

No evaluation on real-world attacks

Ibrahim, W. N. H., et al. [35] CTU-13 [36] KNN [22], SVM [31], MLP [37] Limited to botnet command and control server
detection

Wang, S., et al. [38] Host (System calls, . . . ) [13] SVM [31], LR [34], MLP [37],
MatchGNet [38], GCN [39] No analysis of false positives/negatives

Han, X., et al. [40] Host (System calls, . . . ) [40] Graph-based [40] Limited evaluation on real-world data

Ranjan, R., et al. [41] Host (server, app, . . . ) [41] RF [20] Limited data collection, algorithm validation,
and visualization methods

2.2. Machine Learning Algorithms

As investigated in Section 2.1, various algorithms have been employed for anomaly de-
tection in related works. In this experiment, we selected KNN, NB, RF, Autoencoder (AE) [42],
and Memory-augmented Deep Autoencoder (MemAE) [43] as our machine learning algo-
rithms, based on their performance and suitability for the task.

The reasons for selecting these specific algorithms are as follows:

1. KNN: KNN is a simple and effective algorithm that has been used in many cyber-
attack detection studies, including Aslan, O., et al. [10], Sarker, I.H. [25], and Ibrahim,
W.N.H., et al. [35]. Its non-parametric nature and ease of implementation make it a
popular choice for anomaly detection tasks.

2. NB: Naïve Bayes is a probabilistic classifier that has been employed in various cyber-
attack detection research, such as Sarker, I.H. [25]. It is computationally efficient and
performs well with discrete data, making it a suitable choice for our study.

3. RF: Random Forest is an ensemble learning method that has demonstrated high
performance in multiple cyber-attack detection studies, including Aslan, O., et al. [10],
Sarker, I.H. [25] and Ranjan, R., et al. [41]. Its ability to handle large datasets and
perform feature selection makes it a relevant choice for our experiment.

4. AE: Autoencoders are unsupervised learning models that have been used in anomaly
detection tasks due to their ability to learn useful representations of data. In this
study, we chose AE for its potential to capture complex patterns in the application
process data.

5. MemAE: Memory-augmented Deep Autoencoder is a deep learning model that incor-
porates memory mechanisms to enhance the representation learning capabilities of au-
toencoders. MemAE was selected for this study as it has demonstrated promising per-
formance in detecting anomalies, particularly in complex and high-dimensional data.
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2.2.1. K-Nearest Neighbors (KNN)

To detect anomalies in a dataset, it is necessary to measure the degree to which an
anomaly is far from “normal” data points. KNN anomaly detection performs this task
based on distance. Specifically, it finds the K-nearest neighbors of a given data point and
measures the distance to them. If the distance between a given data point and its K-nearest
neighbors is far, then the data point is considered an anomaly. Here, K is a hyperparameter
that can be specified by the user. Generally, a smaller K value detects anomalies more
sensitively, and a larger K value detects anomalies more conservatively. During anomaly
detection, KNN calculates the distance as shown in Equation (1).

d
(
xi, xj

)
=

√
∑ n

k=1

(
xi,k − xj,k

)2
(1)

To detect anomalies in the dataset, the distance from the “normal” data points of
the anomalies must first be measured. KNN anomaly detection performs this based on
distance. That is, it finds the K nearest neighbors to a given data point and measures the
distance to them. If the distance between the given data point and its K neighbors is far,
then the data point is determined to be an anomaly. Here, K is a hyperparameter that the
user can specify. Generally, the smaller the value of K, the more sensitive it is to detect
anomalies, and the larger the value of K, the more conservative it is to detect anomalies.
When performing anomaly detection, KNN calculates distance using Equation (1), where
xi and xj are two data points, and n is the number of dimensions of the data points. There
are various ways to perform anomaly detection, but one of the representative methods is to
use KNN distance. KNN distance uses the largest value among the distances between K
neighbors. That is, it uses the distance to the K-th nearest neighbor. This can be used as an
outlier score. The higher the anomaly score, the more likely the data point is an anomaly.

2.2.2. Naïve Bayes (NB)

NB estimates the conditional probability for each class Ck given the data X, P(Ck|X),
by calculating the conditional probability using Bayes’ theorem. To compute this probability,
one needs to know the prior probability of each class P(Ck) and the probability of each
feature xi occurring in class Ck, P(xi|Ck). Since NB assumes that each feature in the data is
conditionally independent of the others, it calculates the conditional probability as shown
in Equation (2).

P(Ck|X) =
P(Ck) ·∏n

i=1 P(xi|Ck)

P(X)
(2)

P(Ck) is the prior probability of class Ck, P(xi|Ck) is the probability of feature xi
occurring in class Ck. P(X) is the denominator probability in Bayes’ theorem, and it is
calculated as the sum of the numerator for all classes.

2.2.3. Random Forest (RF)

RF is an ensemble technique that is a classification and regression analysis algorithm
based on Decision Trees. RF generates multiple decision trees, and the most frequently
selected result among the results predicted by each tree is determined as the final prediction
result. To achieve this, RF performs random sampling from the given dataset to create
multiple datasets. Then, a decision tree is generated by performing random sampling from
each dataset. Generally, Information Gain or Gini Index, and other split criteria are used to
select the optimal split at each node. The most frequently selected result among the results
predicted by each decision tree is determined as the final prediction result. RF generates
trees as shown in Equation (3).

Random Forest(X) =
1
T ∑ T

i=1Decision Treei(X) (3)
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In RF, X represents the input data, and T represents the number of decision trees to
generate. Since each tree is created in parallel, RF can significantly reduce the computation
time. Additionally, RF prevents overfitting by making each decision tree different through
randomness. The split criterion at each node is determined in RF according to Equation (4).

split(X) = argmaxj,t∆I(j, t) (4)

In this equation, j is the index of the feature and t is the split point in that feature.
∆I(j, t) represents the information gain obtained by that split. RF estimates the probabilities
of each class as shown in Equation (5).

P(y = Ck|X) =
1
T ∑ T

i=1Pi(y = Ck|X) (5)

The variable y = Ck represents the probability of the data belonging to the class Ck,
and Pi(y = Ck|X) represents the probability of belonging to the class Ck in the i-th decision
tree. RF can be applied to both classification and regression problems and is known for
its high predictive accuracy, interpretability, and low computational cost. Due to these
features, RF is widely used in various fields.

2.2.4. Autoencoder (AE)

AE is one of the Unsupervised Learning algorithms used to extract the features of
input data. Autoencoder is composed of an encoder that compresses the input data and a
decoder that reconstructs the compressed data, as shown in Figure 2. The encoder maps the
input data to the latent space, and the decoder maps this low-dimensional representation
back to the original dimension to reconstruct the input data. AE is trained by minimizing
the reconstruction error between the input data and the reconstructed data. In this case, AE
is used to extract the features of the input data using the learned encoder. AE maps the
input data X to a low-dimensional vector h as shown in Equation (6).

h = f (X) = σ(WX + b) (6)
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In this equation, W is the weight matrix, b is the bias vector, and σ is the activation
function. The sigmoid function or hyperbolic tangent function are commonly used as
activation functions. The output of the encoder, h, is a vector that maps the input data X to
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a low-dimensional space. The decoder maps the low-dimensional vector h back to the input
data X as shown in Equation (7).

r = g(h) = σ
(
W ′h + b′

)
(7)

In this equation, W ′ is the weight matrix of the decoder and b′ is the bias vector of the
decoder. The output of the decoder, r, is the reconstructed data from the input data X. AE is
trained to minimize the reconstruction error between the input data and the reconstructed
data. The reconstruction error is defined as Equation (8).

L(X, r) = ||X− r||22 (8)

In this equation, ||·| | 2 represents the L2 norm. Therefore, the objective function of AE
is defined as Equation (9).

L(X, r) = L(X, r) = ||X− r||22 (9)

The AE can compress the dimension of input data into a lower dimension to extract
features, which can be used for various problems such as classification, clustering, and
dimensionality reduction.

2.2.5. Memory-Augmented Deep Autoencoder (MemAE)

In MemAE, an algorithm based on AE, an encoder and a decoder are used to compress
and reconstruct input data. However, unlike the traditional AE, MemAE uses a memory
module to store and extract the features of the input data. The encoder maps the input data
to a low-dimensional space as shown in Equation (10).

ht = f (xt, mt−1) = σ(Wxhxt + Whhht−1 + Wmhmt−1 + bh) (10)

In this equation, xt is the input data at time t, and mt−1 is the external memory at
time t− 1. Wxh, Whh, Wmh are weight matrices, and bh is the bias vector. MemAE computes
the similarity between the input data and the memory to store and extract the features of
the input data. Each position in memory is computed as shown in Equation (11).

mt[i] = (1− αt)mt−1[i] + αtht (11)

In this equation, i is the index of memory, αt calculates the similarity between the
input data xt and the memory mt−1, and determines the weight based on the similarity.
Each location in the memory stores the extracted features of the input data, which are used
as inputs to the decoder along with the low-dimensional vector ht generated by the encoder.
The decoder, Equation (12), takes the low-dimensional vector ht and memory mt as inputs
to reconstruct the input data xt.

rt = g(ht, mt) = σ(Whrht + Wmrmt + br) (12)

In this equation, Whr, Wmr, br are the weight matrix and bias vector of the decoder.
The decoder’s output rt is the reconstructed result of the input data xt. The training is
performed using the objective function as shown in Equation (13).

L(xt, rt) = ||xt − rt||22 (13)

Using this structure, MemAE can store and extract the features of input data by using
external memory. By using this memory-based structure, it can extract more features of data
than Autoencoder, and these features can be used in various problems such as dimension
reduction, classification, and clustering.
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3. Experimental Environment and Data Description

For this study, data for detecting malicious behaviors that occur in APT attacks were
collected as shown in Figures 3 and 4. To collect normal and malicious behaviors, two
PCs and two servers were set up. PC1 was set up as the cyber-attack target PC to perform
normal and malicious behaviors. Another PC2 was set up as the cyber-attack PC to send
malware to the cyber-attack target PC. Server1 continuously collected the process data of
PC1’s normal and malicious behaviors. Server2 was set up as a C&C server to execute and
install additional malware on PC1. Malicious behaviors used actions and tools, such as the
Kimsuky phishing attack analyzed by Youn, J., et al. [44], which exploited the COVID-19
vaccine issue.
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Figure 3 illustrates the process of collecting malicious behaviors. Malware scripts are
sent from PC2 to PC1 via chat, email, or other means. PC1 runs the malware script on
Microsoft Edge Browser, and Server1 collects abnormal behavior data generated during
the execution of the malware. The malware script also executes functions that can receive
commands from the C&C server via Microsoft PowerShell. The C&C server performs tasks
such as collecting information and remote control of PC1. Figure 4 shows normal behavior
performed by PC1 on Microsoft Edge Browser, and Server1 collects process data generated
while performing normal behavior. Using this method, normal and malicious behavior data
were collected for about 3 days (approximately 67 h) with the PC continuously powered
on, resulting in a total of 16 GB of data.
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The data collected from Server1 is shown in Table 2, and the descriptions of the data
columns are shown in Table 3. In some cases, malicious code creates processes and deletes
executable files. For kernel drivers, even if the driver file itself is deleted after being loaded
into the kernel, there is no problem with execution. Therefore, if the ‘Removed’ value
is 1 (deleted), the probability of malicious behavior is very high. If a 32-bit process is
executed on a 64-bit operating system, the ‘Is_wow’ value is 1. Initially, there were many
programs that had not yet been converted to 64-bit when transitioning from 32-bit to 64-bit
environments, but most have now been converted to 64-bit, so if the Is_wow field is 1, the
probability of malicious behavior is high.

Table 2. Part of normal and abnormal behavior data.

Parent_Elevated Elevated Elevated_Type Removed Image_Codesign Is_Wow Label

0 0 1 0 0 0 1
1 1 1 0 3 0 0
0 0 1 0 0 0 1
0 0 3 0 0 0 1

Table 3. Normal and abnormal behavior data column description.

Column Description

Parent_elevated
Whether the parent process’s token is elevated

0: Token not elevated (Not admin rights)
1: Token elevated (Elevate to Administrator privileges)

Elevated
Whether the token is elevated

0: Token not elevated (Not admin rights)
1: Token elevated (Elevate to Administrator privileges)

Elevated_type

Token elevation type
1: TokenElevationTypeDefault
2: TokenElevationTypeFull
3: TokenElevationTypeLimited

Removed
Whether to delete the execution image of Process

0: Execution image not deleted
1: Execution image deleted

Image_codesign

Electronic Signature Verification Value
Unknown = 0
NoSignature = 1
Trusted = 2
Expired = 3
Revoked = 4
Distrust = 5
SecuritySettings = 6
BadSignature = 7

Is_wow 0: Not a WoW process
1: WoW process

Label 0: Malicious behavior
1: Normal behavior

The normal and malicious behavior data collected from Server 1 was experimented
using the algorithms introduced in Section 2.2. Among these algorithms, the experiment
can be explained based on the MemAE algorithm structure, as shown in Figure 5. The
normal and malicious behavior data collected from Server 1 is fed into the algorithm for
training. After the training is complete, the memory module transforms the potential vector
of the cyber-attack input through the most relevant general memory item and makes it
closer to the general instance when reconstructed by the decoder.
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4. Experiments

In this section, we use the models and data mentioned in Sections 2 and 3 to preprocess
and conduct experiments and present the results.

4.1. Data Preprocess

The collected data, excluding null data such as NaN, was used for preprocessing and
experiments, as mentioned in Sections 2 and 3. Upon examining the data distribution using
the left pie chart in Figure 6, it was found that there was a severe data imbalance. When the
proportion of abnormal data is too low in the dataset, the model may fail to correctly classify
abnormal data. Therefore, to set an appropriate ratio, the Synthetic Minority Over-sampling
Technique (SMOTE) [45] and Adaptive Synthetic (ADASYN) [46] sampling methods, which
are representative oversampling algorithm, were used.
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ADASYN is another oversampling technique that generates synthetic data points
by considering the density distribution of the minority class. It focuses on generating
more synthetic samples for those minority class instances that are harder to learn. This
adaptiveness allows the algorithm to shift the decision boundaries to focus on difficult
samples, thus improving the overall classification performance.

SMOTE is a technique that can improve classification performance by allowing classifi-
cation models to better learn from minority class data. It works by synthetically generating
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new samples from the minority class to balance the dataset. The algorithm selects one of
the minority class data points and finds k nearest neighbors of the selected data. It then
generates new data points between the selected data point and the neighboring data points
and adds the generated data to the minority class data. This process is repeated until the
desired number of data points is generated. SMOTE is widely used in various fields such
as anomaly detection, face recognition, and medical diagnosis, where imbalanced datasets
are common.

In this study, ADASYN and SMOTE were chosen as the oversampling methods due to
their proven effectiveness in addressing class imbalance, which could help the model learn
the minority class better and improve the overall classification performance. We created
new datasets using ADASYN and SMOTE with a sampling strategy option of 0.1, and the
resulting datasets can be seen in the middle and right pie charts of Figure 6. Accordingly,
the experiment compares the original dataset, the preprocessed dataset (ADASYN), and
the preprocessed dataset (SMOTE), evaluating the performance of each dataset.

Before training the model, it is important to understand the distribution of the data.
To visualize the data, dimensionality reduction is usually performed. The most common
method of dimensionality reduction is Principal Component Analysis (PCA) [47], which
represents high-dimensional data in a low-dimensional space. However, since PCA uses
linear analysis, it may cause problems in distinguishing clustered data after dimensionality
reduction. To solve this problem, dimensionality reduction algorithms based on a neighbor-
ing graph, such as t-distributed Stochastic Neighbor Embedded (t-SNE) [48] and Uniform
Manifold Approximation and Projection (UMAP) [49], have been developed. UMAP is like
t-SNE in that it uses a neighboring graph, but it creates a graph from high-dimensional
space data and projects it onto a low-dimensional space, making it faster than t-SNE. In
this study, due to the large amount of data in the dataset as mentioned in Section 3, UMAP
was used for visualization. Figure 7 shows the distribution of the original dataset, the
preprocessed dataset (ADASYN), and the preprocessed dataset (SMOTE). When looking
at the distribution of the data, the malicious behavior data is clustered on the left side.
This indicates that the original dataset, as well as the preprocessed datasets (ADASYN and
SMOTE), are somewhat classified. However, the original dataset has very few malicious
behavior data distributed, while both the preprocessed datasets (ADASYN and SMOTE)
have more appropriate distributions of malicious behavior data.
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4.2. Parameters and Performance Evaluation of Models

We conducted experiments by training the KNN, NB, RF, AE, and MemAE algorithms
using the original dataset, the preprocessed dataset (ADASYN) and the preprocessed
dataset (SMOTE). The parameters used for the training of the AE and MemAE algorithms
are shown in Table 4.



Appl. Sci. 2023, 13, 4097 12 of 17

Table 4. Parameters used in the experiment.

Parameters AE Value MemAE Value

Epochs 100 1
Batch size 32 1

Activation function LeakyReLU, Linear relu, sigmoid
Optimizer adam adam

Memory size - 100
Loss function Mean squared error Mean squared error

The purpose of this experiment is to detect malicious behaviors based on the be-
havior data that occur within the host. Such study can be defined as an anomaly detec-
tion problem. The following performance indicators are mainly used for such anomaly
detection problems.

1. Precision: It indicates the ratio of true positive samples among the samples classified
as abnormal by the model. In other words, precision is a metric that aims to reduce
False Positive (FP) cases. Higher precision means that the model correctly classifies
most of the samples as abnormal.

2. Recall: It indicates the ratio of true positive samples among the actual abnormal
samples. In other words, recall is a metric that aims to reduce False Negative (FN)
cases. Higher recall means that the model correctly classifies most of the actual
abnormal samples as abnormal.

3. F1-Score: It is the harmonic mean of precision and recall, representing the balance
between precision and recall. Higher F1-score means that the model has both high
precision and high recall.

4. Receiver Operating Characteristic (ROC) Curve: It is one of the ways to visualize
the performance of the anomaly detection model. The ROC curve is a graph that
shows the changes in True Positive Rate (TPR) and False Positive Rate (FPR) as the
classification threshold of the model is changed. The better the model’s performance,
the closer the ROC curve is to the upper left corner, and the performance of the
anomaly detection model is also expressed by the Area Under the Curve (AUC).

These metrics are calculated based on the confusion matrix, as shown in Table 5, using
Equations (14)–(18). In these equations, True Positive (TP) represents the number of cases
that the model classified as abnormal and are truly abnormal, FP represents the number of
cases that the model classified as abnormal but are normal, FN represents the number of
cases that the model classified as normal but are actually abnormal, and True Negative (TN)
represents the number of cases that the model classified as normal and are truly normal.
TPR represents the ratio of true positives to actual positives, while FPR represents the ratio
of false positives to actual negatives.

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1−Score = 2 · Precision · Recall
Precision + Recall

(16)

TPR =
TP

TP + FN
(17)

FPR =
FP

FP + TN
(18)
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Table 5. Confusion Matrix.

Actual Values
Positive Negative

Predicted Values
Positive TP FP
Negative FN TN

4.3. Experiments Results

The experimental results were evaluated using the Area Under the Receiver Operating
Characteristic Curve (AUROC) to determine how well the models distinguished between
normal and malicious behaviors. AUROC is a metric that calculates the area under the
ROC Curve, which indicates how well the classification model can distinguish between
normal and abnormal data. It is based on the changes in TPR and FPR as the classification
threshold of the model is adjusted.

Table 6 shows the AUROC performance of the datasets used in the experiment. Most
of the models used in the experiment showed high performance. KNN, NB, and RF models
using the original dataset showed 91–92% performance, while AE and MemAE showed
higher performance at 95–96%. Models using the Preprocessed dataset (ADASYN) showed
performance ranging from 89–98%, while models using the Preprocessed dataset (SMOTE)
showed high performance of 97–98%. The lowest performance difference between KNN
and MemAE was only 0.0038, indicating very little difference.

Table 6. AUROC performance for each dataset.

Models Original Dataset Preprocessed Dataset
(ADASYN)

Preprocessed Dataset
(SMOTE)

KNN 0.9249 0.9727 0.9788
NB 0.9152 0.9579 0.9687
RF 0.9232 0.8942 0.9788
AE 0.9553 0.9733 0.9792

MemAE 0.9611 0.9812 0.9826

The Figure 8 shows the ROC curves and AUROC values for each dataset, and the
performance evaluation results of the malicious behavior detection models using original
dataset, preprocessed dataset (ADASYN), and preprocessed dataset (SMOTE) are presented
in Tables 7–9, respectively. The evaluated models include KNN, NB, RF, AE, and MemAE,
and the evaluation metrics used to assess the model performance are Precision, Recall, and
F1-Score. The results indicate that both the preprocessed datasets (ADASYN and SMOTE)
significantly improved the model performance, with all models achieving higher Precision,
Recall, and F1-Score values than the original dataset. Notably, in the case of MemAE, the F1-
Score for the original dataset was 0.94. However, for the preprocessed dataset (ADASYN),
the F1-Score increased to 0.96, and for the preprocessed dataset (SMOTE), the F1-Score
increased further to 1.00, demonstrating a significant improvement in the results.
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Table 7. Malicious behavior detection results by model using the original dataset.

Models Precision Recall F1-Score

KNN 0.90 0.93 0.91
NB 0.77 0.82 0.79
RF 0.89 0.92 0.90
AE 0.93 0.96 0.94

MemAE 0.92 0.96 0.94

Table 8. Malicious behavior detection results by model using the preprocessed dataset (ADASYN).

Models Precision Recall F1-Score

KNN 0.94 0.91 0.93
NB 0.93 0.88 0.90
RF 0.83 0.78 0.80
AE 0.92 0.93 0.92

MemAE 0.97 0.94 0.96

Table 9. Malicious behavior detection results by model using the preprocessed dataset (SMOTE).

Models Precision Recall F1-Score

KNN 0.98 0.96 0.97
NB 0.86 0.86 0.86
RF 0.98 0.96 0.97
AE 1.00 0.99 0.99

MemAE 1.00 1.00 1.00

5. Conclusions

In conclusion, this study focused on detecting malicious behavior based on host
process data using machine learning. The study utilized a number of machines learning
algorithms, including KNN, NB, RF, AE, and MemAE, to classify data as either malicious
or normal. Additionally, the study incorporated dimensionality reduction techniques such
as PCA and UMAP and employed the ADASYN and SMOTE sampling method to improve
the classification performance of the models. The performance of the models was evaluated
using several metrics, including Precision, Recall, F1-Score, and AUROC.

The results indicate that the preprocessed dataset (SMOTE) improved the performance
of the models and that all models achieved higher Precision, Recall, F1-Score, and AUROC
values than the original dataset. The results indicate that both the preprocessed datasets
(ADASYN and SMOTE) improved the performance of the models and that all models
achieved higher Precision, Recall, F1-Score, and AUROC values than the original dataset.
In particular, the best performance was obtained when using the preprocessed dataset
(SMOTE) with the MemAE model, yielding an F1-Score of 1.00 and an AUROC value
of 0.9826.

This study is important because it provides a valuable framework for detecting mali-
cious behavior based on host process data using machine learning. The results of this study
can be used to enhance the security of computer systems and protect against various types
of attacks, including malware and intrusion attempts. Additionally, the techniques and
methods used in this study can be applied to other domains and datasets to improve the
performance of machine learning models. Overall, this study demonstrates the potential of
machine learning in detecting malicious behavior and offers a valuable contribution to the
field of cybersecurity. It is an excellent thesis that provides a comprehensive overview of
the problem and a thorough analysis of the techniques used to address it. The methods
and findings presented in this study can be used to inform future study and to develop
practical tools for detecting and preventing malicious behavior in a wide range of settings.
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For future study, more sophisticated machine learning algorithms and analysis tech-
niques can be applied to improve the detection of malicious behavior in host process data.
This involves exploring the use of state-of-the-art technologies such as deep learning algo-
rithms to enhance the performance of the models. Additionally, while our study collected
and analyzed data from a single host, it is necessary to analyze data from multiple hosts to
achieve a more accurate detection of malicious behavior at the network level.

Furthermore, while our study only utilized host process data, a more comprehensive
detection model for various types of malicious behavior can be developed by leveraging
other types of data such as network traffic, system logs, and user behavior data, addressing
the limitations of relying solely on host process data. Moreover, potential challenges and
limitations of using machine learning algorithms for detecting malicious behavior in real-
world settings should be considered, such as issues with data privacy, algorithm bias, and
real-time detection requirements.

Strategies to mitigate these concerns, including bias-correction techniques, compliance
with privacy regulations, and optimization of processing times and computational costs for
real-time deployment, should be explored. While our study focused on analyzing static
malicious code, there is a need to conduct study on analyzing dynamic malicious code. To
achieve this, dynamic analysis techniques can be used to monitor the execution process of
malicious code and develop models for detecting malicious behavior based on this.

Lastly, while our study focused on analyzing host process data, there is a need for study
on detecting malicious behavior in cloud environments. In cloud environments, multiple
users share resources simultaneously, and virtual resources such as virtual machines are
used. Therefore, it is important to develop a detection model that considers these factors. In
conclusion, further study in these areas can provide valuable insights for the development
of effective and efficient models for detecting malicious behavior in various settings. By
incorporating the latest technologies and analysis techniques, we can develop more accurate
and comprehensive detection models that can be applied to real-world situations, including
real-time systems where rapid response and minimal computational overhead are critical.
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Abbreviations

APT Advanced Persistent Threats
RF Random Forest
LMT logistic model trees
KNN K-Nearest Neighbors
ART Adaptive Resonance Theory
DoS Denial-of-Service
NB Naïve Bayes
LDA Linear Discriminant Analysis
XGBoost Extreme Gradient Boosting
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SVM Support Vector Machines
AdaBoost Adaptive Boosting
SGD Stochastic Gradient Descent
LR Logistic regression
MLP Multilayer Perceptron
AE Autoencoder
MemAE Memory-augmented Deep Autoencoder
SMOTE Synthetic Minority Over-sampling Technique
PCA Principal Component Analysis
t-SNE t-distributed Stochastic Neighbor Embedded
UMAP Uniform Manifold Approximation and Projection
FP False Positive
FN False Negative
ROC Receiver Operating Characteristic
TPR True Positive Rate
FPR False Positive Rate
AUC Area Under the Curve
TP True Positive True Negative
TN True Negative
AUROC Area Under the Receiver Operating Characteristic Curve
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