
Citation: Yu, L.; Guo, Q.; Wang, R.;

Shi, M.; Yan, F.; Wang, R. Dynamic

Offloading Loading Optimization in

Distributed Fault Diagnosis System

with Deep Reinforcement Learning

Approach. Appl. Sci. 2023, 13, 4096.

https://doi.org/10.3390/

app13074096

Academic Editor: Alessandro

Gasparetto

Received: 24 February 2023

Revised: 10 March 2023

Accepted: 17 March 2023

Published: 23 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Dynamic Offloading Loading Optimization in Distributed Fault
Diagnosis System with Deep Reinforcement
Learning Approach
Liang Yu 1 , Qixin Guo 2, Rui Wang 2,*, Minyan Shi 2, Fucheng Yan 3 and Ran Wang 3

1 Institute of Vibration, Shock and Noise, State Key Laboratory of Mechanical System and Vibration,
Shanghai Jiao Tong University, Shanghai 200240, China

2 College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
3 College of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China
* Correspondence: ruiwang@tongji.edu.cn; Tel.: +86-1356-472-0271

Abstract: Artificial intelligence and distributed algorithms have been widely used in mechanical
fault diagnosis with the explosive growth of diagnostic data. A novel intelligent fault diagnosis
system framework that allows intelligent terminals to offload computational tasks to Mobile edge
computing (MEC) servers is provided in this paper, which can effectively address the problems of
task processing delays and enhanced computational complexity. As the resources at the MEC and
intelligent terminals are limited, performing reasonable resource allocation optimization can improve
the performance, especially for a multi-terminals offloading system. In this study, to minimize the task
computation delay, we jointly optimize the local content splitting ratio, the transmission/computation
power allocation, and the MEC server selection under a dynamic environment with stochastic task
arrivals. The challenging dynamic joint optimization problem is formulated as a reinforcement
learning (RL) problem, which is designed as the computational offloading policies to minimize the
long-term average delay cost. Two deep RL strategies, deep Q-learning network (DQN) and deep
deterministic policy gradient (DDPG), are adopted to learn the computational offloading policies
adaptively and efficiently. The proposed DQN strategy takes the MEC selection as a unique action
while using the convex optimization approach to obtain the local content splitting ratio and the trans-
mission/computation power allocation. Simultaneously, the actions of the DDPG strategy are selected
as all dynamic variables, including the local content splitting ratio, the transmission/computation
power allocation, and the MEC server selection. Numerical results demonstrate that both proposed
strategies perform better than the traditional non-learning schemes. The DDPG strategy outperforms
the DQN strategy in all simulation cases exhibiting minimal task computation delay due to its ability
to learn all variables online.

Keywords: mobile edge computing; multi-terminals offloading; mechanical fault diagnosis;
reinforcement learning

1. Introduction

Large-scale and integrated equipment puts forward higher requirements for con-
dition monitoring with the improvement of productivity [1–4]. Intelligent mechanical
fault diagnosis algorithms have been accompanied by the development of artificial in-
telligence (AI) and Internet of Things (IoT) technologies, such as the application of deep
learning (DL) and reinforcement learning (RL), in fault diagnosis [5–10]. A collaborative
deep learning-based fault diagnosis framework is proposed to solve the data transmis-
sion problem in distributed complex systems, which is a security strategy that does not
require the transmission of raw data [11]. An improved classification and regression tree
algorithm are proposed, which ensures the accuracy of fault classification by reducing
the iteration time in the computation [12]. A fault diagnosis method based on adaptive

Appl. Sci. 2023, 13, 4096. https://doi.org/10.3390/app13074096 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13074096
https://doi.org/10.3390/app13074096
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8079-4055
https://orcid.org/0000-0002-6524-9099
https://doi.org/10.3390/app13074096
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13074096?type=check_update&version=1

Appl. Sci. 2023, 13, 4096 2 of 19

privacy-preserving federated learning is used for the Internet of Ships, which guarantees no
risk of data leakage by sharing model parameters [13]. A deep learning-based approach to
automated fault detection and isolation is used for fault detection in automotive dashboard
systems, which is tested against data generated from a local computer-based manufac-
turing system [14]. An intelligent fault detection method based on the multi-scale inner
product is adopted for shipboard antenna fault detection, which uses the inner product
to capture fault information in vibration signals and combines it with locally connected
feature extraction [15].

The current intelligent fault diagnosis algorithm pays more attention to the reliability
of the diagnosis and less attention to the timeliness [16]. The server’s computation resources
and the timeliness of data processing have become urgent problems to be solved with
the exponential growth of diagnostic data throughput. The traditional fault diagnosis
systems offload the diagnostic data collected by terminals to a server with powerful
computing power for processing, as shown in Figure 1. The server is usually far away
from the acquisition terminal, which causes a waste of resources during transmission and
increases data transmission delay [17]. The emergence of mobile edge computing (MEC)
provides a solution to these problems, which is considered a promising architecture for data
access [18–21]. MEC deploys several lightweight servers closer to the collection terminals
compared to traditional state monitoring systems, which are called mobile edge servers.
MEC servers can reduce the burden of performing computation for large content tasks and
task processing delays significantly by allowing terminals to offload computation tasks to a
nearby MEC server [22,23].

...

Terminal #1

Terminal #2

Terminal #K

Central Server

Offloading Loading

Offloading Loading

Offlo
ad

ing
 Loa

din
g

Figure 1. The framework of the conventional mechanical fault diagnosis system in which the terminal
uploads the monitoring data to a central server through the network cable for processing.

The architecture of MEC usually consists of the user layer and the mobile edge
layer [24–27], as shown in Figure 2. In the MEC paradigm, the user layer consists of
mobile device terminals, which contain various applications and functions and also have
certain computing capabilities. When processing each computing task, the device terminal
can choose to process it on its own device in addition to offloading the task to the mobile
edge layer or cloud layer through data transfer. The mobile edge layer consists of edge
servers near the device terminals, where computing resources are more abundant than

Appl. Sci. 2023, 13, 4096 3 of 19

those of the device terminals. Through computing offload technology, information can be
interacted with in real-time to meet the computing needs of different types of application
scenarios. The MEC architecture has a wide range of application scenarios in the IoT, such
as 5G communication, virtual reality, Internet of Vehicles, smart city, smart factory, etc.
The MEC architecture has the advantages of low time delay, green and energy efficiency,
security, location, content awareness, etc., which makes it easier to access AI methods and
blockchain methods.

smart phone Internet of
Vehicles

Smart City Smart Factory

...

wireless access
network

User Layer

Mobile Edge Layer
MEC Servers

... Advantages：
• Low time delay
• Green and energy efficient
• Security
• Location and content

awareness

Figure 2. Architecture, applications, and advantages of MEC.

Computing offloading as one of the core techniques of the MEC has received great
attention recently. For simple, indivisible, or highly integrated tasks, binary offloading
strategies are generally adopted, and tasks can only be computed locally or all offloaded to
the servers [28]. The authors in [29] formulated the binary computation offloading decision
problem as a convex problem, which minimizes the transmission energy consumption
under the time delay constraint. The computation offloading model studied in [30] assumed
that the application has to complete the computing task with a given probability within a
specified time interval, for which the optimization goal is the sum of local and offloading
energy consumption. This work concluded that offloading computing tasks to the MEC
servers can be more efficient in some cases. In practice, offloading decisions can be more
flexible. The computation tasks can be divided into two parts performed in parallel: one
part is processed locally, and the other is offloaded to the MEC servers for processing [31].
A task-call graph model is proposed to illustrate the dependency between the terminal
and MEC servers, in which decisions and latencies are investigated by the joint offloading
scheduling and formulated as a linear programming problem [32].

RL has been employed as a new solution to the problem of MEC offloading, which
is a model-free machine learning algorithm that can perform self-iterative training based
on the data it generates [33–36]. Task processing delay is a vital optimization parameter
for time-sensitive systems. The authors studied the problem of computation offloading in
an IoT network in [37], in which the Q-learning-based RL approach was proposed for an
IoT device to select a proper device and determine the proportion of the computation task
to offload. The authors in [38] investigated joint communication, caching, and computing
for vehicular mobility networks. A deep Q-learning-based RL with a multi-timescale
framework was developed to solve the joint online optimization problem. In [39], the

Appl. Sci. 2023, 13, 4096 4 of 19

authors studied the offloading for the energy harvesting (EH) MEC network. An after-state
RL algorithm was proposed to address the large time complexity problem, and polynomial
value function approximation was introduced to accelerate the learning process. In [40],
the authors also studied the MEC network with the EH device. The authors proposed
hybrid-based actor-critic learning for optimizing the offloading ratio, local computation
capacity, and server selection. From the above references, efficient computational offloading
decisions based on RL methods can help the system to reduce computational complexity
and computational time cost.

In the framework of the intelligent fault diagnosis system proposed in this paper,
the user layer consists of intelligent terminals with certain computing power, and the
mobile edge layer consists of MEC servers with strong computing power, as shown in
Figure 3. The intelligent terminal offloads the fault diagnosis data to any MEC server
proportionally through the agent server’s policy. The optimization problem becomes an
offloading decision problem in a dynamic MEC environment, and the current channel
state information (CSI) cannot be observed while making the offloading decision. The
offloading policy should follow the predicted CSI and task arrival rates under the intelligent
terminal and MEC server energy constraints aiming to minimize the long-term average
delay cost. We first establish a low-complexity deep Q-learning network (DQN)-based
offloading framework where the action includes only discrete MEC server selection, while
the local content splitting ratio and the transmission/computation power allocation are
optimized by the convex optimization method. Then, we develop a deep deterministic
policy gradient (DDPG)-based framework, which includes both the discrete MEC server
selection variable and constant local content splitting ratio, the transmission/computation
power allocation variable as actions. The numerical results demonstrate that both proposed
strategies perform better than the traditional non-learning scheme. The DDPG strategy is
superior to the DQN strategy as it can online learn all variables. Compared with the tradi-
tional fault diagnosis system, the intelligent fault diagnosis system migrates the original
computing tasks based on the central server to the edge computing system, which reduces
the computing load of the central server, slows down the network bandwidth pressure,
and improves the real-time data interaction. On the other hand, the new intelligent fault
diagnosis system solves the problem of the single function of traditional instrumentation
systems, which increases the intelligence of instrumentation and makes it easier to access
other intelligent methods.

The contributions of this paper can be summarized as follows.

(1) A new framework for the intelligent fault diagnosis system based on the MEC frame-
work is proposed, in which MEC servers and intelligent terminals can process monitor-
ing data and the ratio determined by the offload policy of the agent server. Compared
with the traditional fault diagnosis system, the intelligent fault diagnosis system
solves the problems of limited computing resources and network delay and increases
the intelligence of the equipment.

(2) Two offloading scenarios of the intelligent fault diagnosis system are modeled: one-
to-one and one-to-multiple. One-to-one means that one MEC server can only be
connected by one intelligent terminal simultaneously, and one-to-multiple implies
that multiple intelligent terminals can be connected to the same MEC server simul-
taneously. The optimization goal is taking the maximum time delay for the system
to complete the computation task at each time slot. Every intelligent terminal and
MEC server has its energy constraints, and the agent determines the power allocation
during the offloading process.

(3) The offloading decision optimization algorithm based on the combination of convex
optimization and deep reinforcement learning is designed. Firstly, the convex opti-
mization methods are used to solve the connection problem of the intelligent terminal
needing to choose which MEC server. Then, the resource allocation of intelligent fault
diagnosis system offloading is given by the DQN and DDPG algorithm.

Appl. Sci. 2023, 13, 4096 5 of 19

...

MEC Server #1 MEC Server #M

...

Agent Server

Intelligent Terminal #1 Intelligent Terminal #KIntelligent Terminal #2

Offloading
Loading

Local
execution

Computation
offloading

Figure 3. The framework of the intelligent mechanical fault diagnosis system in this paper, which
contains three parts: intelligent terminal, agent server, and MEC servers.

The remainder of this paper is structured as follows. The intelligent fault diagno-
sis system models are provided in Section 2. The DDPG-based Offloading Design and
DQN-based Offloading Design are described in Section 3 and Section 4, respectively. The
numerical results and relevant analysis are presented in Section 5. The conclusion is given
in Section 6.

2. The Intelligent Fault Diagnosis System Model

A new framework for the intelligent fault diagnosis system is proposed in this paper,
which consists of MEC servers and intelligent terminals, as shown in Figure 4. Both
MEC servers and intelligent terminals can process monitoring data, and the intelligent
terminal can offload data to any MEC server through the agent. The interaction between
the intelligent terminal and the MEC server operates in the orthogonal frequency division
multiple access frameworks. The offloading policy includes the local content splitting ratio,
the transmission/computation power allocation, and the MEC server selection. According
to the offloading policy, the monitoring data is split into two parts: one is offloaded to the
MEC server for processing and the remaining part is kept locally for processing by the
intelligent terminal. The intelligent fault diagnosis system based on the MEC framework
can be divided into three models: the network model, the communication model, and the
computing model. These will be introduced separately in the following.

2.1. Network Model of Intelligent Fault Diagnosis System

The network of intelligent fault diagnosis system supporting offloading contains M
MEC servers and K intelligent terminals. LetM = {1, · · · , M} and K = {1, · · · , K} be
the index sets of the MEC servers and the intelligent terminals, respectively. Part of the
diagnostic data will be offloaded to the MEC server, assuming that the MEC server has more
computing power than the intelligent terminal. The system time is divided into consecutive
time frames with equal time period τ0 and the time indexed by t ∈ T = {0, 1, · · · }. The
channel state information between the m-th MEC server and the k-th intelligent terminal is
denoted as hm,k, and the task size at intelligent terminal k is marked as Ck. The channel state

Appl. Sci. 2023, 13, 4096 6 of 19

information of the MEC network {hm,k(t)} and the task arrival Ck(t) at each intelligent
terminal change for each time interval t ∈ T. In order to save the energy consumption
of intelligent terminals and MEC servers and reduce the task processing latency, the
central agent node needs to determine the task ratio of local execution content size and
offloading content size, as well as the power allocation ratio of local task processing
and data transmission. The power splitting of the MEC server among multiple smart
terminals should be determined if one MEC server is selected to help handle tasks from
multiple intelligent terminals. The communication model and the computational model
are described in detail below.

MEC Server #m

Agent Server offloading policy:
local content splitting ratio;
transmission/computation
power allocation;
MEC server selection.

Intelligent Terminal #k

monitoring data

Request
Policy

Intelligent Terminal #k

Local execution

Computation offloading

offloading to MEC

keep locally
monitoring data

Figure 4. The working principle of intelligent fault diagnosis system in this paper. The intelligent
terminal collects the fault diagnosis data and then requests a policy from the agent server.

2.2. Communication Model of MEC Servers and Intelligent Terminals

In the considered network of intelligent fault diagnosis systems, the communications
are operated in an orthogonal frequency division multiple access framework, and a dedi-
cated subchannel with bandwidth B is allocated for each intelligent terminal for the partial
task offloading. Supposing that intelligent terminal k communicates with MEC server m,
the received signal at MEC m receiver can be represented as

ym,k = hm,k

√
po

k(t)sk + nm,k, (1)

where sk denotes the symbols transmitted from intelligent terminal k, po
k(t) is the utilized

power at intelligent terminal k, and nm,k denotes the received additive Gaussian noise with
power N0. Here the channel gains hm,k(t) follows the finite-state Markov chain (FSMC), and
thus the communication rate between MEC server m and intelligent terminal k is give by

ro
m,k(t) = B log2

(
1 +

po
k(t)|hm,k(t)|2

N0

)
. (2)

Appl. Sci. 2023, 13, 4096 7 of 19

2.3. Computing Model of Intelligent Fault Diagnosis System

The task Ck(t) received at intelligent terminal k at time t need to be processed during
time interval t. Denote the task splitting ratio as αk ∈ [0, 1], which indicates that at time
interval t, αkCk(t) bits are executed at the intelligent terminal device and the remaining
(1− αk)Ck(t) bits are offloaded to and processed by the MEC server.

(1) Local computing: In local computation, the CPU of the intelligent terminal device
is the primary engine, which adopts the dynamic frequency and voltage scaling (DVFS)
technique and the performance of the CPU is controlled by the CPU-cycle frequency κu.
Let pl

k(t) denote the local processing power at intelligent terminal k, then the intelligent
terminal’s computing speed (cycles per second) f l

k(t) at t-th slot is given by

f l
k(t) =

3

√
pl

k(t)
κu

. (3)

Let Dk denote the number of CPU cycles required for intelligent terminal k to accom-
plish one task bit. Then the local computation rate for intelligent terminal k at time slot t is
given by

rl
k =

f l
k

Dk
=

3

√
pl

k
κu

Dk
.

(4)

(2) Mobile Edge Computation Offloading: The task model for mobile edge computation
offloading is the data-partition model, where the task-input bits are bit-wise and can be
arbitrarily divided into different groups. At the beginning of the time slot, the intelligent
terminal chooses which MEC server to connect to according to the channel state. Assume
that the processed power which is allocated to the intelligent terminal k by the MEC server
m is pc

m,k, then the computation rate rc
m,k at MEC server m for intelligent terminal k is:

rc
m,k =

3

√
pc

m,k
κm

Dm
,

(5)

where Dm is the number of CPU cycles required for the MEC server to accomplish one task
bit, and κm denotes the CPU-cycle frequency at the MEC server. It is noted that the MEC
server can simultaneously process tasks from multiple intelligent terminals. We assume
multiple applications can be executed parallel with a negligible processing latency. The
feedback time from the MEC to the intelligent terminal is ignored due to the small-sized
computational output.

3. DQN-Based Offloading Design

In this section, we develop a DQN-based offloading framework for minimizing the
long-term processing delay cost. With the development of the traditional Q-learning
algorithm, DQN is particularly suitable for high-dimensional state spaces and possesses
fast convergence behavior. The MEC system constructs the DQN environment in the
considered DQN offloading design framework. A central agent node is set up to observe
status, perform actions, and receive feedback rewards. The center can be the cloud server
or an MEC server.

The DQN-based offloading framework is introduced in the following, in which the
corresponding state space, action space, and reward are defined. In the overall DQN
paradigm, it is assumed that the instantaneous CSI is estimated at MEC servers using
the training sequences and then delivered to the agent. The CSI observed at the agent is
the delayed version due to the channel estimation operations and feedback delay. Only
local CSI of intelligent terminals, which connect to this MEC server, is acquired for each
MEC server.

Appl. Sci. 2023, 13, 4096 8 of 19

3.1. System State and Action Spaces

System State Space: In the considered DQN paradigm, the state space observed by
the agent includes the CSI of the overall network and the received task size Ck(t) at time
t. As the agent needs to consume extra communication overhead to connect the CSI from
all MEC servers, the MEC server at time t observes a delayed version of CSI at time t− 1,
i.e., {hm,k(t− 1)}. Denote

h(t) =
{

h1,1(t), h1,2(t), · · · , hM,K(t)
}

,

C(t) =
{

C1(t), C2(t), · · · , CK(t)
}

.
(6)

The state space observed at time t can be represented as

S(t) =
{

h(t− 1), C(t)
}

. (7)

System Action Space: The agent will take certain actions to interact with the envi-
ronment with the observed state space S(t). As DQN can only take care of the discrete
actions, the actions defined in the proposed DQN paradigm constitute only the MEC server
selection. The MEC server selection action is denoted as a(t), which can be represented as

a(t) =
{

xm,k(t)|xm,k(t) ∈ {0, 1}
}

, (8)

where xm,k(t) = 0 means that the intelligent terminal k does not select the MEC server m
at t-th time slot, while xm,k(t) = 1 indicates that the intelligent terminal k selects the MEC
server m at t-th time slot.

3.2. Reward Function

In the DQN paradigm, the reward is defined as the maximum time delay required
to complete all the tasks received at all intelligent terminals. After taking the actions, a
dedicated MEC server can calculate the time delays required for the intelligent terminals
choosing this MEC server to offload, as all MEC can observe the local CSI. With the loss
of generality, we assume that intelligent terminal k with k ∈ Ok offloads the tasks to MEC
m, where set Ok defines the indexes of the intelligent terminals selecting MEC server m to
offload tasks. To minimize the required time delays, the MEC server needs to formulate an
optimized problem to find the optimal αk(t), pl

k(t), po
k(t), and pc

m,k(t). It is worth noting
that as the MEC server knows the instantaneous CSI at time t, the solution can be obtained
based on h(t), which is different from the MEC server selection taken based on h(t− 1).
For the intelligent terminals which do not offload tasks to the MEC servers, the required
time delays for local task processing can be known by these intelligent terminals. The agent
collects all the time delay consumptions from the intelligent terminals and the MEC servers
to obtain the final reward.

We detail how to compute the time delay for intelligent terminal k, assuming that it
selects MEC server m to offload. The total time consumption for completing the task pro-
cessing at intelligent terminal k is denoted as tk, which equals to tk = max{tl

k, to
m,k + tc

m,k}
where tl

k, to
m,k, and tc

m,k denote the times required for intelligent terminal local task process-
ing, task offloading transmission from intelligent terminal k to MEC server m, and task
processing at MEC server, respectively.

With the computation rate rl
k defined in Equation (4), time tl

k can be represented as

tl
k =

αkCk(t)
rl

k(t)
. (9)

Appl. Sci. 2023, 13, 4096 9 of 19

As the size of the offloaded task is (1− αk)Ck with the communication rate defined in
Equation (2), time to

m,k can be calculated as

to
m,k =

(1− αk)Ck(t)
ro

m,k(t)
. (10)

With the computation rate rc
m,k allocated by MEC server m to intelligent terminal k in

Equation (4), time tc
m,k can be computed as

tc
m,k =

(1− αk)Ck(t)
rc

m,k(t)
. (11)

To maximize the reward, we need to minimize the time delay for each intelligent
terminal under the total energy constraint at intelligent terminals and MEC servers. To
illustrate the way to find optimal αk(t), pl

k(t), po
k(t), and pc

m,k(t) for different types of MEC
server selection, we next present two typical offloading scenarios, that is, an MEC server
serves one intelligent terminal and an MEC server serves two intelligent terminals. It is
noted that the proposed way of solving αk(t), pl

k(t), po
k(t), and pc

m,k(t) can be extended to
the case where an MEC server serves arbitrary number of intelligent terminals.

(1) Scenario 1: one MEC server serves one intelligent terminal

The energy consumption at intelligent terminal k, denoted by Ek, includes two parts,
i.e., one part for local partial task processing and another for partial task transmission.
Therefore, Ek can be written as

Ek = pl
k(t)t

l
k + po

k(t)t
o
m,k. (12)

The energy consumption at the MEC server m for processing the partial task offloaded
from intelligent terminal k is denoted by Em,k, and can be represented as

Em,k = pc
m,k(t)t

c
m,k. (13)

The optimization problem formulated to find optimal xk(t) = {αk(t), pl
k(t), po

k(t), pc
m,k(t)}

is given by

min
xk(t)

tk = max{tl
k, to

m,k + tc
m,k} (14a)

s.t. Ek ≤ Emax,k, ∀k ∈ K (14b)

Em ≤ Emax,m, ∀m ∈ M, (14c)

where Emax,k and Emax,m denote the maximum available energy at intelligent terminal k
and MEC server m, respectively. Problem (14) can be rewritten as

min
xk(t)

max
{

αk(t)Ck(t)
3
√

pk
1(t)
κl

Dk

,
(1− αk(t))Ck(t)

3
√

pc
m,k(t)
κm

Dm

(15a)

+
(1− αk(t))Ck(t)

B log2(1 +
po

k(t)|hm,k(t)|2
N0

)

}
s.t. pl

k(t)t
l
k + po

k(t)t
o
m,k ≤ Emax,k (15b)

pc
m,k(t)t

c
m,k ≤ Emax,m (15c)

αk ∈ [0, 1]. (15d)

Appl. Sci. 2023, 13, 4096 10 of 19

To solve problem (15), we first find that at optimal solution, constraint (15c) must be
active, which can minimize the the objective value (15a). We thus have

pc
m,k(t)t

c
m,k = pc

m,k(t)
(1− αk(t))Ck(t)

3
√

pc
m,k(t)
κm

Dm

= Emax,m,
(16)

which produces

pc
m,k(t) =

(
Emax,m

(1− αk(t))Ck(t)κ
1/3
m Dm

)3/2

. (17)

Substituting (17) to problem (15), we have

min
xk(t)

max
{

αk(t)Ck(t)

(

3
√

pl
k(t)
κl

Dl
)

,
(1− αk(t))3/2Ck(t)3/2

κ1/6
m D1/2

m E1/2
max,m

(18a)

+
(1− αk(t))Ck(t)

B log2(1 +
po

k(t)|hm,k |2
N0

)

}
s.t. pl

k(t)t
l
k + po

k(t)t
o
m,k ≤ Emax,k (18b)

αk ∈ [0, 1]. (18c)

It is noted that problem (18) is a non-convex optimization problem. We propose an
alternating algorithm to solve pl

k(t), po
k(t), and αk(t) in different subproblems separately

to find an efficient solution. In the first subproblem, we solve pl
k(t) for given αk(t) and

po
k(t). To minimize the objective function, the optimal solution of pl

k(t) should activate
constraint (18b), that is, pl

k(t)t
l
k = Emax,k − po

k(t)t
o
m,k, which implies

pl
k(t) =

(
Emax,k − po

k(t)t
o
m,k

αk(t)Ck(t)Dlκ
1/3
l

)3/2

. (19)

In the second subproblem, we solve po
k(t) with given pl

k(t) and αk(t). The correspond-
ing optimization problem is given by

min
po

k(t)

(1− αk(t))Ck(t)

B log2(1 +
po

k(t)|hm,k |2
N0

)
(20a)

s.t.
(1− αk(t))Ck(t)po

k(t)

B log2(1 +
po

k(t)|hm,k |2
N0

)
≤ Emax,k − pl

k(t)t
l
k. (20b)

Problem (19) is a convex optimization problem and can be efficiently solved, such as
the interior point algorithm, etc.

In the third problem, αk(t) is solved with given pl
k(t) and po

k(t). The corresponding
optimization problem is given by

min
αk(t)

max
{

αk(t)Ck(t)

(

3
√

pl
k(t)
κl

Dl
)

,
(1− αk(t))3/2Ck(t)3/2

κ1/6
m D1/2

m Emax,m
1/2

(21a)

+
(1− αk(t))C1

B log2(1 +
po

k(t)|hm,k |2
N0

)

}
s.t. αk(t) ∈ [0, 1]. (21b)

Appl. Sci. 2023, 13, 4096 11 of 19

For the min–max problem (21), by denoting f1(αk(t)) = αk(t)Ck(t)
3
√

pl
k(t)
κl

Dl

, f2(αk(t)) =

(1−αk(t))3/2Ck(t)3/2

κ1/6
m D1/2

m Emax,m
1/2 + (1−αk(t))Ck(t)

B log2(1+
po

k(t)|hm,k |2
N0

)
and f (αk(t)) = f1(αk(t)) + f2(αk(t)), it is known that

the optimal αk(t), denoted by α∗k (t), occurs in the following three cases, that is, α1
k(t) = 0,

α2
k(t) = 1, or f1(α

3
k(t)) = f2(α

3
k(t)). Note that the solution of the third case can be obtained

by solving a cubic equation. The final solution is given as

α∗k (t) =

α1

k(t) if f (α1
k(t)) ≤ { f (α2

k(t)), f (α3
k(t))}

α2
k(t) if f (α2

k(t)) ≤ { f (α1
k(t)), f (α3

k(t))}
α3

k(t) if f (α3
k(t)) ≤ { f (α1

k(t)), f (α2
k(t))}

. (22)

By alternating three subproblems with the solutions given in (19), (20), and (22) until
convergence, we obtain the final solution.

(2) Scenario 2: one MEC server serves two intelligent terminals

Assume that MEC server m serves two intelligent terminals, e.g., intelligent terminal k
and intelligent terminal k′, then the optimization problem can be formulated as follows

min max
{

tl
k, to

m,k + tc
m,k, tl

k′ , to
m,k′ + tc

m,k′
}

(23a)

s.t. pl
k(t)t

l
k + po

k(t)t
o
m,k ≤ Emax,k (23b)

pl
k′(t)t

l
k′ + po

k′(t)t
o
m,k′ ≤ Emax,k′ (23c)

pc
m,k(t)t

c
m,k + pc

m,k′(t)t
c
m,k′ ≤ Emax,m. (23d)

The previously proposed iterative algorithm can still be applied here to solve αi(t),
pl

i(t), po
i (t) and pc

m,i(t) with i = {k, k′}. Here the only difference lies in solving pc
m,k(t) and

pc
m,k′(t). The corresponding optimization problem can be formulated as

min max
{

to
m,k +

(1− αk(t))Ck(t)
3
√

pc
m,k(t)
κm

Dm

, (24a)

to
m,k′ +

(1− αk′(t))Ck′(t)
3
√

pc
m,k′ (t)

κm
Dm

}

s.t.
(1− αk(t))Ck(t)

3
√

pc
m,k(t)
κm

Dm

+
(1− αk′(t))Ck′(t)

3
√

pc
m,k′ (t)

κm
Dm

≤ Emax,m. (24b)

It is worth noting that the optimal solution must activate the constraints and make the
two terms within the objective function equal to each other. Therefore, the optimal pc

m,k(t)
and pc

m,k′(t) can be obtained by solving the following equations

to
m,k +

(1− αk(t))Ck(t)
3
√

pc
m,k(t)
κm

Dm

= to
m,k′ +

(1− αk′(t))Ck′(t)
3
√

pc
m,k′ (t)

κm
Dm

(1− αk(t))Ck(t)
3
√

pc
m,k(t)
κm

Dm

+
(1− αk′(t))Ck′(t)

3
√

pc
m,k′ (t)

κm
Dm

= Emax,m.
(25)

Hence, under an action a(t), the system reward can be obtained as

rt = −max
{

tk|k ∈ K, a(t)
}

. (26)

Appl. Sci. 2023, 13, 4096 12 of 19

The structure of the DQN-based offloading algorithm is illustrated in Figure 5, and
the pseudocode is presented in Algorithm 1.

DNN
System State

Compute

optimization

problem to

obtain

reward

Mini-Batch

Sample

Experience Buffer

State Action

State Action

State Action

State Action

State Action

State Action

...

Training Samples

 () (-1), ()S t t t h C
Give the

offloading

decision

 , ,() () | () {0,1}m k m ka t x t x t

()a t

()a t

Figure 5. The structure of the DQN-based offloading algorithm.

Algorithm 1 The DQN-based Offloading Algorithm

1: Initialize the experience replay buffer B;
2: Initialize action-value function Q with random weights θ;
3: Initialize target action-value function Q′ with random weights θ− = θ;
4: for each episode n = 1, 2, · · · , N do
5: Reset simulation parameters for the environment;
6: Randomly generate an initial state s1;
7: for each time slot t = 1, 2, . . . , T do
8: Generate an action at = µ(st|θµ) +∇µ to determine which MEC server to connect to;
9: Execute action at and solving corresponding optimization to obtain reward rt;

10: Receive reward rt and observe the next state st+1;
11: Store the tuple (st, at, rt, st+1) into B;
12: Sample a random mini-batch of N transitions (st, at, rt, st+1) from B;
13: Perform gradient descent and update Q-network;
14: Every C steps reset Q′ = Q;
15: end for
16: end for

4. DDPG-Based Offloading Design

Note that only the discrete actions can be handled by the DQN-based offloading design,
where the reward acquisition mainly depends on solving the formulated optimization
problems at MEC servers, which may increase the extra computing burden at the MEC
servers. In this section, we rely on the DDPG to design offloading policy, considering
that DDPG can deal with discrete and continuous value actions. Different from DQN,
DDPG uses the Actor-Critic network to improve the accuracy of the model. In this section,
we directly regard a(t), αk(t), pl

k(t), po
k(t), and pc

m,k(t) as the output action instead of
disassembling the problem into two parts.

System State Space: In the DDPG offloading paradigm, the system state space action
is the same as the DQN-based offloading paradigm, which is given by

S(t) =
{

h(t− 1), C(t)
}

, (27)

where h(t− 1) and C(t) are defined in (6). As in the DQN offloading paradigm, the agent
can only observe the delayed version of CSI due to channel estimation operations and
feedback delay.

System Action Space: In the DDPG offloading paradigm, the value of pc
m,k(t) is

utilized to indicate the MEC server selection, where pc
m,k(t) = 0 represents that there is

no partial task at intelligent terminal k offloaded to the MEC server m. In other words,

Appl. Sci. 2023, 13, 4096 13 of 19

the MEC server m is not chosen by intelligent terminal k. If pc
m,k(t) is not equal to 0, it

means that the intelligent terminal k decides to offload partial tasks to the MEC server m.
Since the intelligent terminal can only connect to one MEC server at one time slot, only
one pc

m,k(t) in any time slot is not 0, and the remaining ones are 0. The action space of the
DDPG offloading paradigm can be expressed as

a(t) =
{

αk(t), pl
k(t), po

k(t), pc
m,k(t)

}
, ∀k, m. (28)

It is noted that here the continuous actions pl
k(t), po

k(t), pc
m,k(t) can be obtained based

on state S(t) with delayed CSI h(t− 1).
System Reward Funciton: In the DDPG offloading algorithm, αk(t), pl

k(t), po
k(t), and

pc
m,k(t) can be obtained from a continuous action space. With the decisions, the agent tells

each intelligent terminal k the selected MEC server and delivers pl
k(t) and po

k(t) to it to
perform the offloading. Moreover, the agent needs to send pc

m,k(t) to each server to allocate
computing resources. After that, the reward is obtained as in (26) by collecting tk observed
at the MEC servers or intelligent terminals.

Compared to the DQN-based offloading paradigm, the DDPG-based offloading
paradigm does not need the MEC servers to solve the optimization problems, which
can release the computation burden at the MEC servers. However, as the DDPG algo-
rithm is generally more complex than the DQN algorithm, the computation complexity
unavoidably increases at the agent. The structure of the DDPG-based offloading algorithm
is illustrated in Figure 6. We provide the pseudocode in Algorithm 2.

Algorithm 2 The DDPG-based Offloading Algorithm

1: Randomly initialize the actor network µθµ and the critic network QθQ with weights θµ

and θQ;
2: Initialize target network µ and Q with weights θµ′ ← θµ, θQ′ ← θQ;
3: Initialize the experience replay buffer B;
4: for each episode n = 1, 2, · · · , N do
5: Reset simulation parameters for the environment;
6: Randomly generate an initial state s1;
7: for each time slot t = 1, 2, . . . , T do
8: Select an action at = µ(st|θµ) + ∇µ to determine the power for transmission

and computation;
9: Execute action at and receive reward rt and observe the next state st+1;

10: Store the tuple (st, at, rt, st+1) into B;
11: Sample a random mini-batch of N transitions (st, at, rt, st+1) from B;
12: Update the critic network by minimizing the loss L :

L = 1
N ∑N

t=1
(
rt + max

a∈A
Q(s

′
t, a|θQ′)−Q(st, at|θQ)

)2;

13: Update the actor network by using the sampled policy gradient:
∇θµ J ≈ 1

N ∑N
t=1∇αQ(st, a|θQ)|a=at∇θµ µ(st|θµ);

14: Update the target networks by:
θµ′ ← τθµ + (1− τ)θµ′ ;
θQ′ ← τθQ + (1− τ)θQ′ ;

15: end for
16: end for

Appl. Sci. 2023, 13, 4096 14 of 19

Figure 6. The structure of the DDPG-based offloading algorithm.

5. Numerical Results

In this section, we present the numerical simulation results to illustrate the perfor-
mance of the proposed two offloading paradigms. Assume that the time interval of the
system is 1 ms, and the bandwidth of the intelligent fault diagnosis system is 1 MHz. Addi-
tionally, the required CPU cycles per bit are 300 cycles/bit at the intelligent terminals and
120 cycles/bit at MEC servers. In the training process, the learning rate of the DQN-based
offloading algorithm is 0.01. In the DDPG-based offloading algorithm, the learning rate of
the actor network is 0.001, and the learning rate of the critic network is 0.001.

In Figure 7, we plot the training process of the DQN-based algorithm and the DDPG-
based algorithm, where the blue curve represents the delay dynamics of the DQN-based
algorithm and the red curve represents the delay dynamics of the DDPG-based algorithm.
The delay of the system is in an unstable state with large fluctuations in the beginning,
indicating that the agent is constantly exploring the environment randomly. After a period
of learning, the delay decreases slowly, and the fluctuation range gradually gets smaller.
After about 1200 iterations, the DDPG-based algorithm converges to a stable value of 1.2;
after about 1500 iterations, the DQN-based algorithm converges to 1.22. At this time, the
average reward of each episode no longer changes, and the training process is completed.
The DDPG-based algorithm converges faster and can obtain a lower latency than the DQN-
based algorithm. This indicates that the performance of the DDPG-based algorithm is
better than the DQN-based algorithm for our offloading problem.

In Figure 8, the DDPG-based computational offloading paradigm, the DQN-based
computational offloading paradigm, and the “Random” policy are compared for different
task sizes in terms of delay. “Random” means that the computing resources are allocated
randomly. The delay difference between the three policies is slight at task sizes below 2.5 bit,
with the DDPG-based computational offloading paradigm having the smallest delay and
the “Random” policy having the largest delay. The delay of the “Random” policy increases
the most as the task size increases, while the latency of the DDPG-based computational
offloading paradigm and the DQN-based computational offloading paradigm increases
slightly less. The delay of DDPG’s computational offload paradigm and DQN-based com-
putational offload paradigm consistently remains low compared to the “Random” policy.

Appl. Sci. 2023, 13, 4096 15 of 19

0 1000 2000 3000 4000 5000 6000 7000

Iterations

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

DQN-based

DDPG-based

Figure 7. The delay dynamics of each iteration of the DQN-based and DDPG-based algorithms
during the training process, where the blue curve represents the delay dynamics of the DQN-based
algorithm and the red curve represents the delay dynamics of the DDPG-based algorithm.

2 2.5 3 3.5 4 4.5

Task Size(Bit)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

D
e
la

y
(m

s
)

DQN-based

DDPG-based

Random

Figure 8. The delay comparison under different task sizes, where the red curve represents the delay
of the DDPG-based computational offloading paradigm, the blue curve represents the delay of the
DQN-based computational offloading paradigm, and the yellow curve represents the delay of the
“Random” policy.

In Figure 9, we illustrate the offloading delay as the function of the amount of tasks
at intelligent terminals. Three benchmarks, namely “Random”, “Local computing”, and
“MEC server computing”, are chosen to compare the performance with the proposed two
offloading paradigms. Here “Random” means that the computing resources are allocated
in a random manner; “Local computing” and “MEC server computing” mean that the
tasks are processed only at intelligent terminals and only at MEC servers, respectively.
The curves in Figure 9 show that the required time delay increases correspondingly as
the amount of tasks grows. The computation delay of “Local computing” is the largest
as intelligent terminals have little local computing capacity. “MEC server computing”
performs better than “random scheme” when the task arrival rate is more significant than
2.7 Mbps, which indicates that when the task arrival rate increases, task offloading to
MEC servers can obtain a lower time delay. When the task arrival rate is greater than
4 Mbps, the offloading time delay of “MEC server computing” is close to the DQN-based

Appl. Sci. 2023, 13, 4096 16 of 19

computation offloading algorithm, indicating that most tasks are offloaded to the MEC
servers with large task sizes. Both proposed DQN and DDPG offloading paradigms achieve
better performance than other benchmarks, proving the proposed methods’ effectiveness.
On the other hand, the DDPG-based computation offloading paradigm achieves a lower
computation delay than the DQN-based computation offloading paradigm, which further
verifies the superiority of the DDPG algorithm in dealing with high-dimensional continuous
action-state space problems.

2 2.5 3 3.5 4 4.5

Task Arrival Rate(Mbps)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

D
e

la
y
(m

s
)

DQN-bsaed

DDPG-based

Random

Local Computing

MEC Server Computing

Figure 9. The delay comparison under different task arrival rates, where the red curve represents the
delay of the DDPG-based computational offloading paradigm, the blue curve represents the delay of
the DQN-based computational offloading paradigm, the yellow curve represents the delay of the
“Random” policy, the purple curve represents the delay of the “Local computing” policy, and the
green curve represents the delay of the “MEC server computing” policy.

Figure 10 shows the impact of the computing capabilities of intelligent terminals
and MEC servers on the processing delay. We fix the local computing capability as a
constant value and increase the computing capacity of the MEC server continuously, so the
computation delay of “Local computing” is not affected by the ratio of computing capacity
between the intelligent terminal and MEC server. Under different computing capabilities,
the proposed DQN and DDPG offloading paradigms can achieve better performance
than the other three benchmarks, and the performance of the DDPG-based offloading
paradigm is slightly better than the DQN-based offloading paradigm. When the ratio of
MEC server computing capacity to intelligent terminal computing capacity locates between
two and three and the ratio increases, the processing speed of the MEC server is faster than
the intelligent terminal, and the intelligent terminal chooses to offload more tasks to the
MEC server. The computation delay of “MEC computing” is smaller than the “random
scheme”. When the ratio exceeds three and as the ratio increases, the processing speed
of the MEC server is significantly higher than the intelligent terminals. The intelligent
terminal prioritizes the task offloading, and the task processing delay is still decreasing,
but the downward trend slows down. The computation delay of “MEC computing” is
lower than the “random scheme” and close to the DQN-based offloading paradigm, which
indicates that most or all tasks are offloaded to the MEC servers. The decrease in the delay
is mainly due to the increase in the computing capacity of the MEC servers.

Figure 11 illustrates the computation delay under different energy constraints at
the intelligent terminals. The curves show that “MEC computing” is not affected by the
change in energy of the intelligent terminal. “Local computing” highly depends on the
intelligent terminal energy constraint, and the computation delay decreases significantly
as the intelligent terminal energy increases. The increase in intelligent terminal energy
indicates a fast local processing speed and high available transmission at the intelligent
terminals, which can reduce the computation delay to a certain extent. The computation

Appl. Sci. 2023, 13, 4096 17 of 19

delay of DQN-based and DDPG-based offloading paradigms decreases significantly as the
intelligent terminal’s energy increases at the beginning. The computation delay gradually
decreases when the intelligent terminal’s energy reaches a certain level, which shows that
the intelligent terminal’s energy constraint significantly impacts the computation delay
within a specific range. The computation delay has a weaker impact when the intelligent
terminal’s energy exceeds a certain range. The DQN-based and the DDPG-based offloading
paradigms achieve better performance than other offloading methods under different
intelligent terminal energy constraints, which indicates the effectiveness of the proposed
computational offloading algorithms. Moreover, the performance of the DDPG-based
offloading paradigm is slightly better than the DQN-based offloading paradigm.

2 3 4 5 6 7

MEC Server Computing Capability/Local Computing Capability

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

D
e

la
y
(m

s
)

DQN-based

DDPG-based

Random

Local Computing

MEC Server Computing

Figure 10. The delay comparison under different computing capabilities, where the red curve repre-
sents the delay of the DDPG-based computational offloading paradigm, the blue curve represents the
delay of the DQN-based computational offloading paradigm, the yellow curve represents the delay
of the “Random” policy, the purple curve represents the delay of the “Local computing” policy, and
the green curve represents the delay of the “MEC server computing” policy.

5 10 15 20 25 30

Energy Constraints of User(J)

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

D
e

la
y
(m

s
)

DQN-based

DDPG-based

Random

Local Computing

MEC Server Computing

Figure 11. The delay comparison under different energy constraints at the intelligent terminals, where
the red curve represents the delay of the DDPG-based computational offloading paradigm, the blue
curve represents the delay of the DQN-based computational offloading paradigm, the yellow curve
represents the delay of the “Random” policy, the purple curve represents the delay of the “Local
computing” policy, and the green curve represents the delay of the “MEC server computing” policy.

6. Conclusions

In this paper, we propose a novel framework for the intelligent mechanical fault
diagnosis system, which is a resource allocation scheme based on deep reinforcement
learning for offloading diagnostic data of multiple intelligent terminals. The optimization

Appl. Sci. 2023, 13, 4096 18 of 19

parameters and optimization objectives can be determined by modeling the data offload-
ing scenario of the intelligent fault diagnosis system. Two deep reinforcement learning
algorithms, i.e., DQN-based offloading strategy and DDPG-based offloading strategy, are
investigated to solve the formulaic offloading optimization problem for obtaining the
lowest latency. Comparing the different offloading schemes shows that the proposed
deep reinforcement learning-based learning approach can reduce task processing latency
under different system parameters. The intelligent fault diagnosis framework proposed
in this paper allows easier access to other intelligent technologies, such as deep learning
techniques for data calibration, federated learning techniques, and blockchain technologies
for protecting user data privacy.

Author Contributions: Conceptualization, R.W. (Rui Wang), L.Y. and Q.G.; methodology, R.W.
(Rui Wang); software, M.S. and F.Y.; validation, R.W. (Ran Wang); formal analysis, L.Y., Q.G. and R.W.
(Rui Wang); resouces, R.W. (Rui Wang); data curation, L.Y.; writing—original draft preparation, L.Y.
and Q.G.; writing—review and editing, L.Y., Q.G. and R.W. (Rui Wang); project administration, L.Y.
and R.W. (Rui Wang); funding acquisition, R.W. (Rui Wang), L.Y. and R.W. (Ran Wang). All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Science Foundation of China under Grant
62271352, the National Natural Science Foundation of China under Grant 12074254 and 51505277,
the Natural Science Foundation of Shanghai under Grant 21ZR1434100, and Shanghai Science and
Technology Innovation Action Plan Project No. 21220713100.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, M.; Chen, J.; He, S.; Yang, L.; Gong, X.; Zhang, J. Privacy-preserving database assisted spectrum access for industrial

internet of things: A distributed learning approach. IEEE Trans. Ind. Electron. 2019, 67, 7094–7103. [CrossRef]
2. Yang, B.; Xu, S.; Lei, Y.; Lee, C.G.; Stewart, E.; Roberts, C. Multi-source transfer learning network to complement knowledge for

intelligent diagnosis of machines with unseen faults. Mech. Syst. Signal Process. 2022, 162, 108095. [CrossRef]
3. Azamfar, M.; Li, X.; Lee, J. Intelligent ball screw fault diagnosis using a deep domain adaptation methodology. Mech. Mach.

Theory 2020, 151, 103932. [CrossRef]
4. Wang, R.; Zhang, C.; Yu, L.; Fang, H.; Hu, X. Rolling Bearing Weak Fault Feature Extraction under Variable Speed Conditions via

Joint Sparsity and Low-Rankness in the Cyclic Order-Frequency Domain. Appl. Sci. 2022, 12, 2449. [CrossRef]
5. Qin, C.; Jin, Y.; Zhang, Z.; Yu, H.; Tao, J.; Sun, H.; Liu, C. Anti-noise diesel engine misfire diagnosis using a multi-scale CNN-LSTM

neural network with denoising module. CAAI Trans. Intell. Technol. 2023, 1–24. [CrossRef]
6. Wang, H.; Liu, C.; Du, W.; Wang, S. Intelligent Diagnosis of Rotating Machinery Based on Optimized Adaptive Learning

Dictionary and 1DCNN. Appl. Sci. 2021, 11, 11325. [CrossRef]
7. Li, W.; Huang, R.; Li, J.; Liao, Y.; Chen, Z.; He, G.; Yan, R.; Gryllias, K. A perspective survey on deep transfer learning for fault

diagnosis in industrial scenarios: Theories, applications and challenges. Mech. Syst. Signal Process. 2022, 167, 108487. [CrossRef]
8. Wang, X.; Wang, T.; Ming, A.; Zhang, W.; Li, A.; Chu, F. Semi-supervised hierarchical attribute representation learning via

multi-layer matrix factorization for machinery fault diagnosis. Mech. Mach. Theory 2022, 167, 104445. [CrossRef]
9. Chen, Z.; Wu, J.; Deng, C.; Wang, C.; Wang, Y. Residual deep subdomain adaptation network: A new method for intelligent fault

diagnosis of bearings across multiple domains. Mech. Mach. Theory 2022, 169, 104635. [CrossRef]
10. Lei, Y.; Yang, B.; Jiang, X.; Jia, F.; Li, N.; Nandi, A.K. Applications of machine learning to machine fault diagnosis: A review and

roadmap. Mech. Syst. Signal Process. 2020, 138, 106587. [CrossRef]
11. Wang, H.; Liu, C.; Jiang, D.; Jiang, Z. Collaborative deep learning framework for fault diagnosis in distributed complex systems.

Mech. Syst. Signal Process. 2021, 156, 107650. [CrossRef]
12. Deng, H.; Diao, Y.; Wu, W.; Zhang, J.; Ma, M.; Zhong, X. A high-speed D-CART online fault diagnosis algorithm for rotor systems.

Appl. Intell. 2020, 50, 29–41. [CrossRef]
13. Zhang, Z.; Guan, C.; Chen, H.; Yang, X.; Gong, W.; Yang, A. Adaptive Privacy-Preserving Federated Learning for Fault Diagnosis

in Internet of Ships. IEEE Internet Things J. 2021, 9, 6844–6854. [CrossRef]
14. Iqbal, R.; Maniak, T.; Doctor, F.; Karyotis, C. Fault detection and isolation in industrial processes using deep learning approaches.

IEEE Trans. Ind. Inform. 2019, 15, 3077–3084. [CrossRef]
15. Pan, T.; Chen, J.; Zhou, Z.; Wang, C.; He, S. A novel deep learning network via multiscale inner product with locally connected

feature extraction for intelligent fault detection. IEEE Trans. Ind. Inform. 2019, 15, 5119–5128. [CrossRef]

http://doi.org/10.1109/TIE.2019.2938491
http://dx.doi.org/10.1016/j.ymssp.2021.108095
http://dx.doi.org/10.1016/j.mechmachtheory.2020.103932
http://dx.doi.org/10.3390/app12052449
http://dx.doi.org/10.1049/cit2.12170
http://dx.doi.org/10.3390/app112311325
http://dx.doi.org/10.1016/j.ymssp.2021.108487
http://dx.doi.org/10.1016/j.mechmachtheory.2021.104445
http://dx.doi.org/10.1016/j.mechmachtheory.2021.104635
http://dx.doi.org/10.1016/j.ymssp.2019.106587
http://dx.doi.org/10.1016/j.ymssp.2021.107650
http://dx.doi.org/10.1007/s10489-019-01516-2
http://dx.doi.org/10.1109/JIOT.2021.3115817
http://dx.doi.org/10.1109/TII.2019.2902274
http://dx.doi.org/10.1109/TII.2019.2896665

Appl. Sci. 2023, 13, 4096 19 of 19

16. Liu, S.; Guo, C.; Al-Turjman, F.; Muhammad, K.; de Albuquerque, V.H.C. Reliability of response region: A novel mechanism in
visual tracking by edge computing for IIoT environments. Mech. Syst. Signal Process. 2020, 138, 106537. [CrossRef]

17. Kumar, K.; Liu, J.; Lu, Y.H.; Bhargava, B. A survey of computation offloading for mobile systems. Mob. Netw. Appl. 2013,
18, 129–140. [CrossRef]

18. Nilsen, J.M.; Park, J.H.; Yun, S.; Kang, J.M.; Jung, H. Competing Miners: A Synergetic Solution for Combining Blockchain and
Edge Computing in Unmanned Aerial Vehicle Networks. Appl. Sci. 2022, 12, 2581. [CrossRef]

19. Peng, Y.; Liu, Y.; Li, D.; Zhang, H. Deep Reinforcement Learning Based Freshness-Aware Path Planning for UAV-Assisted Edge
Computing Networks with Device Mobility. Remote Sens. 2022, 14, 4016. [CrossRef]

20. Huda, S.A.; Moh, S. Survey on computation offloading in UAV-Enabled mobile edge computing. J. Netw. Comput. Appl. 2022,
201, 103341. [CrossRef]

21. Liao, L.; Lai, Y.; Yang, F.; Zeng, W. Online Computation Offloading with Double Reinforcement Learning Algorithm in Mobile
Edge Computing. J. Parallel Distrib. Comput. 2023, 171, 28–39. [CrossRef]

22. Lu, W.; Mo, Y.; Feng, Y.; Gao, Y.; Zhao, N.; Wu, Y.; Nallanathan, A. Secure transmission for multi-UAV-assisted mobile edge
computing based on reinforcement learning. IEEE Trans. Netw. Sci. Eng. 2022, 1–12. [CrossRef]

23. Guo, Y.; Zhao, R.; Lai, S.; Fan, L.; Lei, X.; Karagiannidis, G.K. Distributed machine learning for multiuser mobile edge computing
systems. IEEE J. Sel. Top. Signal Process. 2022, 16, 460–473. [CrossRef]

24. Esposito, C.; Castiglione, A.; Pop, F.; Choo, K.K.R. Challenges of connecting edge and cloud computing: A security and forensic
perspective. IEEE Cloud Comput. 2017, 4, 13–17. [CrossRef]

25. Liu, Y.; Peng, M.; Shou, G.; Chen, Y.; Chen, S. Toward edge intelligence: Multiaccess edge computing for 5G and Internet of
Things. IEEE Internet Things J. 2020, 7, 6722–6747. [CrossRef]

26. Wu, D.; Huang, X.; Xie, X.; Nie, X.; Bao, L.; Qin, Z. LEDGE: Leveraging edge computing for resilient access management of
mobile IoT. IEEE Trans. Mob. Comput. 2019, 20, 1110–1125. [CrossRef]

27. Cui, Q.; Zhang, J.; Zhang, X.; Chen, K.C.; Tao, X.; Zhang, P. Online anticipatory proactive network association in mobile edge
computing for IoT. IEEE Trans. Wirel. Commun. 2020, 19, 4519–4534. [CrossRef]

28. Mao, Y.; Zhang, J.; Letaief, K.B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices.
IEEE J. Sel. Areas Commun. 2016, 34, 3590–3605. [CrossRef]

29. Barbarossa, S.; Sardellitti, S.; Di Lorenzo, P. Communicating while computing: Distributed mobile cloud computing over 5G
heterogeneous networks. IEEE Signal Process. Mag. 2014, 31, 45–55. [CrossRef]

30. Zhang, W.; Wen, Y.; Guan, K.; Kilper, D.; Luo, H.; Wu, D.O. Energy-optimal mobile cloud computing under stochastic wireless
channel. IEEE Trans. Wirel. Commun. 2013, 12, 4569–4581. [CrossRef]

31. Zhang, Y.; Liu, H.; Jiao, L.; Fu, X. To offload or not to offload: An efficient code partition algorithm for mobile cloud computing. In
Proceedings of the 2012 IEEE 1st International Conference on Cloud Networking (CLOUDNET), Paris, France, 28–30 November
2012; pp. 80–86.

32. Mahmoodi, S.E.; Uma, R.; Subbalakshmi, K. Optimal joint scheduling and cloud offloading for mobile applications. IEEE Trans.
Cloud Comput. 2016, 7, 301–313. [CrossRef]

33. Lu, H.; Gu, C.; Luo, F.; Ding, W.; Liu, X. Optimization of lightweight task offloading strategy for mobile edge computing based
on deep reinforcement learning. Future Gener. Comput. Syst. 2020, 102, 847–861. [CrossRef]

34. Wang, D.; Tian, X.; Cui, H.; Liu, Z. Reinforcement learning-based joint task offloading and migration schemes optimization in
mobility-aware MEC network. China Commun. 2020, 17, 31–44. [CrossRef]

35. Zhao, R.; Wang, X.; Xia, J.; Fan, L. Deep reinforcement learning based mobile edge computing for intelligent Internet of Things.
Phys. Commun. 2020, 43, 101184. [CrossRef]

36. Ren, Y.; Sun, Y.; Peng, M. Deep reinforcement learning based computation offloading in fog enabled industrial Internet of Things.
IEEE Trans. Ind. Inform. 2020, 17, 4978–4987. [CrossRef]

37. Min, M.; Xiao, L.; Chen, Y.; Cheng, P.; Wu, D.; Zhuang, W. Learning-based computation offloading for IoT devices with energy
harvesting. IEEE Trans. Veh. Technol. 2019, 68, 1930–1941. [CrossRef]

38. Le Thanh, T.; Hu, R.Q. Mobility-aware edge caching and computing in vehicle networks: A deep reinforcement learning. IEEE
Trans. Veh. Technol. 2018, 67, 10190–10203.

39. Wei, Z.; Zhao, B.; Su, J.; Lu, X. Dynamic edge computation offloading for Internet of Things with energy harvesting: A learning
method. IEEE Internet Things J. 2018, 6, 4436–4447. [CrossRef]

40. Zhang, J.; Du, J.; Shen, Y.; Wang, J. Dynamic computation offloading with energy harvesting devices: A hybrid-decision-based
deep reinforcement learning approach. IEEE Internet Things J. 2020, 7, 9303–9317. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ymssp.2019.106537
http://dx.doi.org/10.1007/s11036-012-0368-0
http://dx.doi.org/10.3390/app12052581
http://dx.doi.org/10.3390/rs14164016
http://dx.doi.org/10.1016/j.jnca.2022.103341
http://dx.doi.org/10.1016/j.jpdc.2022.09.006
http://dx.doi.org/10.1109/TNSE.2022.3185130
http://dx.doi.org/10.1109/JSTSP.2022.3140660
http://dx.doi.org/10.1109/MCC.2017.30
http://dx.doi.org/10.1109/JIOT.2020.3004500
http://dx.doi.org/10.1109/TMC.2019.2954872
http://dx.doi.org/10.1109/TWC.2020.2984599
http://dx.doi.org/10.1109/JSAC.2016.2611964
http://dx.doi.org/10.1109/MSP.2014.2334709
http://dx.doi.org/10.1109/TWC.2013.072513.121842
http://dx.doi.org/10.1109/TCC.2016.2560808
http://dx.doi.org/10.1016/j.future.2019.07.019
http://dx.doi.org/10.23919/JCC.2020.08.003
http://dx.doi.org/10.1016/j.phycom.2020.101184
http://dx.doi.org/10.1109/TII.2020.3021024
http://dx.doi.org/10.1109/TVT.2018.2890685
http://dx.doi.org/10.1109/JIOT.2018.2882783
http://dx.doi.org/10.1109/JIOT.2020.3000527

	Introduction
	The Intelligent Fault Diagnosis System Model
	Network Model of Intelligent Fault Diagnosis System
	Communication Model of MEC Servers and Intelligent Terminals
	Computing Model of Intelligent Fault Diagnosis System

	DQN-Based Offloading Design
	System State and Action Spaces
	Reward Function

	DDPG-Based Offloading Design
	Numerical Results
	Conclusions
	References

