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Abstract: Edges in two-dimensional structures are the source of nonlinear transport and optical
phenomena which are particularly important in small-size flakes. We present a microscopic theory
of the edge photogalvanic effect, i.e., the formation of DC electric current flowing along the sample
edges in response to AC electric field of the incident terahertz radiation, for two-dimensional Dirac
materials including the systems with massive and massless charge carriers. The edge current direction
is controlled by the AC field polarization. The spectral dependence of the current is determined by
the carrier dispersion and the mechanism of carrier scattering, as shown for single-layer and bilayer
graphene as examples.
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1. Introduction

The discovery of graphene and other two-dimensional (2D) crystals opened a new
page in the physics of low-dimensional systems [1,2] and triggered the research aimed
at the development of efficient sources and detectors of terahertz radiation based on 2D
Dirac materials [3,4]. In small-size samples, e.g., flakes obtained by mechanical exfoliation,
the important and sometimes decisive role in the formation of photoelectric response
is played by edges and nearby regions [5,6]. At the edges, the translational and space
inversion symmetries are naturally broken, which gives rise to edge-related mechanisms of
the photogalvanic effect [5–11] and the second harmonic generation [12–14].

The photocurrents flowing along the sample edges (the edge photogalvanic effect)
were observed and studied in single-layer and bilayer graphene samples excited by ter-
ahertz radiation [5,6,10], also in an external magnetic field in the conditions of cyclotron
resonance [9] and in the regime of the quantum Hall effect [15]. It is found that the edge
photocurrent is induced by both linearly and circularly polarized radiation. Moreover, the
photocurrent direction is controlled by the polarization of the incident radiation: the elec-
tric field direction with respect to the edge for the linearly polarized field and the photon
helicity for the circularly polarized field. The edge photogalvanic effect in 2D structures can
be considered as a low-dimensional analog of the surface photogalvanic effect studied in
bulk semiconductor crystals and metal films and recently in nanocomposite films [16–22].

The microscopic theory of the edge photogalvanic effect in the spectral range of
intraband transport has been developed so far for 2D systems with parabolic energy
spectrum of charge carriers [6,8]. Here, we generalize the theory to the class of 2D Dirac
materials. We present a comprehensive theoretical study of the edge currents for 2D systems
with arbitrary dispersion ε(p) and arbitrary type of electron scattering in the 2D bulk. We
show that the edge current is determined by the dispersion of carriers and the relaxation
times of the first and second angular harmonics of the distribution function and compare
the results for single-layer and bilayer graphene, which are examples of 2D systems with
parabolic and linear energy spectra.
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2. Microscopic Theory

Consider an electromagnetic wave incident on the structure hosting a 2D electron gas
occupying the (xy) half-plane at x ≥ 0, see Figure 1. The AC electric field of the incident
wave has the form E(t) = E exp(−iωt) + c.c., where E and ω are the field amplitude and
frequency, respectively, and the abbreviation “c.c.” denotes the complex conjugation. The
AC electric field causes the back-and-forth in-plane motion of electrons. At the edge of
the structure (here, at x = 0), the AC motion of electrons gets distorted due to electron
reflection from the edge and dynamic charge accumulation, which leads to an asymmetry
of the high-frequency electron transport. This asymmetry results in the rectification of
the AC current and, hence, the emergence of a DC current Jy flowing along the edge. As
Figure 1 illustrates, the DC edge current can be excited by both linearly polarized and
circularly polarized electromagnetic waves and the current direction is controlled by the
wave polarization.

E(t)
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(c) (d)

(b)
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x
y
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Figure 1. Illustration of the edge current formation. The back-and-forth motion of 2D carriers
occupying the x ≥ 0 half-plane by linearly polarized (a,b) or circularly polarized (c,d) AC electric
field results, due to electron scattering from the edge and dynamical charge accumulation, in the DC
current Jy flowing along the edge. The edge current direction is controlled by the field polarization.

Now we present the microscopic theory of high-frequency non-linear electron trans-
port and calculate the edge currently. We consider the classical range of the electromagnetic
wave frequencies, i.e., h̄ω � EF, where EF is the Fermi energy of the 2D electron gas, and
describe the electron kinetics by the Boltzmann equation

∂ f
∂t

+ vx
∂ f
∂x

+ eE(x, t) · ∂ f
∂p

= I{ f } . (1)

Here, f = f (p, x, t) is the electron distribution function, p and ε(p) are the electron momen-
tum and energy, respectively, v = dε/dp = vp/p is the velocity, v = dε/dp, e is the electron
charge, E(x, t) = E(x) exp(−iωt) + c.c. is the local electric field acting upon the electrons,
and I{ f } is the collision integral. At this stage, we assume that the electron spectrum is
isotropic in the 2D plane but do not specify the exact form of the dispersion ε(p). The field
E(x) near the edge differs from the incident field E by the correction δE(x) ‖ x due to
the screening produced by dynamical charge accumulation [6,23,24]. Therefore, Ey = Ey
whereas Ex(x) ∝ Ex.
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At equilibrium, the electron distribution is isotropic and homogenous at x ≥ 0 and
is described by the Fermi–Dirac function f0(ε). In the presence of an AC electric field, the
distribution function acquires corrections. We expand the resulting distribution function
f (p, x, t) in the series in the electric field amplitude as follows

f (p, x, t) = f0 + [ f1(p, x) exp(−iωt) + c.c.] + f2(p, x) + . . . , (2)

where f1 is the first-order correction, which determines the linear (Drude) conductivity, and
f2 is the time-independent second-order correction. The second-order correction oscillating
at 2ω is not considered here since it does not contribute to DC electric current.

The density of DC electric current jy(x) is determined by the asymmetric part of the
correction f2 and is given by

jy(x) = eg ∑
p

vy f2(p, x) , (3)

where g is the factor that takes into account possible spin and valley degeneracy (e.g.,
g = 2 for GaAs quantum wells and g = 4 for single-layer and bilayer graphene) and
∑p = (2πh̄)−2

∫
d2 p.

Equation (1) with the perturbation term eE(x, t) · ∂ f /∂p yields the following differen-
tial equations for f1 and f2

−iω f1 + vx
∂ f1

∂x
+ eE(x) · ∂ f0

∂p
= I{ f1} , (4)

vx
∂ f2

∂x
+

[
eE(x) ·

∂ f ∗1
∂p

+ c.c
]
= I{ f2} . (5)

We solve Equations (4) and (5) in the approximation of elastic electron scattering in
the bulk of the 2D system and for specular reflection of electrons from the edge. The latter
implies that f (px, py, 0, t) = f (−px, py, 0, t) which also ensures the lack of electric current
across the edge. Multiplying Equation (5) by the velocity vy and averaging the resulting
equation over the directions of p one obtains〈

vxvy
∂ f2

∂x

〉
+

〈
vy

(
eE ·

∂ f ∗1
∂p

+ c.c
)〉

= −
〈vy f2〉

τ1
, (6)

where the angular brackets 〈. . .〉 stand for the averaging and τ1 is the momentum relaxation
time (relaxation time of the first angular harmonic) defined as 1/τ1 = −〈v I{ f }〉/〈v f 〉.
Such a definition of τ1 enables the consideration of its dependence on the electron energy
ε(p). Equations (3) and (6) yield the equation for the current density

jy(x) = −eg ∑
p

τ1vxvy
∂ f2

∂x
− eg ∑

p
τ1vy

(
eE ·

∂ f ∗1
∂p

+ c.c
)

. (7)

After the integration of the second term by parts, Equation (7) assumes the form

jy(x) = −eg ∑
p

τ1vxvy
∂ f2

∂x
+ e2g ∑

p

(τ1

m

)′
mvxvy(Ex f ∗1 + c.c)

+ e2g ∑
p

[
τ1

m
+
(τ1

m

)′mv2

2
−m

(τ1

m

)′ v2
x − v2

y

2

]
(Ey f ∗1 + c.c) , (8)

where (. . .)′ = d(. . .)/dε and m = p/v = p/(dε/dp) is the (energy-dependent) effective
mass. In the case of parabolic dispersion ε(p) = p2/(2m∗) the effective mass m = m∗ is
energy-independent whereas for linear dispersion ε(p) = v0 p the effective mass m = ε/v2

0
linearly depends on energy. Note that the mass m also determines the quasi-classical
cyclotron motion. Equation (8) is valid for arbitrary dispersion and arbitrary boundary
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conditions at the edge. Obviously, the DC current vanishes for the AC field polarized
along or perpendicularly to the edge and emerges only if the incident field E has both
x and y components. Therefore, the corrections f1 in the second and third terms on the
right-hand side of Equation (8) should be calculated for the y and x components of the field,
respectively.

For specular reflection of electrons from the edge, the second sum in Equation (8)
vanishes since f1 in response to Ey is an even function of vx. The third sum in Equation (8)
can be rewritten via ∂ f ∗1 /∂x using the equalities

iω〈 f1〉 =

〈
vx

∂ f1

∂x

〉
, (9)(

iω− 1
τ2

)〈v2
x − v2

y

2
f1

〉
=

〈
vx

v2
x − v2

y

2
∂ f1

∂x

〉
, (10)

which follow from Equation (4). Here, τ2 is the relaxation time of the second angular
harmonic of the distribution function defined as 1/τ2 = −〈(v2

x − v2
y) I{ f }〉/〈(v2

x − v2
y) f 〉.

Therefore, Equation (8) assumes the form

jy(x) = −eg ∑
p

τ1vxvy
∂ f2

∂x
+

e2g
ω ∑

p
vx

[
τ1

m
+
(τ1

m

)′mv2

2

](
iEy

∂ f ∗1
∂x

+ c.c
)

+ e2g ∑
p

mvx
v2

x − v2
y

2

(τ1

m

)′( τ2Ey

1 + iωτ2

∂ f ∗1
∂x

+ c.c
)

. (11)

The current density jy(x) is determined by spatial derivatives of the distribution function
and, as expected, vanishes in the 2D bulk where the electron distribution is homogenous.

The total electric current flowing along the edge is given by

Jy =

∞∫
0

jy(x)dx . (12)

Integrating Equation (11) over x we obtain

Jy = −eg ∑
p

τ1vxvy[ f2(p, ∞)− f2(p, 0)] (13)

+

{
i
e2g
ω ∑

p

[
τ1

m
+
(τ1

m

)′mv2

2

]
vx[ f ∗1 (p, ∞)− f ∗1 (p, 0)]Ey + c.c

}

+

{
e2g ∑

p

(τ1

m

)′ mτ2

1 + iωτ2

v2
x − v2

y

2
vx[ f ∗1 (p, ∞)− f ∗1 (p, 0)]Ey + c.c

}
,

where fn(p, 0) and fn(p, ∞) are the corrections to the distribution function at the edge and
far from the edge, respectively. For the particular case of specular reflection of electrons from
the edge, the functions f1(p, 0) and f2(p, 0) are even in px and, therefore, the sums with
f1(p, 0) and f2(p, 0) vanish. As a result, the edge current Jy is determined by the functions
f1(p, ∞) and f2(p, ∞) in the bulk where the actual field E coincides with the incident field
E. The sums with f1(p, ∞) and f2(p, ∞) can be readily calculated from Equations (4) and (5)
neglecting spatial inhomogeneous terms and the electric field screening. Below, we do such
calculations for the degenerate electron gas with the Fermi energy EF.

The first-order correction in the 2D bulk has the form

f1(p, ∞) = −
eτ1 f ′0

1− iωτ1
(v · E) . (14)
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Therefore, the second sum in Equation (13) is calculated as follows

ieg ∑
p

[
τ1
m

+
( τ1

m

)′mv2

2

]
vx f ∗1 (p, ∞)Ey + c.c. =

[
τ1
m

+
( τ1

m

)′mv2

2

]
EF

[iσ∗(ω)E∗x Ey + c.c.]

=

[
τ1
m

+
( τ1

m

)′mv2

2

]
EF

Re σ(ω)(ωτ1S2 − S3) , (15)

where σ(ω) is the conductivity,

σ(ω) = − e2g
2 ∑

p

τ1v2 f ′0
1− iωτ1

=
ne2

m
τ1

1− iωτ1
, (16)

all the values are taken at the Fermi level, n = g ∑p f0 is the carrier density, and S2 =
ExE∗y + E∗x Ey and S3 = i(ExE∗y − E∗x Ey) are the Stokes parameters of the incident radiation.
The third sum in Equation (13) is calculated as follows

eg ∑
p

( τ1
m

)′ mτ2
1 + iωτ2

v2
x − v2

y

2
vx f ∗1 (p, ∞)Ey + c.c. =

1
4

( τ1
m

)′
EF

mv2 τ2 σ∗(ω)

1 + iωτ2
E∗x Ey + c.c.

=
1
4

( τ1
m

)′
EF

mv2 τ2 Re σ(ω)

1 + (ωτ2)2

[
(1−ω2τ1τ2)S2 + ω(τ1 + τ2)S3

]
. (17)

Lastly, the sum with f2(p, ∞) in Equation (13) can be expressed with the help of Equation (5)
via the sum with f1(p, ∞) as follows

∑
p

τ1vxvy f2(p, ∞) = −e ∑
p

τ1τ2vxvy

(
E ·

∂ f ∗1 (∞)

∂p
+ c.c

)
. (18)

Integration of the right-hand side of Equation (18) by parts gives

∑
p

τ1vxvy f2(p, ∞) =

{
e ∑

p

[
τ1τ2

m
+

m2v2

2

(τ1τ2

m2

)′]
(vyE∗x + vxE∗y) f1(p, ∞) + c.c.

}

+

{
e ∑

p
m2
(τ1τ2

m2

)′ v2
x − v2

y

2
(vyE∗x − vxE∗y) f1(p, ∞)

}
. (19)

The above sums can be calculated similarly to the sums in Equations (15) and (17), which
yields

g ∑
p

τ1vxvy f2(p, ∞) = 2
[

τ1τ2

m
+

m2v2

4

(τ1τ2

m2

)′]
EF

Re σ(ω)S2 . (20)

Finally, summing up all contributions to the edge current we obtain

Jy =
eRe σ(ω)

m

{
τ1(τ1 − 2τ2) +

m2v2

2

[
τ1
2

( τ1
m

)′
−m

( τ1τ2

m2

)′]
+

m2v2(τ1 + τ2)

4[1 + (ωτ2)2]

( τ1
m

)′}
S2

− eRe σ(ω)

mω

[
τ1 +

m2v2[2 + ω2τ2(τ2 − τ1)]

4[1 + (ωτ2)2]

( τ1
m

)′]
S3. (21)

Equation (21) represents the main result of this paper. It describes the DC edge current in
2D electron gas with an arbitrary electron dispersion ε(p) and arbitrary energy-dependent
relaxation times.
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For parabolic energy spectrum with ε(p) = p2/(2m∗), Equation (21) gives

J(par)
y =

eRe σ(ω)

m∗

{
τ1(τ1 − 2τ2) +

[
τ1τ′1

2
− (τ1τ2)

′
]

εF +
(τ1 + τ2)τ

′
1εF

2[1 + (ωτ2)2]

}
S2

− eRe σ(ω)

m∗ω

{
τ1 +

2 + ω2τ2(τ2 − τ1)

2(1 + ω2τ2
2 )

τ′1εF

}
S3 . (22)

This result was obtained previously in the approximation of a single energy-independent
relaxation time (τ1 = τ2 = const) in Ref. [6] and in the form of Equation (22) in Ref. [8].

For linear energy spectrum ε(p) = v0 p, Equation (21) gives

J(lin)y =
ev2

0 Re σ(ω)

2εF

{
τ1

(
3τ1

2
− 2τ2

)
+

[
τ1τ′1

2
− (τ1τ2)

′
]

εF +
(τ1 + τ2)(τ

′
1εF − τ1)

2[1 + (ωτ2)2]

}
S2

−
ev2

0 Re σ(ω)

2εFω

{
2τ1 +

[2 + ω2τ2(τ2 − τ1)](τ
′
1εF − τ1)

2[1 + (ωτ2)2]

}
S3 . (23)

3. Results and Discussion

Now, we discuss the spectral and polarization dependence of the edge current in 2D
systems with parabolic and linear dispersions, also for different scattering mechanisms.
First, we note that the current Jy is proportional to the square of the electric field amplitude
(S2, S3 ∝ E2), i.e., to the intensity of the incident field. Therefore, it belongs to the class of
photocurrents. Here, the photocurrent emerges due to the intraband (Drude-like) absorp-
tion of the electromagnetic field and is proportional to the real part of the high-frequency
conductivity σ(ω).

The direction of the edge current (the polarity along the y axis) depends on the polariza-
tion state of the field via the Stokes parameters S2 = (ExE∗y + EyE∗x) and
S3 = i(ExE∗y − EyE∗x). The contribution Jy ∝ S2 is induced by linearly polarized radia-
tion. This current is maximal if the radiation is polarized at the angle ±π/4 with respect
to the edge and vanishes if the radiation is polarized along or perpendicular to the edge,
Figure 1a,b. The contribution Jy ∝ S3 describes the edge current induced by circularly
polarized radiation and its direction is controlled by the radiation helicity, Figure 1c,d.

Equation (21) is quite general and can be applied to a wide class of 2D systems, in-
cluding conventional III-V and II-VI quantum wells, bilayer graphene, and transition metal
dichalcogenide monolayers with the parabolic spectrum, graphene and HgTe/CdHgTe
quantum wells of the critical thickness with the linear spectrum, and narrow-gap 2D sys-
tems with the Dirac-like spectrum ε(p) = v0

√
(m∗v0)2 + p2. Below, we calculate Jy for

single-layer and bilayer graphene.
Figure 2 shows the frequency dependence of the edge photocurrent Jy in a 2D system

with the linear dispersion law ε(p) = v0 p. The parameters used for calculations are given
in the caption of Figure 2 and correspond to high-quality graphene [25] with the electron
density n = 5 × 1011 cm−2. The curves are calculated after Equation (23) for linearly
polarized radiation with the electric field directed at the angle π/4 with respect to the edge
(S2/E2 = 1, S3 = 0) and for circularly polarized radiation (S3/E2 = 1, S2 = 0). We consider
two model types of scattering potential: (i) short-range scatterers, resulting in the energy
dependence of the relaxation times τ1 = 2τ2 ∝ ε−1, and (ii) charged scatterers with the
Coulomb potential, resulting in τ1 = 3τ2 ∝ ε [7]. For charged scatterers, the ratio τ1,2/m
does not depend on energy and the edge current is given by Jy = eReσ(ω)v2

0τ2
1 (EF)/3EF

for linearly polarized radiation and Jy = −eReσ(ω)v2
0τ1(EF)/ωEF for circularly polarized

radiation. Hence, the frequency dependence of the edge currents excited by linearly and
circularly polarized radiation are determined by Reσ(ω) ∝ 1/(1 + ω2τ2

1 ) and Reσ(ω)/ω,
respectively. For short-range scatterers, all terms in Equation (21) contribute to the current,
and the frequency dependence gets more complicated. In particular, the current induced
by linearly polarized radiation is constant at low frequencies, changes its sign at an inter-
mediate frequency, and decays as ∝ ω−2 at high frequencies. The circular contribution
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for short-range scatterers behaves as ∝ ω at low frequencies, in contrast to the diverging
behavior ∝ ω−1 for Coulomb scatterers. The current magnitude is Jy ∼ 10 nA for 1 W/cm2

of the radiation intensity.

short-range
short-range
Coulomb
Coulomb

ε = v0 p

monolayer

Ed
ge

 p
ho

to
cu

rr
en

t,
J y

 (n
A

)

−40

−20

0

20

Frequency, ωτ1

0 1 2 3 4 5

Figure 2. Frequency dependence of the edge current in 2D systems with a linear dispersion of
carriers. Solid curves correspond to short-range scatterers and linearly polarized field with S2 = E2

(green curve) and circularly polarized field with S3 = E2 (red curve). Dashed curves present the
results for scattering by charged impurities. The curves are calculated after Equation (23) for the
parameters corresponding to single-layer graphene: v0 = 108 cm/s, n = 5× 1011 cm−2 (the Fermi
energy EF ≈ 80 meV and the effective mass at the Fermi level m ≈ 0.013 m0), τ1(EF) = 1 ps, and
E = 8 V/cm corresponding to the radiation intensity I = 1 W/cm2.

Figure 3 shows the frequency dependence of the edge photocurrent Jy in the 2D system
with the parabolic dispersion law ε(p) = p2/2m∗. The parameters used for calculations are
given in the caption of Figure 3 and correspond to high-quality bilayer graphene [6]. We
use the same electron density n = 5× 1011 cm−2 as in the case of single-layer graphene.
The curves are calculated after Equation (22) for linearly polarized radiation with the
electric field directed at the angle π/4 with respect to the edge (S2/E2 = 1, S3 = 0) and
for circularly polarized radiation (S3/E2 = 1, S2 = 0). For 2D systems with the parabolic
spectrum and short-range scatterers, both the mass m and relaxation times τ1 = τ2 are
independent of energy and Equation (21) yields Jy = −eReσ(ω)τ2

1 (EF)/m∗ for linearly
polarized radiation and Jy = −eReσ(ω)τ1(EF)/ωm∗ for circularly polarized radiation. For
Coulomb scatterers, τ1 = 2τ2 ∝ ε, and the frequency dependence of Jy is more complicated.
Note that both the direction and magnitude of the current are determined to a great extent
by the scattering mechanism. The calculated current magnitude for bilayer graphene is of
the order of several nA for the radiation intensity 1 W/cm2 and is slightly smaller than that
for monolayer graphene at the same electron density due to the larger effective mass in
bilayer graphene.

Experimentally, edge photocurrents are detected as electric currents in short circuits
or as voltage drops between contacts in open circuits [5,6,9,10]. If the sample is small and
fully illuminated, the photocurrents are generated along all the edges and the resulting
distribution of the photoinduced electric potential in the sample is determined by the edge
photocurrents and the compensating drift currents in the sample. For linearly polarized
radiation, the photocurrents generated along different edges are generally not equal be-
cause of different orientations of the edges with respect to the electric field polarization.
For circularly polarized radiation, the edge photocurrents form a vortex whose winding
direction depends on the radiation helicity. The photocurrents circulating around the
sample produce, in turn, a magnetic field, which can be seen as a manifestation of the
inverse Faraday effect.
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short-range
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Figure 3. Frequency dependence of the edge photocurrent in 2D systems with parabolic energy
dispersion. Solid curves correspond to short-range scatterers and linearly polarized field with
S2 = E2 (green curve) and circularly polarized field with S3 = E2 (red curve). Dashed curves present
the results for scattering by charged impurities. The curves are calculated after Equation (22) for
parameters corresponding to bilayer graphene: m∗ = 0.03 m0, n = 5× 1011 cm−2, τ1(EF) = 1 ps, and
E = 8 V/cm corresponding to the radiation intensity I = 1 W/cm2.

4. Conclusions

To conclude, we have developed a kinetic theory of the edge photogalvanic effect for
the intraband electron transport in two-dimensional materials. It is shown that the back-
and-forth motion of charge carriers by AC electric field of incident radiation is distorted
at the edges of the sample resulting in direct electric currents flowing along the edges.
The edge current direction is controlled by the radiation polarization while its spectral
dependence is determined by the carrier dispersion and the mechanism of carrier scattering.
We have obtained an analytical expression for the edge current valid for arbitrary dispersion
law and scattering mechanism and analyzed the result for single-layer and bilayer graphene
for electron scattering by short-range defects and Coulomb impurities. Considering the
important role of edge regions in small-size samples such as flakes of two-dimensional
crystals, one can expect that the edge photogalvanic effect will find applications in fast
detectors of terahertz radiation and radiation polarization.
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