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Abstract: For safety reasons, in order to ensure that a robot can make a reasonable response after
a collision, it is often necessary to localize the collision. The traditional model-based collision
localization methods, which are highly dependent on the designed observer, are often only useful
for rough localization due to the bias between simulation and real-world application. In contrast,
for fine collision localization of small-scale regions, data-driven methods can achieve better results.
In order to obtain high localization accuracy, the data required by data-driven methods need to be
as comprehensive as possible, and this will greatly increase the cost of data collection. To address
this problem, this article is dedicated to developing a data-driven method for zero-shot collision
localization based on local region data. In previous work, global region data were used to construct
the collision localization model without considering the similarity of the data used for analysis caused
by the assembly method of the contact parts. However, when using local region data to build collision
localization models, the process is easily affected by similarity, resulting in a decrease in the accuracy
of collision localization. To alleviate this situation, a two-stage scheme is implemented in our method
to simultaneously isolate the similarity and realize collision localization. Compared with the classical
methods, the proposed method achieves significantly improved collision localization accuracy.

Keywords: zero-shot collision localization; data-driven methods; similarity isolation; two-stage model

1. Introduction

With the increasing popularity of electric vehicles (EVs), the charging of EVs has
also attracted much attention. At present, the common charging method in public places
involves a human taking the charger off the charging pile and then inserting the charger
into the charging port of the EV. However, a charger with a heavy power cable usually
brings great inconvenience to the users. In addition, unlike in traditional gas stations where
each employee has undergone long-term training and the possibility of mis-operation
during the refueling process is very small, in terms of charging electric vehicles, there is a
potential safety hazard for the users who have not undergone strict training on how to use
the charger by themselves. Therefore, in order to reduce the burden on users and eliminate
potential safety hazards, the use of robots to automatically charge EVs has been proposed
as an alternative solution [1–3].

Recently, research on the scenario of automatic charging for EVs has mainly focused
on robot control, trajectory planning, and visual positioning of charging ports [4–6], while
less attention has been paid to safety issues, even though safety is crucial during the
automatic charging process. In general, in robot application scenarios, accidental contact or
collision with the robot is the main safety concern. In order to deal with such problems,
some research has explored utilizing a vision system to avoid accidental collisions [7–9].
However, such methods will fail in the blind spots of the system, and this situation is usually
unavoidable in practice. Therefore, in order to improve the safety of robots, research on
contact perception is necessary.
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The contact or collision problem of robots is a very open problem for different ap-
plication scenarios. These scenarios can be roughly divided into two categories based on
whether humans and robots share the workspace or not. In the scenario where humans
and robots share the workspace, human safety should be the focus. In this scenario, the
threat of the robot to humans often comes from the link of the robot arm rather than the end
effector. Considering this situation, it is possible to use model-based methods to analyze
and detect the contact [10], determine whether the contact is intentional or accidental [11],
and identify the location of the collision [12]. In addition, these works can provide a basis
for planning the reasonable response of the robot after contact [13]. Due to the need to
artificially set thresholds for the signals used in practice, the noise in different sensors and
the complexity of the contact will influence the flexibility and robustness of the method.
In the same scenario, the data-driven method is an alternative. For instance, in [14], an
RNN-based model is used to realize collision classification. Similarly, in [15], a combination
of the Generalized Momentum Observer and the NN method is used to realize the collision
classification while also judging whether the collision occurred on the upper or lower part
of the robot. However, because the motion of humans has a high degree of randomness,
and different motion states of the robot will significantly affect the contact state, it is very
difficult to obtain comprehensive contact data. This difficulty in obtaining comprehensive
data can be referred to as mode difficulty in data acquisition. To alleviate the mode difficulty
in this scenario, it is often necessary to assume that when the robot is in contact with the
human, the human is quasi-static and the contact posture with the robot is fixed, and then
the contact between the robot and the human is analyzed. However, these assumptions
tend to weaken the practical effect of the method. In the other scenarios, where no shared
workspace is required, in order to ensure that the robot is able to perform the manipulation
tasks reasonably, the contact perception of the robot to the object is also needed. In contrast
to the previous scenario, in order to perceive and grasp the objects in a reasonable pose, the
contact localization of the end effector to the object is more important. Recent work has
attempted to utilize tactile sensors for high-accuracy contact localization [16,17]. These tac-
tile sensors are often mounted on specific end effectors, such as dexterous hands, U-shaped
graspers, etc. Using a dense array arrangement on an extremely small surface area, the
contact positioning accuracy of such a method can even reach the sub-millimeter level [16].
Nevertheless, in the scenario where the required contact frequency is high, the contact load
is large, or there is an impact load, the sensor is likely to suffer from the memory effect
upon making contact, resulting in a decrease in the robustness [18].

In the scenario of the automatic charging of EVs, with the development of automatic
driving and automated valet parking (AVP), a large part of the automatic charging of
electric vehicles in the future will be carried out in unmanned scenarios. In such an
unmanned scenario, there is often no need to pay much attention to whether the robotic
arm will threaten the safety of the surrounding people during its operation, and thus,
ensuring the safety of the vehicle–robot interaction is more important. In general, in this
scenario, for different types of robotic devices, the difficulty in end-effector contact analysis
is different. The current charging robots for EVs can be divided into two types: the non-
integrated charger type and the integrated charger type. In the non-integrated charger
type, the charger and the robot are independent of each other. Before each charging, the
robot needs to grab the charger from the charging pile. In the integrated charger type,
the charger and the robot are connected, and the grabbing process of the charger can be
omitted. Compared to the integrated charger type, using a robot to automatically grab
the charger can result in a pose error of the charger. This error not only complicates the
charging process but also makes contact analysis more difficult. Thus, the robots currently
researched for automatic charging of electric vehicles are mainly charger-integrated [1–3].
Therefore, this work focuses on the contact problem of the charger-integrated robot. In
our previous work, we explored the feasibility of using a supervised learning method
to realize collision classification and collision localization for a charger-integrated, cable-
driven manipulator when the charger and the charging port are in contact [19]. To alleviate
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the mode difficulty during data collection, we designed an mm scale area on the charging
port and set pre-specified collision points in this region. Both the training set and the test set
are these pre-specified collision points. The difference between the two sets is that the joint
configurations, corresponding to the collision points at the same position in the specified
region, are different. Using the above method, in order to localize a random collision point
in such a region, the pre-specified collision points need to contain the random collision
point. This will greatly increase the time needed for data collection in practical applications.
In this work, to alleviate this situation, we explore an approach in which the entire region
is divided into several sub-regions, and the pre-specified collision points in the sub-regions
are used to predict the positions of collision points that have never been seen before. Here,
we refer to these collision points that have never been seen before as zero-shot collision
points. In the process of data collection, we found that when the central axis of the elastic
compensator and the central axis of the end link of the manipulator do not coincide, the
vibration caused by the collision between the charger and the upper part of the charging
port will have a certain degree of similarity to the vibration caused by the collision between
the charger and the lower part of the charging port. The main target of this article is to
reduce the impact of that similarity on the localization results, while realizing zero-shot
collision point localization, by proposing a two-stage collision localization scheme.

The rest of the paper is organized as follows. Section 2 reviews related works on
collision localization. Section 3 describes the details of the datasets. Section 4 presents
the architecture of our proposed method. Section 5 gives and discusses the experimental
results, and Section 6 concludes the paper.

2. Related Work

As demonstrated in [20], the collision localization problem is essentially a classification
problem. Unlike the collision classification task, which cares whether the collision is
accidental or intentional, collision localization can be considered as a multi-classification
problem with data acquisition boundary condition constraints. Collision localization often
provides information for the subsequent collision response or assists in the completion of
collision classification to improve the reliability of collision classification. Since the process
of collision has temporal characteristics, this kind of classification problem can often be
converted into a classification problem of time series signals.

Recently, related work has mainly used two types of signal-processing methods. One
type consists of machine learning methods relying on manual feature extraction. In [20], the
joint torque signal was collected in a specific motion mode, a variety of machine learning
classifiers were used to filter out artificial features, and, finally, online collision classification
was realized using NN and Bayesian decision theory. In [21], an artificial neural network
was used to analyze the time domain and frequency domain characteristics of the vibration
signal caused by the collision and then determine the collision localization from preset
positions on different arms. Although this kind of method using artificial features is cheap
in terms of classifier training and actual engineering application deployment, the manual
extraction of features often relies on expert knowledge, and, when using such features, it is
often impossible to update the corresponding features according to the classification results.
When encountering complex problems, the effectiveness of such a method will decrease. In
our previous work, we confirmed that using this kind of feature engineering method to
deal with small-scale collision problems is not ideal. The other kind of method used in the
literature is the automatic feature extraction method, which is capable of using raw data
directly without prior feature engineering. The representative types are the RNN-based
method and the CNN-based method. For example, in [14], the RNN-based method was
used to solve the classification problem of distinguishing between intentional and accidental
collisions between humans and robots, and it achieved good results. However, there are
very few studies using RNN-based methods to explore the problem of robot collision
localization. Theoretically, the RNN-based method has natural advantages for time-series
signal processing; LSTM-based and GRU-based methods, especially, are widely used in
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EEG analysis [22], music emotion classification [23,24], and body pose estimation [25–27].
In our previous work, it was confirmed that the effect of using a two-layer CNN is slightly
better than using LSTM when locating the pre-specified collision points. Therefore, CNN is
used as the basis of this work.

Despite recent progress in collision localization using both artificial feature extraction
and automatic feature extraction methods, there are still limitations in the existing studies.
Most existing methods focus on large-scale collision localization problems, such as deter-
mining which link of the robot arm a collision occurred on. However, it is unclear whether
these methods can be applied to small-scale collision problems, and the effectiveness of
the signal used and the structure of the device must be considered. In some cases, it may
be necessary to add external structures or sensors to the robot, and the suitability of the
scenario used must also be considered. In our previous work, we proposed a data-driven
method using external compensator vibration signals for studying small-scale collision
localization problems in the context of electric vehicle automatic charging scenarios and
achieved some success. However, our previous work mainly focused on studying the effect
of the robot arm’s joint configuration and region partition schemes on collision localization
and did not pay much attention to two additional crucial aspects of collision localization:
(1) reducing the data collection cost required for data-driven collision localization meth-
ods and (2) suppressing the effects of signal similarity on collision localization caused by
environmental factors. These are critical issues that need to be addressed to improve the
accuracy and applicability of collision localization methods. Therefore, our current research
focuses on addressing these two aspects of collision localization.

As demonstrated in Section 1, the asymmetric installation of the charger to the end of
the manipulator will cause a similarity in the vibration signal of the compensator during a
collision between the charger and the charging port. In general, the similarity may interfere
with data-driven collision localization. However, there are very few current studies on how
to reduce the impact of similarity on collision localization. In order to fill this gap, inspired
by the divide-and-conquer method proposed in [28], before finely localizing the collision
point, we first perform a rough localization on the collision point to distinguish whether the
collision point is in the upper region or the lower region of the charging port. In addition,
this can ensure that the overall approach has a better focus on the fine localization process.
The main contributions of this paper are as follows:

1. For the first time, we propose to use the vibration information from the elastic com-
pensator corresponding to the pre-specified collision points to predict the location of
the zero-shot collision point in the small-scale region, which helps to reduce the cost
of data collection to some extent.

2. Considering the similarity in the collision signal caused by the asymmetric installation
of the end effector relative to the end link, a two-stage collision localization method
is proposed. The rough localization stage of the method can reduce the effect of the
vibration similarity and improve the ability of the classifier to produce promising
results in the fine localization stage.

3. Dataset Description
3.1. Data Collection Scheme

In this work, a planar 3-DOF cable-driven manipulator with a slide platform at the
bottom is used to perform a contact task. The vibration signal generated by the contact
between the charger and the charging port is collected with an IMU mounted on the top of
the charger. We use the collision point to represent the contact position where the charger
meets the charging port. More details about the collection scheme can be found in our
previous work [19]. In contrast to the previous work, the focus of this paper is mainly on
the vulnerable domain, as shown in Figure 1. In the vulnerable domain, eight radial regions
are set. Each region contains six collision points, and the point spacing is 1 mm. In the
process of data collection, the influence of joint configuration and motion accuracy is also
taken into account. Thus, data are collected multiple times at each collision point. After
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data cleaning, 5653 samples are generated. To simulate zero-shot collision, we randomly
select a collision point from each region as the zero-shot collision point (indicated with the
green point in Figure 1). These zero-shot collision points only appear in the test set and do
not leak information during training. In this way, five cases of zero-shot collision points are
designed as shown in Figure 1. The data distribution is shown in Table 1.
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Table 1. The total number of zero-shot collision points and collision points in different cases.

Number of Zero-Shot Collision Points Number of Collision Points

Case 1 949 4704
Case 2 944 4709
Case 3 946 4707
Case 4 943 4710
Case 5 930 4723

3.2. Segment and Labeling Scheme

As shown in Figure 2, the collected data contain 3-axis acceleration and 3-axis angular
velocity. The sampling frequency is 1500 Hz. The data of different axes are synchronized
in time. In our previous work, we proved that when the sampling frequency is 1500 Hz,
setting the effective period to 267 ms can ensure that the collected vibration signals contain
sufficient contact information. Thus, the effective period is set to 267 ms. In addition, to
capture the transient characteristics of the collision without introducing too much irrelevant
information, we set the pre-collision period to 20 ms. In the training and testing processes,
the effective period of the signal is used as the input for the proposed method.

In terms of labeling, the actual physics of collisions should be considered. As shown
in Figure 3, when the compensator is not collinear with the center line of the charger, the
compensator will rotate in the same direction regardless of whether the collision occurs
on the upper region or the lower region of the charging port. This will cause the vibration
signals corresponding to the collision points of the upper and lower regions to be similar to
some extent, and the purpose of the proposed two-stage method is to isolate this similarity
to improve the positioning accuracy of the zero-shot collision points. For this consideration,
in the first stage, data can be first labeled as U or L based on whether the collision point is
in the upper or lower region. In the second stage, in order to predict which radial region
the collision point will occur in, the data are labeled as R1 to R8, which is in the same order
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as shown in Figure 1. At this point, labels based on different annotation methods were
established.
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4. Proposed Two-Stage Collision Localization Method

In this section, our proposed method, a two-stage convolutional neural network, is
introduced. In our scheme, the structure of the two-stage model is in binary tree form, and
the results of the root stage will decide which leaf stage should be activated. Therefore, our
method is called RL-CNN. Such a structure is designed to isolate regions where similar
collision behavior occurs in order to improve localization accuracy. In the root stage, the
task is to identify whether the collision happens in the upper region or the lower region. In
the leaf stage, the model predicts in which fine-divided region the zero-shot collision point
is located. As the whole area is partitioned into eight finely divided regions, the task in
each leaf stage is essentially to solve a four-classification problem with zero-shot samples.

4.1. Baseline

CNN has been proved to be effective in numerous applications, such as brain tumor
classification [29], hyperspectral images classification [30], remote sensing data classifica-
tion [31], and so on. Due to the different application scenarios, there is an endless variety
in variant structures of the CNN. Among the variants of CNNs, the classic models are:
AlexNet [32], VGG [33], and ResNet [34]. AlexNet is mainly composed of five convolu-
tional layers and two fully connected layers, and an innovative ReLU activation function



Appl. Sci. 2023, 13, 4079 7 of 14

was introduced into the structure. For most image classification problems, AlexNet has
been proven to be effective. However, because it uses convolutional kernels with large
sizes, when the network gets deeper, the computation burden is considerably increased.
Compared to AlexNet, VGG uses 3 × 3 convolutional kernels to alleviate the problem
above and proves that deeper networks generally have a stronger fitting ability. Although
deep networks can achieve better results when dealing with complex image classifica-
tion problems, merely increasing the depth of the network may be counterproductive.
Essentially, a deep network that is built by simply stacking layers will face the problem
of degradation. To solve this problem, ResNet utilizes skip connections to realize identity
mapping with shallow networks. This method makes very deep network training possible.
Although these methods have excellent performance in image classification, they may not
be suitable for real-time application scenarios because too many network layers and too
many parameters will increase the computational cost. In addition, when the input length
is considerably longer than the width, with the increase in the number of network layers,
the two-dimensional features will degrade into one-dimensional features, which leads to
the degradation in the classification ability of the model. Therefore, we chose the structure
proposed by our previous work as the baseline for both the root and leaf stages [19]. The
details of the baseline structure are shown in Table 2.

Table 2. The structure of the baseline.

Layer Size Channel Parameter

Input 400 × 6 1 -
Convolutional layer1 3 × 3 64 640

Max pooling1 2 × 2 64 -
Convolutional layer2 3 × 3 64 36,928

Max pooling2 2 × 2 64 -
Fully connected layer1 12,800 × 1024 - 13,108,224
Fully connected layer2 1024 × 10 - 10,250

4.2. Proposed RL-CNN Method

Figure 4 shows the proposed RL-CNN. After collecting data from IMU, the data will
be segmented as described in Section 3, and then the segmented data will be normalized to
[0, 1]. After the above preprocessing, we use the RL-CNN to perform the zero-shot collision
point localization. In the root and leaf stages, the structures are similar. Their common
parts consist of two convolutional layers, two max pooling layers, and three fully connected
layers. The output of each convolutional layer will be batch normalized and then activated
using the ReLU function. The purpose of using batch normalization in such a shallow
network is to suppress the network’s over-understanding of visible data and improve the
network’s ability to classify zero-shot data. For the same reason, a dropout layer is stacked
after the first max pooling layer, and the rate is set to 0.5. In the root stage, the network
is mainly used to distinguish whether the contact occurs in the upper region or the lower
region of the charger. According to the output of the root stage, which leaf stage should be
subsequently activated is determined. The only difference between the network used in
the leaf stage and that used in the root stage is that the last layer in the network in the leaf
stage uses a four-node fully connected layer with a softmax activation function. The leaf
stages are mainly designed to estimate where the zero-shot collision point occurs in the
finely divided region. For more details, the parameters of each layer are shown in Table 3.
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Table 3. The structure of the proposed RL-CNN.

Layer Size Channel Parameter

Root-stage - - -
Input 400 × 6 1 -

Convolutional layer1 3 × 3 64 640
Batch normalization1 - - 256

Max pooling1 2 × 2 64 -
Convolutional layer2 3 × 3 64 36,928
Batch normalization2 - - 256

Max pooling2 2 × 2 64 -
Fully connected layer1 12,800 × 1024 - 13,108,224
Fully connected layer2 1024 × 128 - 131,200
Fully connected layer3 128 × 1 - 129

Leaf-stage - - -
Input 400 × 6 1 -

Convolutional layer1 3 × 3 64 640
Batch normalization1 - - 256

Max pooling1 2 × 2 64 -
Convolutional layer2 3 × 3 64 36,928
Batch normalization2 - - 256

Max pooling2 2 × 2 64 -
Fully connected layer1 12,800 × 1024 - 13,108,224
Fully connected layer2 1024 × 4 - 4100
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In order to provide a more general understanding of RL-CNN, we present the mathe-
matical analysis of RL-CNN. Since the two stages of RL-CNN are highly similar, for the
sake of clarity, we focus on one of the stages here. For an input vibration signal S of size (L,
N, Cin), where L, N, and Cin represent the length of the input, the width of the input, and
the channel of the input, respectively, assuming that the kernel size of the convolutional
layer is (K, K), the channel in the convolutional layer is Ccl , the stride is s, and then the
feature extracted by the convolutional layer can be described as:

COi,j,h = R
(
∑K−1

k=0 ∑K−1
k=0 ∑Cin−1

c=0 S(i×s+k),(j×s+k),cWk,k,c,h + bh

)
, (1)

where W and b are the weight matrix and bias vector of the convolutional layer, respectively.
In the convolution operation, the index i and j correspond to the spatial location of the
output feature map. The index c and h represent the number of the input channel and the
output channel, respectively. R represents the activation function. Assuming the padding
is p, the output of the convolutional layer, denoted by CO, is a tensor of size ( L−K+2p

s + 1,
N−K+2p

s + 1, Ccl), representing the activation maps of the convolutional layer. Among this
process, the batch normalization is applied to the feature maps before the feature maps are
activated to lead to improved accuracy and faster convergence during training.

In addition to the convolutional layer, we also incorporate a max pooling layer into
our model. The max pooling operation is applied to each activation map independently,
and when assuming the stride in the max pooling is also set as s, the output of the max
pooling layer is a tensor of size ( L−K+2p

s2 + 1−d
s + 1, N−K+2p

s2 + 1−d
s + 1, Ccl), where the

pooling window size is (d,d). After the last max pooling layer, the output feature maps are
flattened and passed through two or three fully connected layers. Finally, the output of the
last fully connected layer is activated by the softmax activation function in order to serve
as a criterion for collision localization.

When considering the time complexity of the proposed RL-CNN, it is necessary to
analyze the time complexity of each component. Here, we need to consider the time
complexity of the convolutional layers, batch normalization layers, max pooling layers, and
fully connected layers. Compared to these four components, the impact of the activation
functions on the overall time complexity can be neglected. When using the relevant
parameters provided above and ignoring the influence of bias, the time complexity of the
first convolutional layer can be expressed as:

Tc1 = O
(

K2CinCcl

(
L − K

s
+ 1

)(
N − K

s
+ 1

))
, (2)

When the network is relatively shallow and the number of filters in each convolutional
layer is the same, the time complexity of the first convolutional layer can represent that
of a generic convolutional layer in RL-CNN. The complexity of this component can be
described as:

Tc = Tc1 = O
(

K2CinCcl

(
L − K

s
+ 1

)(
N − K

s
+ 1

))
, (3)

Based on similar reasons, the computational complexity of the batch normalization
and max pooling layers can be expressed as follows, respectively:

Tb = O
((

L − K + 2p
s

+ 1
)(

N − K + 2p
s

+ 1
)

Ccl

)
, (4)

Tm = O
((

L − K + 2p
s2 +

1 − d
s

+ 1
)(

N − K + 2p
s2 +

1 − d
s

+ 1
)

Ccl

)
, (5)

Although the number of fully connected layers in the root and leaf stages is different,
for the purpose of the time complexity analysis, we only need to consider the upper bound,
which can be achieved by assuming that there are three fully connected layers. Let the
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number of nodes in these layers be N1, N2, and N3 and let Om be the dimension of the
flattened output from the last max pooling layer. Then, the time complexity of the fully
connected layers can be expressed as:

Tf = O(OmN1N2N3), (6)

Then, the overall time complexity of RL-CNN can be expressed as:

Ttotal = Tc + Tb + Tm + Tf (7)

5. Experiment Results and Discussion
5.1. Experiment Results

In this work, we use the dataset described in Section 3 for the evaluation of the
proposed methods. In this dataset, we only use collision point samples in different cases
for training. In order to select the optimal model, the collision point samples are divided
into a training set and a validation set, with a ratio of 8:2, and then the optimal parameters
are selected according to the prediction accuracy of the model on the validation set. For
testing, all of the zero-shot collision point samples from different cases are used, and
the information from these samples will not be leaked during training. To illustrate the
effectiveness of the proposed RL-CNN method, we compared the results with the baseline
methods, both with and without batch normalization. For convenience, we named the
baseline method using batch normalization as BN-DCNN, and the plain baseline method
as DCNN. As mentioned in Section 2, since the RNN-based model has natural advantages
for processing classification problems in time series, we also use LSTM, GRU, Bidirectional
LSTM (BiLSTM), and Bidirectional GRU (BiGRU) as methods for comparison. All of
these compared methods are trained in a similar way to the proposed method. However,
it should be noted that since the compared methods only have one stage, the data for
training the compared methods only needs radial region labels. To clearly describe the
hyper-parameters of the mentioned methods, the relative settings are listed in Table 4.

Table 5 shows the prediction accuracy of different radial regions using the different
methods. Each result is the average accuracy of five cross-validations. Overall, the accuracy
of the proposed RL-CNN is higher than the compared methods in all cases. This is especially
true in case 4; the proposed method has a considerable improvement over the next most
accurate method (up to 7.77%), which is also the largest gap between the first and second
place across all of the cases. Moreover, the addition of the BN layer makes the model better
at predicting the location of zero-shot collision points than the shallow network without
using the BN layer. For example, the average prediction accuracy of the CNN-BN method
is 7.01% higher than that of the CNN method. Meanwhile, it is worth noting that the
effect of the CNN-based model is better than that of the RNN-based model, which means
that when the structure is relatively simple, the CNN-based model has more advantages
for addressing the zero-shot collision problem. The experiments were performed using
a Linux-based system equipped with an Intel (R) Core (TM) i7-10700K CPU @ 3.80 GHz,
31.9 GiB Memory, and an NVIDIA GeForce RTX 3080 GPU. Table 5 also presents the run
time metrics for different models. Notably, the run time was measured with a batch size of 1.

Table 6 shows the F-score of each region for each different method. The results of each
region are the average of the F-score from five cases. In terms of the F-score, the proposed
RL-CNN is not always the best. For example, when predicting R1 samples, the CNN-BN
method performs better than all other methods. In addition, although the RNN-based
model has poor overall accuracy, it is more effective in locating the zero-shot collision points
in some areas, such as R2 and R3. In these eight regions, the effect of all of the methods
for localization of the zero-shot collision points in R4–R7 is obviously lower than that for
localization of the zero-shot collision points in R1, R2, R3, and R8. Table 7 compares the
localization effects of the different methods on the zero-shot collision points of the upper
and lower regions. The proposed method still performs best in this binary classification
task, for which the F-scores are as high as 94.53% and 93.60% for the upper region and the
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lower region, respectively. In contrast to the eight-region localization, there is a very small
gap in the F-scores between the upper and lower regions. The highest gap is 0.92%, which
happens when using RL-CNN.

Table 4. The settings of the hyper-parameters of the proposed method and the compared methods.

Model Hyper-Parameters Settings

RL-CNN

Number of convolutional layers 4
Kernel size 3 × 3

Striding and padding 2, “same”
Learning rate 1 × 10−6

Mini-batch size for training 64
Optimizer Adam

Loss function Cross-entropy

BN-DCNN

Number of convolutional layers 2
Kernel size 3 × 3

Striding and padding 2, “same”
Learning rate 1 × 10−5

Mini-batch size for training 64
Optimizer Adam

Loss function Cross-entropy

DCNN

Number of convolutional layers 2
Kernel size 3 × 3

Striding and padding 2, “same”
Learning rate 1 × 10−5

Mini-batch size for training 64
Optimizer Adam

Loss function Cross-entropy

LSTM

Number of hidden units 30
Learning rate 1 × 10−5

Mini-batch size for training 64
Optimizer Adam

Loss function Cross-entropy

BiLSTM

Number of hidden units 30
Learning rate 1 × 10−5

Mini-batch size for training 64
Optimizer Adam

Loss function Cross-entropy

GRU

Number of hidden units 30
Learning rate 1 × 10−5

Mini-batch size for training 64
Optimizer Adam

Loss function Cross-entropy

BiGRU

Number of hidden units 30
Learning rate 1 × 10−5

Mini-batch size for training 64
Optimizer Adam

Loss function Cross-entropy

Table 5. The prediction accuracy of different radial regions.

RL-CNN DCNN BN-DCNN LSTM BiLSTM GRU BiGRU

Case 1 85.33% (+7.71%) 76.04% 77.62% 72.04% 72.37% 75.04% 75.24%
Case 2 79.89% (+1.41%) 71.08% 78.48% 63.26% 63.37% 65.87% 66.04%
Case 3 82.96% (+5.24%) 74.42% 77.72% 74.88% 74.02% 67.25% 64.80%
Case 4 86.75% (+7.77%) 72.37% 78.98% 68.06% 71.60% 68.61% 68.70%
Case 5 76.08% (+2.85%) 66.80% 73.23% 62.99% 66.52% 64.71% 65.70%

Run Time 4.32 ms 1.77 ms 2.24 ms 4.32 ms 8.12 ms 4.22 ms 7.71 ms
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Table 6. The F-score of each radial region.

RL-CNN DCNN BN-DCNN LSTM BiLSTM GRU BiGRU

R1 92.97% 92.14% 96.11% 89.01% 91.69% 90.60% 91.29%
R2 91.09% 86.09% 91.62% 86.77% 89.72% 90.32% 91.80%
R3 98.09% 98.82% 98.83% 98.10% 99.05% 98.55% 98.76%
R4 70.29% 34.82% 36.00% 30.94% 33.17% 22.76% 22.96%
R5 73.93% 21.90% 48.45% 16.51% 22.66% 27.37% 29.92%
R6 76.39% 64.14% 73.47% 56.21% 55.89% 53.31% 51.31%
R7 74.03% 58.90% 57.89% 49.86% 48.21% 46.06% 43.84%
R8 95.63% 92.30% 93.18% 90.83% 89.24% 88.82% 86.80%

Table 7. The F-score of the upper and lower regions.

RL-CNN DCNN BN-DCNN LSTM BiLSTM GRU BiGRU

U 94.53% 88.15% 89.43% 86.28% 87.88% 87.37% 87.89%
L 93.60% 87.34% 89.39% 85.48% 88.02% 88.07% 88.65%

5.2. Discussion

As shown in Table 5, there are obvious differences in the accuracy of predicting
zero-shot collision points in different cases. Table 6 shows that the F-scores of R4–R7 are
considerably lower than for other regions. Since this phenomenon exists with different
models, it can be explained by flaws in the data. These flaws may be caused by the
following two aspects: one is that there is vibration during the operation of the cable-driven
manipulator, and the other is that the end faces of the charger and the charging port are not
completely parallel. From the results, in a millimeter-level contact scenario, the deviation
between the ideal collision point and the actual collision point caused by these two aspects
will greatly affect the localization performance of the data-driven collision localization
method. Unfortunately, due to structural characteristics, the vibration amplitude of the
cable-driven manipulator is often larger than that of the joint direct-drive manipulator,
and this vibration is often difficult to eliminate. In addition, in practical engineering
applications, it is very difficult to ensure that the end faces of the charger and the charging
port are parallel when collecting collision point data, especially when a large amount
of data needs to be collected. Thus, the deviation is often unavoidable. As shown in
Table 6, compared to other methods, the proposed method has better localization ability for
these samples with high similarity, which is especially obvious in the case of eight-region
localization. For example, in R4, the F-score of the proposed method is 95.25% higher than
the next highest F-score. This, combined with the results in Table 7, can indicate that the
root stage of the proposed method isolates the collision similarity caused by the asymmetric
assembly of the compensator and the charger, which helps the method in the leaf stage
to focus more on the localization of the finely divided regions. This scheme alleviates
the impact of the deviation to a certain extent. In addition, by comparing the localization
effects of DCNN and BN-DCNN in different regions of the collision points in Tables 6 and 7,
it can be seen that BN is effective in improving the network’s ability to locate zero-shot
collision points. Although the zero-shot collision points and other collision points in the
same region belong to the same class, there are obvious differences on the mm scale. Thus,
the localization estimation of the zero-shot collision point requires the model to have good
generalization ability. From the results, the introduction of the BN layer helps to improve
the generalization ability of the localization model, and thus improves the model’s ability
to localize zero-shot collision points.

6. Conclusions

In this article, we proposed a two-stage zero-shot collision localization method for the
end-effector of the auto-charging manipulator using CNN and a regional division strategy
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called RL-CNN. The vibration signals in the elastic compensator (used to connect the
charger to the end link of the manipulator) were used to train the proposed model. In order
to explore the localization effect, we divided the end surface of the charging port into eight
radial regions. In terms of simulating the zero-shot collision point, we selected one collision
point from each region as the zero-shot collision point, and we ensured that the information
on the zero-shot collision point was not leaked during the training process. The test results
of the simulation experiment confirmed that the proposed method has a promising effect
on zero-shot collision point localization. The conclusions may be summarized as follows:

1. The proposed method has been proven to be able to achieve zero-shot collision
localization in the millimeter-scale area. The method does not require complex prior
expert knowledge, and the collision localization can be achieved using raw data,
which is easier to implement in real application scenarios.

2. The introduction of the root stage can effectively reduce the impact of the collision
signal similarity caused by the non-central installation, and it helps the leaf stage
to focus more on the finely divided subregions in each isolated region. This further
enables the model to resist the loss in accuracy caused by the deviation between the
collected collision point and the ideal collision point.

3. By comparing the localization effects of BN-DCNN and DCNN in different finely
divided regions, the use of BN in the shallow network structure is proven to be
effective in improving the zero-shot collision localization accuracy of the model. The
effect is more pronounced in regions with severe deviations.
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