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Abstract: Microscopic images in material science documents have increased in number due to the
growth and common use of electron microscopy instruments. Through the use of data mining
techniques, they are easily accessible and can be obtained from documents published online. As
data-driven approaches are becoming increasingly common in the material science field, massively
acquired experimental images through microscopy play important roles in terms of developing
an artificial intelligence (AI) model for the purposes of automatically diagnosing crucial material
structures. However, irrelevant objects (e.g., letters, scale bars, and arrows) that are often present
inside original microscopic photos should be removed for the purposes of improving the AI models.
To avoid the issue above, we applied four image inpainting algorithms (i.e., shift-net, global and
local, contextual attention, and gated convolution) to a learning approach, with the aim of recovering
microscopic images in journal papers. We estimated the structural similarity index measure (SSIM)
and `1/`2 errors, which are often used as measures of image quality. Lastly, we observed that gated
convolution possessed the best performance for inpainting the microscopic images.

Keywords: microscopic images; material science literature; image inpainting

1. Introduction

Microscopic images in material science documents (e.g., books, articles, and reports)
are generally used to display key structures in a target material [1]. The images are produced
by various types of microscopic imaging tools, such as optical microscopy, transmission
electron microscopy (TEM), scanning TEM (STEM), scanning electron microscopy (SEM),
etc. [2–6]. Due to the advancement and widespread use of such microscopy instruments,
micro-/nano-scale material images have become more sophisticated and prevalent in
material science documents.

In the material science field, there is a massive volume of online documents that have
been published. In addition, digitalized material datasets, e.g., texts, graphs, and images,
are included within them. Due to open access movements with respect to scientific pub-
lishing, a huge number of digitized material images are freely available to be downloaded
via the processes of web crawling or scraping, which are data mining techniques [7]. If
one learns even a small degree of python programming regarding the processes of data
scraping, then the material images through microscopy are easily obtained and utilized.

Since the advent of the data-driven approach, these material datasets are useful in
terms of feeding artificial intelligence (AI) models that enable them to efficiently find
explicit material properties [8]. In particular, AI-driven analysis on such material images
can accelerate the process of diagnosing real space geometrical information with a higher
accuracy instead of the analysis conducted by humans [9,10]. To guarantee a high-quality AI
model, it is necessary that the training dataset consists of abundant and actual microscopic
images [11]. Following this, the diverse experimental images obtained via microscopy and
which are stored in the material science documents are applicable to the training dataset.
However, it gives rise to two main issues.
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Firstly, when we inspect the microscopic images acquired in the documents, several
marks, such as letters, scale bars, and lines/arrows, are added into the raw microscopic
photos for the purposes of either expressing image information or for highlighting sec-
tions [12–14]. For example, letters explain ordering in the figure set, the scale bar shows
imaging resolution, and lines/arrows indicate remarkable objects. Therefore, one needs to
remake the published images to remove the marks.

Indeed, image inpainting techniques have been developed in the computer vision field
for the purposes of filling in the adequate information required in the missing parts of target
images [15]. Moreover, in recent years, they were designed by not only rule-based models
but also deep learning-related models in order to achieve a good performance in terms of
accuracy and speed, albeit these models were focused only on retrieving original figures
regarding people and landscapes [16–26]. Thus, we applied various image inpainting
models with the aim of recovering microscopic images in material science documents,
specifically in regard to solving the problem detailed above.

In this study, we contribute the main things, as follows: (1) we proposed new methods
regarding the preprocessing of inputs with statistical and threshold-based masks, specifi-
cally with respect to the latest image inpainting methods for recovering microscopic images
in material science documents; and (2) we compared the performances of the various image
inpainting models in terms of their restorative performance factors, which were related to
the similarity with the ground truth of the images.

The remainder of this paper is organized as follows: Section 2 introduces the related
work and backgrounds of the microscopic images in material science documents and the
image inpainting techniques that were utilized in the computer vision field. In Section 3,
we describe the important details in our works of statistical and threshold-based masking,
as well as detail a comparison of the image similarity performances between the various
models. Finally, in Section 4, we conclude our research work and discuss the implications
of our model.

2. Related Works and Backgrounds
2.1. Microscopic Images in Material Science Documents

To allow readers to more easily understand each microscopic image in material science
documents, two main additives are used. These additives are an alphabet character and
a scale bar. The first additive, i.e., the alphabet character, is used for specifying its turn
among multiple images in a figure set. The second additive, i.e., the scale bar (specifically,
the scale ruler) is used for visually indicating distance and size within the image.

In Figure 1, the characters and scale bars that are disclosed on the TEM, STEM, and
SEM images are inserted into the reference papers [12–14]. In addition, they were placed at
the four corners of the images: top-left, top-right, bottom-left, and bottom-right. In this
paper, our objective is to replace, specifically in the microscopic images within the material
science papers, the additives by their most plausible replacement pixels as one example of
image inpainting tasks.

2.2. Image Inpainting Methods

Image inpainting methods in the field of computer vision are mainly classified into
two categories: non-learning approaches and deep learning approaches [15]. Moreover,
non-learning approaches are further divided into patch-based types and diffusion-based
types, and deep learning approaches are further divided into convolutional neural network
(CNN)-based types and generative adversarial network (GAN)-based types. The list of
these approaches from the past to the current day, in terms of image inpainting methods, is
presented in Table 1.
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image of Au nanoparticles. reprinted with permission from Ref. [12]. Copyright (2020) Elsevier; (b) 
represents the TEM image of Co8Fe2-MOF. reprinted with permission from Ref. [13]. Copyright 
(2021) Elsevier; and (c) represents the SEM image of S/PCMSs composites. reprinted with 
permission from Ref. [14]. Copyright (2019) Elsevier. 
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Figure 1. Examples of microscopic images in material science documents: (a) represents the STEM
image of Au nanoparticles. reprinted with permission from Ref. [12]. Copyright (2020) Elsevier;
(b) represents the TEM image of Co8Fe2-MOF. reprinted with permission from Ref. [13]. Copyright
(2021) Elsevier; and (c) represents the SEM image of S/PCMSs composites. reprinted with permission
from Ref. [14]. Copyright (2019) Elsevier.

Table 1. List of various image inpainting methods in the field of computer vision.

Category Type Method Dataset

Non-learning
approach

Patch-based

Simakov et al. [16] -

Bertalmio et al. [17] -

Criminisi et al. [18] -

PatchMatch algorithm [19] -

Diffusion-based

Baertalmio et al. [20] -

Ballester et al. [21] -

Levin et al. [22] -

Deep-learning
approach

CNN-based Shift-Net [23] Places [27],
Paris street View [28]

GAN-based

Global and Local [24]
Places2 [27],

ImageNet [29],
CMP FAcade [30]

Contextual Attention [25]

Places2 [27],
ImageNet [29],

CelebA [31],
CelebA-HQ [32],

DTD [33]

Gated convolution [26] Places2 [27]

Among the two image inpainting approaches, the non-learning-based approach is
known as the more traditional method; this method is often used to copy the most similar
pixel information that is adjacent to the target areas and that correspond to either damaged
or missing regions in the image [16–22]. On the other hand, the patch-based method in the
non-learning approach is designed to locate the patches that are most similar to the target
area by using random sampling and propagation instead of thoroughly searching the entire
image. For instance, Barnes et al. proposed the PatchMatch algorithm, which operates
by densely matching the patches between two images [19]. In addition, it is suitable for
use with various images, as it is able to handle the desired texture and color changes.
Diffusion-based methods in the non-learning approach operate by reconstructing target
regions, which is achieved by analyzing the entire image and then gradually diffusing the
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information (e.g., color, texture, and shape of the image) of pixels that are closest to the
target region. For instance, Bertalmio et al. proposed a diffusion-based method that is
based on partial differential equations (PDE), which allows the propagation of gradient
information from the known regions to the target regions for the purposes of filling in the
missing pixels [20]. In addition, it is also suitable for large-scale image inpainting tasks,
as it is easy to implement and can be easily parallelized. However, this approach has two
limitations: (1) it is useless for dealing with complex pixel information around large target
areas, and (2) it requires a high computational cost.

In contrast to the non-learning approach, the deep learning approach can learn from
and extract the complex features of large target areas in images with a more accurate
and faster prediction. In Figure 2a, CNN-based methods basically follow an encoder–
decoder network architecture [34–36]. Here, the encoder transforms inputs into a state
within a latent space, whereby the decoder reconstructs the compressed outputs from the
encoder [37]. For instance, Pathak et al. proposed a context encoder network that utilizes
both L2 reconstruction loss and adversarial loss in order to improve visual quality [37];
however, this method is not suitable for high-resolution images. Yan et al. proposed a shift-
net algorithm, which preserves the features of an image by introducing shift connections
in a specific layer, thereby allowing the generation of high-resolution images from low-
resolution inputs [23]. However, they still encountered difficulties in terms of not preserving
details that were too sophisticated and thus only producing visually convincing results.
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Figure 2. Architectures of deep learning methods (In the figures, input images are the example of
the microscopic images in the reprinted with permission from Ref. [14]. Copyright (2019) Elsevier.):
(a) represents the CNN-based method and (b) represents the GAN-based method.

In recent years, a GAN technique has appeared due to the advancement of machine
learning algorithms. In Figure 2b, GAN-based architectures consist of generator and
discriminator networks. In detail, the generator generates virtual images by using a feature
map in the latent space, whereby the discriminator distinguishes the filled images from the
real images [38]. For example, Iizuka et al. proposed the GAN-based method that uses a
three-step process, which involved a completion network, a global context discriminator,
and a local context discriminator in order to generate high-quality results for large areas
of missing parts [24]. Additionally, Yu et al. proposed a generative network that uses a
context attention module in order to maintain consistency with the surrounding context [25].
However, this method can still produce unrealistic results, such as a distorted structure
when using free-form masks. In order to overcome the challenge, Yu et al. proposed a
gated convolution to improve the color consistency and inpainting quality of free-form
masks [26]. This method applied a gated convolution to each spatial location in all layers
in order to solve the color mismatch and blurriness issues of vanilla convolutions.

In this study, we focused on deep-learning-based methods because they are superior to
the other methods due to their lower computing costs and higher prediction performance
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up to now. In particular, we employed one CNN-based method and three GAN-based
methods, which are shift-net, global and local, contextual attention, and gated convolution.
We used the same architecture in all of the models proposed in the references [23–26].

3. Results
3.1. Data Preparation

In order to train all the deep learning-based methods for image inpainting, we required
a large dataset of the microscopy images in the material science documents, as well as the
corresponding originals. We can utilize text mining and natural language processing in
the material science field, and many material images in their respective journals can be
obtained for oneself. Therefore, we extracted 1100 microscopy images from 129 material
science papers, which were downloaded from Elsevier journals. Then, we obtained the
original images by using, by hand, the content-aware fill technique in Photoshop [39].
Furthermore, in this paper, we considered that the original image obtained via microscopy
corresponds to a ground truth. Moreover, the training and testing images of the whole
dataset came to a total of 880 images (80%) and 220 images (20%), respectively. The input
images were used at a size of 256-by-256. Additionally, the hardware specification to run
the image inpainting methods was an Intel(R) Xeon(R) Silver 4214R CPU @ 2.40 GHz (Intel
Corporation, Santa Clara, CA, USA) and an NVIDIA GeForce RTX 3090 GPU (Nvidia
Corporation, Santa Clara, CA, USA).

3.2. Generating Inputs Using Masks

When we applied the image inpainting methods, the inputs should have been pre-
processed as the microscopic images in the material science documents were convolved
with a mask. Then, the mask was filled in either black or white colored pixel values for
specifying normal or undesired areas. Generally, this would be a binary image and should
have the same size as the input image [24,26]. In the mask image, the pixels that should be
preserved are those which are black, and the pixels in the undesired areas are in white [15].
For training the model, we used a random mask [23]. Next, we used the mask that covers
the two additives, i.e., the alphabet characters and scale bars, on the images for testing the
model. There was, initially, a lack of information (e.g., type, location, and length) for the
additives. However, the masks were then generated by two ways: statistical masking and
threshold-based masking.

Firstly, we investigated the statistical positions and sizes of the two additives (the al-
phabet characters and scale bars) on the four corners in the 1100 given images. In Figure 3a,
we observed that the averaged positions of the alphabet characters in the top-left and
top-right were (23, 233) and (225, 228), respectively, whereas the averaged positions of
the scale bars in the bottom-left and bottom-right were (41, 20) and (212, 26), respectively.
In order to measure the average size of the alphabet characters and the scale bars, we
estimated a cumulative distribution function (CDF) with respect to the ratio of their sizes
and their probabilities, as shown in Figure 3b. Although all the additives in the four regions
were only the characters and the scale bars, the different average sizes of the additives
in the four regions were observed. The characters appeared at the top, but the scale bars
appeared at the bottom. Since the sizes of characters and scale bars were different, the
average sizes of the additives between the top and bottom were different. Furthermore,
the average sizes of the additives among the four regions can be different because of the
personal preference of the authors. For instance, one used the additive with parenthesis as
like “(b)” (see Figure 1b), and the other one used the additive without parenthesis as like
“b” (see Figure 1c). Then, we observed that the maximum sizes of the 80% majority addi-
tives in the top-left, top-right, bottom-left, and bottom-right were 36 (pixels) × 36 (pixels),
41 (pixels) × 41 (pixels), 49 (pixels) × 49 (pixels), and 51 (pixels) × 51 (pixels), respectively.
Therefore, we decided on the statistical mask that covers the four squares at (23, 233),
(225, 228), (41, 20), and (212, 26), respectively.
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Figure 3. Statistical results of the two additives: (a) represents the averaged positions (red dots) of the
alphabet characters and scale bars regarding the example of the microscopic images (reprinted with
permission from Ref. [12]. Copyright (2020) Elsevier) and (b) represents the cumulative probability
distribution function, according to the length of the target area (pixel) of the target regions comprising
the additives.

Next, we designed an algorithm that generates a threshold-based mask. When we
investigated 1100 images, we checked that the microscopic images mostly took on extremely
white-colored additives against a dark background. Therefore, we defined the threshold-
based mask to include white pixels of a higher threshold as the additives, as well as black
pixels of a lower threshold for the others. For distinguishing the pixels of the additives, as
well as the others, we used a threshold value of 200 in gray scale. In Figure 4a, this can be
black on the additive, but white around the additive. When we used only a threshold value
in order to distinguish the pixels of these, the additive filled the black pixels remains as a
non-removable object, as can be seen in Figure 4b. Therefore, we added the function that
the pixels close to the white pixels possess a white color in the algorithm. We observed that
the regions of the additives can possess white, and the regions of the others can possess
black with respect to the result of the algorithm (see Figure 4c). The threshold-based mask
code that we implemented is available at https://github.com/hmnd1257/threshold-mask
(accessed on 16 February 2023).
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3.3. Comparisons of Masks and Models

In the first experiment, we confirmed the effects of two masks with respect to the
statistical mask and the threshold-based mask. We tested whether the input that is used by
the statistical masks via the use of shift-net was the most popular deep learning method.
The additives of the microscopic images in the material science documents appeared mainly
in the four corners (i.e., top-left, bottom-left, top-right, and bottom-right), but they often
appear in other areas (i.e., the center). Since the statistical mask has fixed four corner areas,
it is difficult to become flexible masking. In Figure 5b, in the case of the statistical mask, we
observed good results in all the additive regions that were top-left and bottom-left, but the
center region was not restored at all. However, in the case of the threshold-based mask,
Figure 5c shows that we observed better results with respect to restoring all the additives
inside the image. In particular, the results in the area around the C label in Figure 5b,c look
different. The statistical mask used a fixed square mask that includes the area around the C
label as well as the C label, but the threshold-based mask contains only pixels belonging to
the C label. It means that the statistical mask is relatively larger than the threshold-based
masks in the same situation. Then, the statistical mask should restore the area around the C
label, and the restoring noise on the area can be inserted. Therefore, the result in the area
around the additives by using the threshold-based masks can be better than the result in
the area around the C label by using the statistical masks.
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Figure 5. Comparison of the results, which was achieved by using a statistical mask and a threshold
mask from the example of microscopic image (reprinted with permission from Ref. [41]. Copyright
(2019) Elsevier): (a) represents input image; (b) represents output image using a statistical mask; and
(c) represents the output image when using a threshold-based mask.

In the second experiment, we confirmed the effects of the four latest deep learning
methods (shift-net, global and local, contextual attention, and gated convolution) for the
purposes of image inpainting in our datasets of microscopy images. Through the first
experiment, we tested the input used by the threshold-based masks via the use of the four
latest deep learning methods. Then, we conducted qualitative evaluations of their results.
Figure 6 shows three examples of the inputs and outputs that were obtained with the four
different methods for qualitative comparison. It was found that the results of shift-net,
global and local, and contextual attention were unsatisfactory because of blurriness in
relation to the position of the characters and scale bar, as shown in Figure 6b–d. However,
the gated convolution achieved better results than the other methods for all the examples,
as shown in Figure 6e.
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Figure 6. Comparison of the results of various image inpainting methods from the three examples of
microscopic images (from top to bottom. reprinted with permission from Ref. [12]. Copyright (2020)
Elsevier, from Ref. [13]. Copyright (2021) Elsevier, and from Ref. [14]. Copyright (2019) Elsevier):
(a) represents the input image; (b) represents the output image of shift-net; (c) represents the output
image of global and local; (d) represents the output image of contextual attention; (e) represents the
output image of gated convolution; and (f) represents the ground truth.

Next, we conducted quantitative evaluations of their results. Furthermore, we used
three evaluation metrics, the structural similarity index measure (SSIM) and `1/`2
errors [26,42]. Then, we tested the images in order to measure the three metrics for the four
methods and then calculated the averages and standard deviations of each method. Then,
the additive’s area in the entire figure is usually small. Since all the pixels except restoring
area in the outputs are the same as the ones in the originals, the metrics of the whole images
with respect to none or using methods are nearly high score and their difference could be
significantly trivial. To show the difference in the results between with and without the
methods, we calculated the metrics of local regions where the characters and scale bars
are closely packed. In Table 2, we observed that a gate convolution possessed the best
performance measures of SSIM and `1/`2 errors.

Table 2. Averages and standard deviations in parenthesis of performance metrics (SSIM, `1 and `2

errors) for the image similarity results.

Method SSIM `1 Error `2 Error

None 0.29 7.85% 3.94%
Shift-Net 0.80 (0.09) 4.40% (1.91) 1.99% (1.08)

Global and Local 0.82 (0.09) 4.24% (2.03) 1.85% (0.79)
Contextual Attention 0.89 (0.09) 3.97% (1.72) 1.79% (0.79)

Gated convolution 0.94 (0.08) 3.22% (1.69) 1.57% (0.83)

4. Conclusions

In this paper, we presented a practical use of image inpainting methods for recover-
ing microscopic images in material science documents. In particular, we proposed and
compared new methods of preprocessing the inputs with statistical and threshold-based
masks in regard to the image inpainting methods. The image inpainting methods that we
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used were four models that have appeared in the computer vision field, which are shift-net,
global and local, contextual attention, and gated convolution. The gated convolution model
showed the best SSIM and `1/`2 errors, which are the measures of the image similarity
between the output and the ground truth. However, this work only shows microscopic
images, but it must be said that the figures in the documents are diverse. In future works,
we will extend our work to develop an advanced image inpainting method that robustly
and efficiently recovers all the images comprising other figures, as well as the material
images obtained via microscopy in the documents.
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