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Abstract: This paper proposes a model capable of predicting fatal occurrences in aviation events
such as accidents and incidents, using as inputs the human factors that contributed to each incident,
together with information about the flight. This is important because aviation demands have increased
over the years; while safety standards are very rigorous, managing risk and preventing failures due
to human factors, thereby further increasing safety, requires models capable of predicting potential
failures or risky situations. The database for this paper’s model was provided by the Aviation
Safety Network (ASN). Correlations between leading causes of incident and the human element are
proposed, using the Human Factors Analysis Classification System (HFACS). A classification model
system is proposed, with the database preprocessed for the use of machine learning techniques. For
modeling, two supervised learning algorithms, Random Forest (RF) and Artificial Neural Networks
(ANN), and the semi-supervised Active Learning (AL) are considered. Their respective structures
are optimized applying hyperparameter analysis to improve the model. The best predictive model,
obtained with RF, was able to achieve an accuracy of 90%, macro F1 of 87%, and a recall of 86%,
outperforming ANN models, with a lower ability to predict fatal accidents. These performances
are expected to assist decision makers in planning actions to avoid human factors that may cause
aviation incidents, and to direct efforts to the more important areas.

Keywords: aviation safety; predictive modeling; human factors; supervised learning; machine learning

1. Introduction

The problem addressed in this article is the modeling of a classification system that
encompasses human factors with the circumstances of an aviation incident or accident.
In this way, a predictive system could be built, expected to proactively help with increasing
safety standards within the industry.

Air transportation has developed into a crucial method of long-distance travel, making
widely known contributions to economic and social development on a global scale. Tech-
nological and management systems in air travel benefit from a close relationship between
aviation manufacturers and regulators, aimed at safety improvement, leading to one of the
safest transportation methods [1–3].

However, with the sharp decrease of the accident rate, not only has air traffic consider-
ably increased, but also the absolute number of accidents fails to decrease [4,5], and market
demands are such that professionals are required to work through large stretches of the
day and/or night [1,6]. The majority of aviation accidents have been caused by human
error (see, e.g., [7], where a detailed analysis of several aircraft accidents is performed),
and studies within the industry helped prove a link with the causation of human error in
aviation and the added work effort requirements [1,4,6]. Hence the interest of this paper’s
approach, which aims to answer the following question: are the current human factors
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policies and considerations, first studied in the 1970s and introduced into the aviation
industry from the late 1980s on, still relevant at present? If their relevance is no longer
the same as before, there could be new threats, or other factors not yet considered, even
though the aviation ecosystem is expected to respond quickly to new challenges identified
in this area.

The paper is organized as follows. Section 2 presents a brief state-of-the-art of the
relation between human errors and safety in aviation. Section 3 describes the algorithms
used to implement this paper’s models, together with the criteria commonly used to
evaluate the performance of classification models. Section 4 details the Aviation Safety
Network (ASN) database, and how its data were expanded and pre-processed regarding
human factors. Section 5 shows the results of models applied, their validity, and the
optimization of the algorithms. Finally, the Section 6 addresses how the achieved model
can be used in practice and how the results and findings of this paper can be built on.

2. Safety and Human Errors in Aviation

Safety in the aircraft industry is currently defined as “the state in which the possibility
of harm to persons or of property damage is reduced to, and maintained at or below,
an acceptable level through a continuing process of hazard identification and safety risk
management” [2].

In ICAO Annex 19 [8], the Safety Management System (SMS) assumes two phases for
increasing air transport safety. Phase 1 has the main goal of eliminating the common causes
of accidents, mostly related to technology, training, and procedures, among others; it is also
expected to manage organizational causes. ICAO and the regulators know that eliminating
the risk is an impossible task; the purpose is to detect errors by safety barriers, especially
designed to prevent them from going unnoticed. With this approach it is intended to keep
the risk level very low; should it even so go up, mitigation measures must be ensured [8].
The evolution of the SMS through time is shown in Figure 1.

Figure 1. The evolution of the SMS through time.

Actions implemented in Phase 1 to handle Technical Factors were usually the intro-
duction of better and more reliable technology, related with the technical evolution of
aircraft systems. As to Human Factors, workload limitations were often implemented.
In what concerns organizational factors, the actions taken were the introduction of active
SMS departments focused on personal and organizational risk mitigation. An SMS is a
top-down, organization-wide philosophy, that manages and controls the risk of all subjects
related with the air transport. It assumes four basic pillars [8]:

1. Safety policies. It must be a proactive system that looks to identify possible risks that
can compromise safety before they happen.

2. Risk management. When these risks are identified, they must be properly assessed
and actions must be taken to keep the risk as low as possible.

3. Risk Performance Assessment. Tools and Keep Performance Indicators (KPI) must
then be developed to better manage and visualize the safety goals for the
whole organization.
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4. Quality and Safety Assurance. From the monitoring of the KPI’s, actions must be
deployed to mitigate, or at least to bring again to very low levels, the risk or any
potential threat to the air transport safety. These actions sometimes identify new
threats, requiring new actions that must be deployed.

To have success in this, a safety culture must be implemented in the entire organization.
All persons and existing processes must be engaged therewith. One individual alone can
compromise the entire safety culture process, if not engaged with its goals. Automated
processes and actions can be an effective solution to increase safety and lower the risk,
but the downside is that humans tend to rely too much on them and lower their guard,
leading again to a risk increase for unidentified threats.

To better assess the types of risks, the risk matrix in Table 1, which helps to categorize
all types of hazards, was developed. Red, yellow and green identify, respectively, what is
unacceptable under any type of circumstance, what is tolerable with the implementation of
risk mitigation actions, and the acceptable region.

Table 1. Risk matrix [8].

Risk Severity
Risk Catastrophic Danger Major Minor Insignificant

Probability A B C D E
Frequent—5 5A 5B 5C 5D 5E

Occasional—4 4A 4B 4C 4D 4E
Remote—3 3A 3B 3C 3D 3E

Improbable—2 2A 2B 2C 2D 2E
Extremely improbable—1 1A 1B 1C 1D 1E

Reason [9] identified two types of approaches regarding errors. One is the personal
approach, where the focus is solely on individual characteristics, such as personal moral
weakness, forgetfulness, and distraction. In this vein, for instance, refs. [10–12] concluded
that, in general aviation (i.e., civil flights excluding commercial activity), pilot gender
has no bearing on whether accidents result in injuries, and that the same happens with
age, as the increase in experience compensates for the more challenging flights that older
pilots undertake. The other is the system approach, where the focus lies on the conditions
promoting human error, with the intention of building layers of defense to manage risk
and mitigate hazards, resulting in a safety management model. According to this approach,
for instance, Santanna et al. [13] identified dysfunctional characteristics of the offshore
Brazilian aviation sector. According to Reason [9], there are, within a system, latent failures
which may lay dormant for a long time if the conditions to make them apparent are not
verified. However, if not addressed, a flaw in the design of a certain task or an improper
routine behavior by an operator may eventually be triggered, and then propagate to either
a direct error or to more latent failures, which in turn propagate again into direct errors.

Since, as already mentioned, most accidents in aviation can be blamed at least in part
on human factors, the Human Factors Analysis and Classification System (HFACS) tries to
provide a framework for human error so that its consequences in accidents can be measured
and assessed [14,15]. This taxonomy compiles the relations between human interactions and
the possibility of error through a sequential framework, achieving three levels of potential
error, with each level being increasingly specific and descriptive, from supervisory practices
to operators’ actions, because its failures might lead to an accident. It is usually employed
in studies of human factors in aviation accidents (e.g., in [16]).

For accident prevention in aviation, the Aviation Maintenance Monitoring Process
(AMMP) was proposed, for a proactive oversight of human error causal factors [17].
The process was built on the Analytical Network Process model, because the software
works as a decision-making tool with inter-dependent multi-criteria, considering the causal
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risk factors through accident reports made by Rashid et al. [17,18]. For air traffic control op-
erators, a network-based approach dealt particularly with fatigue as human risk, with use
of the artificial immune system method with extreme gradient boosting algorithm for its im-
plementation. The network consists of all factors that can add up to the increase of fatigue,
such as environmental factors (e.g., temperature, weather, humidity), working conditions,
sleep patterns and personal issues outside of the workplace, with the conclusion that
around 27% of operators could reduce their fatigue by shifting their responsibilities [1,19].
There have been usages of predictive models, using artificial neural networks (ANNs),
to build a model for human factors evaluation in maritime accidents [20]. The HFACS
taxonomy was re-designed breaking down factors into basic, intermediate and top events,
helping to develop the structure of the ANN with satisfactory results when dealing with
uncertainties and dynamics of the problem being studied and the models developed.

Models found in machine learning methods have also been developed. For example,
in order to study the impact of human factors in the aviation industry, text data were
extracted from reports using text-related methods, and these data were then used to build a
model using semi-supervised learning algorithms [21]. The influence of hazardous events
in a more general sense is studied in [22] using support vector machines and deep neural
networks. In the next section, some machine learning methods important for what follows
are studied.

In this paper, the data we use is from real accidents and incidents in aviation, rather
than using data from flight simulators as in [23], or data from both aviation and maritime
traffic as in [24].

3. Data Implementation
3.1. Random Forest

Random Forest (RF) is a supervised learning algorithm made up of a collection of
tree-structured classifiers, defined as a decision tree, applied throughout a given dataset
on multiple sub-samples [25]. The decision tree is built up from several nodes, connected
by branches, descending from the root node, placed at the top by convention, to the
leaf nodes [26]. Features are tested at the decision nodes, leading onto a branch. Those
branches can lead to another decision node or conclude in a leaf node. The algorithm
represents supervised learning, which requires a training data set provided with values of
the target variable.

Originally, the specific decision trees to be used are the Classification Furthermore,
Regression Trees (CART) algorithm, where each decision node produces two branches,
so the tree is binary. Its growth happens through an “exhaustive search of all available
variables and all possible splitting values”, selecting the optimal measurement vectors that
reduce the highest impurity [26,27]. The process to generate a decision tree starts with
splitting the root node into binary pieces. The splitting procedure is based on the following
evaluation of candidate splits s at node t:

∆i(s, t) = i(t)− pLi(tL)− pRi(tR) (1)

where ∆i(s, t) is a measure of impurity reduction from split s, i(t) represents the impurity
before splitting, and i(tL) and i(tR) show the impurity of the left child node TL and of the
right child node TR after halving node t by split s. In order to measure these impurities,
there are several approximations [27], but the criterion for split is by default the Gini
impurity [28], which measures how often a randomly chosen element from a set would be
incorrectly labeled from a random distribution of labels in the subset.

A random forest, of which an example is shown in Figure 2, can be defined as a
“combination of tree predictors such that each tree depends on the values of a random vector
sampled independently, with the same distribution for all trees in the forest”, and each
tree votes for the most popular class at a given input [25]. The procedure is as follows: a
random vector θk is generated, independent of the past random vectors θ1, . . . , θk−1 but
with the same distribution; and a tree is grown using the training set and θk, resulting in a
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classifier. The number of trees that can be added to a random forest can increase without
limit, and should not cause overfitting problems on the model [25]. The training algorithm
for the random forest is bagging, also called bootstrap aggregation, which consists of
creating, or replacing, subsets of training data through random samples, represented in
Figure 2 as “Out of bag” (OOB) throughout the original data, and fitting new trees onto
those samples [27].

Figure 2. Structure of a random forest with N trees.

3.2. Artificial Neural Networks

The ANN is a widely used model, inspired by how the human brain processes and
computes information in order to perform a specific task or function, and with a structure
of information capable of performing tasks such as classification, pattern recognition and
knowledge “acquired from its environment through a learning process” and stored in
synapses [26,29]. A multilayered perceptron (MLP) is a type of neural network shown
in Figure 3 and made of at least three layers: an input layer, one or more hidden layers,
and an output layer. The input signal goes through the network in a forward direction,
on a layer-by-layer basis.

Figure 3. Architectural graph of a MLP with four layers, of which two are hidden between the input
and output layers.

The output y of neuron k is given by

yk = ϕ(uk + bk) and uk =
m

∑
j=0

wkjxj (2)
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where wkj is the synaptic weight from input xj to k, and bk is the bias that influences the
input of the activation function ϕ. The computational power of a multilayer perceptron is
due to hidden neurons, with significant connectivity between them through their synapses,
facilitating pattern recognition in the network, a crucial component in solving complex
problems [29].

Weights and biases can be trained by iterative algorithms, based on an error function,
which for the n-the iteration on neuron i is defined as

ei(n) = di(n)− yi(n) (3)

where d is the desired output and y is the neuron’s output. This error function can be
further developed for an output layer of size O as an error energy function:

Eavg =
1
N

N

∑
n=1

E(n) where E(n) =
1
2

O

∑
i=1

e2
i (n) (4)

N is the size of the data set. During optimization, the error energy function propagates,
layer by layer, in a backward course through the network, the overall objective being to
minimize it as much as possible [29]. The backpropagation (BP) algorithm represents
mathematically how a neural network learns as model of supervised learning, with the
propagation of errors in the opposite direction of the output layer, and corrections are made
in synaptic weights with the delta rule. The delta rule for the output layer is computed:

∆wij = η δiyj (5)

where η is the learning rate and δi is the local gradient, indicating where changes need
to happen in the synaptic weight. For a hidden layer, the local gradient has to adapt
the corrections made for its synaptic weights and the ones made by the earlier layer.
The correction of the synaptic weights is a recursive computation, given by

w∗ij = wij + ∆wij (6)

where w∗ij is the corrected weight, proportional to a partial derivative responsible for the
direction search of the synaptic weight wij [29]. Because the average error function is a
parabolic type of function where the curve opens upwards, depending on the result of the
variation of error, the synaptic weights can increase or decrease in order to minimize the
error function [26]. If the partial derivative has a positive slope, the correction made is
leftwards, meaning that w∗ij will decrease in absolute value, whereas if the partial derivative
has a negative slope, the correction made is rightwards, with an increase for the synaptic
weight. The rate of how these corrections are made is what defines the neural network’s
learning rate, where it sets the pace. If the learning rate is higher, the pace of correction is
higher, which might lead to oscillatory and unstable behavior of the synaptic weights [29].

3.3. Hyperparameter Tuning

A hyperparameter can be defined as a parameter whose value is set before the learning
process. For example, in an ANN, the number of hidden layers, the number of hidden
neurons, the type of activation function and the learning rate are hyperparameters. In a
random forest, the number of trees, the depth of the tree, or the number of samples required
to split an internal node or a leaf node are examples of hyperparameters.

Hyperparameter tuning can be defined as an optimization problem with the intent
of determining those parameters that lead into an optimal value and has been tested
with success for machine learning algorithms such as RF and ANN [30]. This pursuit
can be computationally expensive and time consuming, especially if a brute force type of
search is performed, where all possible data points are verified. Hyperparameter tuning
problems, however, can be solved through an algorithm designed for its optimization.
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For example, Bayesian optimization is a strategy for determining local maxima from
computationally expensive functions, considering prior tested data. The maximum value,
from a given search space, is determined by a combination of exploiting spaces with high
values (exploitation) and exploring other areas with uncertainty (exploration), which are
common in optimization algorithms. The prior distribution of Bayesian optimization is
ensured with the Gaussian process (GP), which is considered flexible and easy to handle,
therefore helping with a good fit of data in the algorithm [30]. The GP is a function where
the variable is a Gaussian distribution:

f (x) ∼ GP
(
m(x), k(x, x′)

)
(7)

Here m(x) is the distribution’s mean function, and k(x, x′) the covariance function of two
tested points x and x′. Function k is usually an exponential square function. If there is a
strong correlation, there is less uncertainty, however, if the points are further away, there
is less correlation and more uncertainty. If the number of data points are large enough,
it is possible to have a general sense of how to optimize function f [30]. Given posterior
information, the GP works in an iterative way and the acquisition function determines the
next search.

3.4. Active Learning

Active Learning (AL) is a particular sub-environment of machine learning in which an
algorithm can choose the data from which it will learn, therefore performing better with
less training and less data than a supervised learning algorithm. In practice, from a small
amount of labeled testing data, an AL system will add more data by asking queries from
an oracle to label specific data. The goal is to achieve high accuracy from sparse labeled
data, minimizing the expense of obtaining these types of data [31].

There are three main frameworks from which a learner can ask questions: Membership
Query Synthesis (the learner solicits labels for any unlabeled data point and a query
is generated for the learner to evaluate), Stream-Based Selective Sampling (obtaining
unlabeled data is assumed to be inexpensive, and the input distribution follows a stream-
based approach, in which the learner decides from one data point onto another whether to
query or discard it), and Pool-Based Sampling. In the latter, the input has a small labeled
data, and a larger pool of unlabeled data set is available. Queries are then drawn from the
pool in a greedy way, by selecting the best data point from the entire pool [31]. The querying
strategy could be uncertainty sampling, a simple framework in which the learner queries
data with the least certainty on how to label it; or entropy sampling, a more general strategy,
in which it tries to map the distribution of probabilities with the information given [31].

4. Database Modeling

The data used were provided by the Aviation Safety Network (ASN), which is “a
private, independent initiative created in 1996”, that “covers accidents and safety issues
with regards to airliners, military transport planes and corporate jets” [32]. This ASN
database is public, but access was granted for use in this paper for a 10 year period
between 2007 and 2017, during which 1105 occurrences were extracted. This period is
the same as that used in [21], predates the perturbations caused the COVID-19 pandemic,
and only includes years in which current human factors policies were in use. Each point
in the database has the narrative, causes, contributory factors precluding the occurrence
and outcome on the aircraft produced by those failures. These include incidents (with
no damage or minor damages to the aircraft and with or without minor injuries to the
occupants) and accidents (with serious injuries, or loss of human life, or extensive damage to
the aircraft whether or not there are injuries or fatalities). The 1105 occurrences were studied
to identify causes of the most serious and undesirable situations, accidents with fatalities.

To proceed with the analysis proposed and to factor in the human factors in aviation
safety, the HFACS taxonomy is used, as its framework proved to be reliable in identifying
human factors issues that were hidden, highlighting critical parts of human factor failure
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that required intervention, and improving data quality and quantity [33]. A human factors
analysis can be performed from the contributory factors prior to the accident, relating them
with either underlying conditions or probable causes that triggered or may trigger those
events [9].

From the analysis of each contributory factor, it was possible to notice different ways
on how the human factors were categorized in the reports. In most cases, they simply
correspond to the HFACS taxonomy; in others, either part of the probable causes, or the
contributory factors are maintenance failures, handled according to the maintenance exten-
sion of HFACS (HFACS-ME) that was proposed by [34]. Table 2 shows the frequency of
each of the factors found in the reports analyzed.

Table 2. The HFACS and HFACS-ME manually labeled from the contributory causes of the database,
with their frequency in the database.

Factor According to HFACS/HFACS-ME Number of Cases

Adverse Mental State 73
Adverse Physiological State 19
Crew Resource Management 11
Dated/Uncertififed Equipment 67
Decision Error 62
Exceptional Violation 20
Fail to Correct Known Problem 12
Inaccessible 2
Inadequate Design 42
Inadequate Documentation 36
Inadequate Supervision 63
Inappropriate Operations 76
Infraction 1
Lighting 1
Operational Process 12
Perceptual Error 131
Personal Readiness 134
Physical Environment 216
Physical/Mental Limitations 18
Plan Inappropriate Operation 1
Resource Management 9
Routine 114
Routine Violation 39
Rule 72
Skill 29
Skill-Based Error 104
Supervisory Violation 15
Technological Environment 19
Training 4
Uncorrected Problem 8

Considering the objectives described above, it was possible to create two models for
analysis considering the database features, as illustrated in Figure 4. They try to answer
two questions:

1. Is it possible to predict whether an incident or accident produced any fatality? This is
the purpose of Model 1.

2. If an occurrence was fatal, is it possible to estimate the percentage of people killed?
This is the purpose of Model 2.
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Figure 4. Schema of the database modeling.

5. Results

This section describes the results achieved by the two models, which were obtained
using the following parameters:

• Random forests used 1000 trees, and nodes were expanded until all leaves were pure.
• Neural networks used one hidden layer with a rectified linear unit activation func-

tion, and several neurons were found by trial and error as a compromise between
performance and overfitting. Model 1 had 13 neurons in the hidden layer, and two
neurons in the output layer with a sigmoid activation function, its purpose being a
binary classification. Model 2 had 15 neurons in the hidden layer, and three neurons
in the output layer with a softmax activation function, which is a usual choice when
finding a probability [35].

5.1. Performance Criteria

Classification models require certain parameters to evaluate their validity, and a
classifier is only valid if it can predict correctly a label when information is provided. For a
binary classification problem, such as Model 1, the prediction made will belong to one
element in {0, 1} where 0 indicates the negative class (“No Fatality”), and 1 the positive
class (“Fatality”). The results can be presented in a confusion matrix, such as in Table 3.

From this confusion matrix, several quality parameters can be determined, such as
accuracy, precision, recall, and F-score:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

Accuracy =
TP + TN

TN + FN + FP + TP
(10)

Fβ = (1 + β2)
Precision · Recall

(β2 · Precision) + Recall
(11)
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Table 3. Confusion matrix for binary classification.

Predicted True Class
Class 0 1

0 True Negative False Negative

1 False Positive True Positive

Positive real factor β translates into how many times recall is more important than
precision. If β = 1, the harmonic mean of both criteria is returned, and the F-score is
deemed balanced. However, if a model has class imbalances, measures such as accuracy,
which is defined as the ratio between the number of correct predictions made and the
total number of predictions made, can be misleading, and other measures might be more
relevant [36]. This is the case in Model 1, since there is a ratio of 3:1 between the two classes;
i.e., for every accident with at least one fatality there were three that had none.

This type of performance analysis that can be displayed with a confusion matrix can
be extended to a multi-class analysis. In that case, there will be a i× i confusion matrix,
with one column and one row for each individual class Ci, and performance can be assessed
using TPi, FPi, TNi, FNi, Precisioni, Recalli [36]. It is possible to estimate the overall
performance of those multi-class models, by computing performances on average. They
can be weighted, or macro averaged. The weighted form of average may not adequately
reflect the quality of the criteria if there are severe class imbalances, because accurate
predictions on a class overwhelmingly represented are to be expected, ad thus a higher
performance score is misleading. To deal with class imbalances, criteria such as the Receiver
Operating Characteristic (ROC) and Precision-Recall graphs can be used. The ROC curve is
defined as a plot of the False Positive Rate (FPR) on the x-axis and True Positive Rate (TPR)
on the y-axis.

5.2. Model Performance

For Model 1, a single-class binary output type of model was considered. To apply the
supervised learning algorithms, 75% of the data set was used for training, and 25% for test-
ing and validation, this division being heuristically enough to find good solutions for linear
problems. After both algorithms are trained, a confusion matrix with the validation set is
obtained for the respective algorithm implementation, and the corresponding performance
criteria are determined (see Figure 5).

For each algorithm, the model can be validated by the MLP’s binary cross entropy
function, which is computed between true and predicted labels, and the Precision-Recall
curve for RF. For the MLP’s loss function, its behavior throughout the epochs can help
determine the fit of data set, which helps shaping its structure. Both training and validation
curves have an exponential decay over the first epochs, which means that the MLP quickly
finds a good fit and does not seem to overfit, as the validation cross entropy curve does
not seem to increase and the training curve decreases. Given the characteristics of the
data set for this model, the behavior of the Precision-Recall curve evaluates the skill of the
prediction, as the graph computes different thresholds for precision and recall. The area
under the curve for Model 1 with RF is significant, which helps to judge favorably the
quality of the prediction, thus validating the classifier.

Table 4 shows that the RF is better at correctly predicting the positive class than the
MLP, because, while it is possible to observe that both algorithms are similarly capable of
detecting the predominant class (No Fatality), not only the RF algorithm is able to correctly
identify the Fatality class more often than the MLP, but it also does so without predicting
fatal occurrences as non-fatal.

Semi-supervised learning was used with a pool-based strategy, but no improvement
over the other algorithms resulted, because the amount of data is too small for this algorithm
to reach a new perspective. Furthermore, with a lower score on an important metric such
as recall, AL does not seem to suit this model well.
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Table 4. Classification Report for Model 1.

Type of Learning Precision Recall F1-Score Accuracy

Class No Fatality 0.92 0.94 0.93

0.90Random Fatality 0.84 0.77 0.80
Forest Averages Macro 0.88 0.86 0.87

Weighted 0.89 0.90 0.89

Class No Fatality 0.89 0.92 0.90

0.83Multilayer Fatality 0.75 0.59 0.66
Perceptron Averages Macro 0.80 0.76 0.77

Weighted 0.83 0.83 0.83

(a) (b)

(c) (d)

Figure 5. Confusion Matrixes for Model 1 (left) and Model 2 (right) with RF algorithm (top) and MLP
algorithm (bottom). (a) Random Forest, Model 1. (b) Random Forest, Model 2. (c) Neural Network,
Model 1. (d) Neural Network, Model 2.

For Model 2, there is even less data, since only the accidents with fatalities are consid-
ered. Thus, MLPs face limitations due to the error function for the first epochs being very
high (Figure 6b). Despite the good shape of the loss function, the loss decay of the training
data set is severe, which makes it difficult to judge what is regarded as overfit or underfit of
the model, and the behavior of both curves as the epochs progress. The accuracy function
better demonstrates what the evolution of MLP with more training is (Figure 6a), as the
training curve is consistent with a regular accurate curve, and so the data structure was
considered to be well fitted.
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(a)

(b)

Figure 6. Accuracy (a) and function loss (b) for Model 2 with MLP algorithm.

The semi-supervised learning algorithm Active Learning (AL) was also used for Model
2, with the pool-based strategy. The labeled data selected was 1% of the total data available,
with the rest being used as pooling data. The query selection was the entropy, because of
the skewed distribution of the labels toward one class. After the last query, the confusion
matrix can be computed. With the constant retraining of data where new testing data are
added for the AL algorithm, the prediction can be improved (Figure 7).

AL is capable of performing better than RF when it comes to correctly predicted
labels, as seen in Table 5 where AL has better performance across all criteria. Two other
algorithms, Random Search and Bayesian Optimization, were tried for Model 2, since they
were expected to be good alternatives, but this was not the case, and the results were clearly
poorer than those of AL.
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(a)

(b)

Figure 7. Results for Model 2 with AL after 50 queries performed with confusion matrix (a) and MLP
algorithm (b).

Table 5. Comparison between RF and AL for predicting sparse labels for Model 2.

Type of Learning Classes Precision Recall Macro F1-Score

Random Below 50% 0.43 0.18 0.41Forest 50%–<50% 0.21 0.21

Active Below 50% 0.75 0.38 0.72Learning 50%–<50% 0.75 0.31

6. Conclusions

In this article, a model, based on data from incident and accident reports in the
aviation industry, was proposed, to predict fatalities based on the cause of the accident.
From the ASN database, it was possible to join existing information about contributory
causes preceding the occurrence and its result for the aircraft, with more information about
the phase of flight, the damaged sustained and the mortality. Since the role of human
factors in safety procedures for aviation is paramount, a correlation was made applying
the HFACS taxonomy. Three algorithms (MLP, RF, and AL) were proposed to create the
desired models, based on previous work with the ASN database [21], and good results
were reached, confirming that human factor policies and considerations remain indeed
important to keep accidents and failures at bay.
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In this already highly regulated industry, improving the safety standards is a main
objective. Improving the safety in aviation is a constant and always ongoing objective for
the entire aviation ecosystem. The results in this paper are expected to contribute to the
identification of the main human factors that are root causes leading to fatal accidents,
whether these root causes are related to maintenance or operations. The results in this
paper are expected to contribute to selecting the areas where more investment and better
procedures are more important, and more likely to have a positive impact in the reduction
of fatal accidents.

A first step to build on the work herein presented is to extend the database incorporat-
ing more recent data points, since supervised learning techniques struggled because of lack
of data. Regarding the HFACS taxonomy and the process of labellng, it could be possible
to incorporate a relation different types of human factors in failures and the corresponding
contributory causes of accidents [37].
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