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Abstract: Recently, convolutional neural networks (CNNs) have become the main drivers in many
image recognition applications. However, they are vulnerable to adversarial attacks, which can lead
to disastrous consequences. This paper introduces ShuffleDetect as a new and efficient unsupervised
method for the detection of adversarial images against trained convolutional neural networks. Its
main feature is to split an input image into non-overlapping patches, then swap the patches according
to permutations, and count the number of permutations for which the CNN classifies the unshuffled
input image and the shuffled image into different categories. The image is declared adversarial
if and only if the proportion of such permutations exceeds a certain threshold value. A series of
8 targeted or untargeted attacks was applied on 10 diverse and state-of-the-art ImageNet-trained
CNNs, leading to 9500 relevant clean and adversarial images. We assessed the performance of Shuf-
fleDetect intrinsically and compared it with another detector. Experiments show that ShuffleDetect is
an easy-to-implement, very fast, and near memory-free detector that achieves high detection rates
and low false positive rates.

Keywords: adversarial attacks; detection; evolutionary algorithms; convolutional neural networks;
security

1. Introduction

Convolutional neural networks (CNNs) trained on large sets of examples are domi-
nant tools for object recognition [1]. Although CNNSs are capable of accurately classifying
new images into object categories, they can nevertheless be deceived by adversarial at-
tacks [2], whose strategies generally consist of altering inputs with perturbations that lead
to classification errors.

These attacks can be classified in terms of the amount of information that the attackers
have at their disposal. Gradient-based attacks (e.g., [3-6]) require information about the
CNN’s architecture and weights. Transfer-based attacks (e.g., [7-9]) require less insider
knowledge about the CNN but query the CNN for a set of inputs, and the collected
information is used to create a substitute model, similar to the targeted CNN. This substitute
model is attacked by gradient-based methods, leading to adversarial images that also fool
the target CNN. Score-based attacks (see [10]) are even less demanding. They do not have
access to the training data, model architecture, or CNN parameters. They only make use of
the CNN'’s predicted output probabilities for all or a subset of object classes.

Ideally, security issues posed by adversarial attacks are prevented by methods that
detect malicious input images, potentially exclude them from further processing by the
CNN, and alert the user. Such detectors may be tailor-made for a specific type of attack
or applied efficiently to a large variety of attacks. Their performances are encompassed
by a series of indicators that assess how far their outputs can be trusted, and the memory
overhead, time, or complexity required to finish their tasks.
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These detectors can be classified as supervised and unsupervised. On the one hand,
supervised techniques have knowledge of adversarial images, and may attempt to rein-
force CNNs by adding adversarial images to the training set [4]. These techniques are
particularly effective when attacks are known in advance. On the other hand, unsupervised
techniques [11-14] operate without prior access to adversarial images. Instead, they apply
transformations to the input image and analyze the consistency of predictions between the
input image and its transformed versions. These techniques operate on the premise that
CNNs maintain consistent predictions for clean images.

This paper introduces ShuffleDetect as a new unsupervised method for the detection
of adversarial images; it is simple to implement and works efficiently against adversarial im-
ages created by a series of 8 different attacks applied to 10 different ImageNet-trained CNNSs.

To summarize, given image Z, ShuffleDetect assesses whether Z (resized to a square
N x N image, if necessary, to fit the CNN'’s input size) is adversarial or not for a given CNN
C. Firstly, the algorithm extracts the dominating category Dom¢(Z) in which C classifies
Z. Secondly, the algorithm essentially “splits” Z into non-overlapping patches of an equal
size s x s. Thirdly, for each permutation ¢ of a set of ¢ permutations of these patches, the
algorithm creates a shuffled image sh(Z, ), and requires from C the dominating category
Domg¢ (sh(Z, o)) in which C classifies the shuffled image. Lastly, the algorithm compares
the outcome with Dom¢ (Z). The detector classifies an input image 7 as “adversarial” if the
proportion of permutations o among ¢ permutations is such that the dominant categories
of Z and sh, (I, s) differ by more than a certain threshold value Ry,.

The remainder of this paper is organized as follows. Section 2 provides an overview of
how CNNs perform image classification, defines the attack scenarios and adversarial image
requisites, and fixes some concepts and notations used throughout the article. Section 3
is devoted to related works, provides the topography of detection methods, and lists the
main evaluation criteria used to assess their performances. The design of the ShuffleDetect
method is detailed in Section 4, where the pseudo-code of the ShuffleDetect® Rt algorithm
is also given explicitly.

To evaluate the reliability of our ShuffleDetect method, we tested it against a large set
of adversarial attacks deceiving a significant series of CNNs. Section 5 lists the 10 selected
CNN:ss trained on ImageNet, as well as the reasons for their choices, the 100 clean ancestor
images, and the specific scenarios used in our experiments. Section 6 lists the 8 attacks
that are considered in this paper, seven of which are “white-box”, while one is “black-box”.
Whenever applicable, we performed both the targeted and untargeted versions of the at-
tacks. A total of 15,000 attack runs led to 9580 relevant adversarial images: 2975 adversarial
images for the targeted scenario and 6505 adversarial images for the untargeted scenario,
as described in Section 7.

Section 8 specifies the parameters used by our detector for images handled by CNNs
trained on ImageNet. This section essentially amounts to measuring the outcomes of
ShufﬂeDetectg individually for each permutation ¢, each CNN C, each clean image, and
each image adversarial for C, obtained by each attack for each scenario. The results lead
to the selection of candidates for the threshold value Ry;. The performance of the detector
ShuffleDetect“ " is then assessed in Section 9 against the indicators given in Section 3 for
the candidate values of Ry;. Beyond this intrinsic performance assessment, ShuffleDetect is
compared with the well-known detector Feature Squeezing in Section 10.

Section 11 summarizes our findings, specifies our recommendations for the values of
the parameters relevant to ShuffleDetect, and indicates some directions for future work.

Additional figures, tables, and relevant data are provided in the Appendix, includ-
ing the original clean images, the permutations used, and individual performances of
ShuffleDetect per CNN per attack per scenario.

Algorithms and experiments were implemented using Python 3.8 [15] with NumPy
1.19 [16] and PyTorch 1.9 [17] (including in particular the Adversarial Robustness Toolbox
Python library used in Section 6). In addition, we used Maple 2022 to create the permuta-
tions used in Sections 8 and 9. The main computations were performed on nodes using
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Nvidia Tesla V100 GPUs, which are part of the IRIS HPC Cluster at the University of
Luxembourg [18].

2. CNNs and Adversarial Images

A CNN, which is expected to perform image classification, is first trained on a large
dataset S of images. Training consists of sorting the given images into a finite set of
predefined categories. The categories cy, .. ., ¢y, their number ¢, and the images used in the
process are associated with S, and are common to any CNN trained on S. The training
phase of a CNN consists of two phases. Firstly, the CNN is given the training images, and,
for each training image, a vector of length ¢, where each real-value component assesses
the probability that the training image represents an object in the corresponding category.
Secondly, CNN is challenged against a validation set of images that assesses its ability to
sort images accurately. Once trained, a CNN can be exposed to an arbitrary image, and
perform its classification according to ¢ categories.

An important, albeit technical, issue involves the sizes of the images. While the sizes
of the images of S are arbitrary and may vary from one image to another, a CNN handles
images of a fixed input size. Therefore, a resizing process is usually necessary to adapt a
given image to the input size of the CNN before classification. To simplify the notation, we
consider that this resizing process has been performed, and the input size handled by the
CNN is square (Section 5 specifies which resizing function is used in the experiments). We
also often identify image 7 with its resized version, which fits the input size of the CNN.

Image classification and label values. Concretely, given an input image Z, the trained
CNN produces a classification output vector

oz = (oz[1],...,0z[{]),

where 0 < oz[i] <1forl<i< ¥ and Zf=1 oz[i] = 1. Each component oz[i] defines the ¢;-
label value measuring the probability that image 7 belongs to the category c;. Consequently,
the CNN classifies image 7 as belonging to the category c if k = argmax, _;_,(0z[i]). One
denotes (ci, 07[k]) this outcome, and Dom¢(Z) = ¢, the dominating category in which C
classifies Z. The higher the label value oz[k], the higher the confidence that Z represents an
object of the category c.

Adversarial image requisites. Assume that we are given C a trained CNN, ¢, a
category among the £ possible categories, and .A an image classified by C as belonging to c,,
with 7, its ¢,-label value.

For any attack scenario that we consider in this paper (namely the target or the untar-
geted scenario, as made precise below), we assume that the attack aims at creating a new
adversarial image D(A), which remains so close to the ancestor’s clean image A that a human
would not be able to distinguish between D(.A) and A. The quantity e(.A, D(.A)), which
controls (or restricts) the global maximum amplitude allowed for the value modification of
each individual pixel of A to obtain D(.A), numerically assesses this human perception.

In the untargeted scenario, C is only required to classify the adversarial image D(.A) as
any class ¢ # c,. In the target scenario, one selects, a priori, a target category c; # c,. One would
expect the adversarial image D(.A) to be classified by C as belonging to the target category c¢,
without any requirements on the c;-label value beyond it being strictly dominant among all
label values (this coincides with the concept of a good enough adversarial image introduced
in [19]; see [19] for variants of the target scenario involving t-strong adversarial images).

Throughout the remainder of this article, any attack leading to the creation of adver-
sarial images will be referred to as atk.

3. Related Works and Evaluation Criteria

As pointed out in the Introduction (Section 1), addressing the security issues posed by
adversarial attacks often requires some warning that an attack is indeed taking place. The
role of detectors is key in this process because their principal role is to decide whether an
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image is clean or not. Such detectors can be categorized into two groups: supervised and
unsupervised detectors (see [20]).

Supervised detectors are designed and trained with images known to be adversarial
and obtained from one or more attacks. In contrast, unsupervised detectors require no prior
access to adversarial images and are, therefore, not limited to any particular type of attack.
This suggests that unsupervised methods, which are more resource-efficient because they
do not require any training for new attacks, may be more robust against new adversarial
attacks than supervised attacks.

Numerous detection methods from both categories have been introduced (some of
which aim at detecting adversarial images for ImageNet-trained CNNs). One can mention
the following four detection methods referred to in [20]: the supervised LID [21], the
unsupervised NIC [22], ANR [14], and FS [13].

The supervised Local intrinsic dimensionality (LID) method extracts intermediate
layer activations from the CNN when fed with either clean or adversarial inputs. At each
layer, the activations stemming from the image (clean or adversarial) and the activations
stemming from a limited number of clean neighbors of the image are used to compute
the local intrinsic dimensionality. The authors of [21] found that adversarial images tend
to have higher local intrinsic dimensionality values. This property is exploited using the
extracted values as features to train a binary classifier that declares an image as clean
or adversarial.

The network invariant approach (NIC) is an unsupervised method that declares an
image to be adversarial if it is out-of-distribution, and clean if it is in distribution. This
notion refers to the distribution observed for the ImageNet training set, which consists
of only clean images, for each CNN layer activation. For a given image, one obtains a
collection of layer-level declarations, indicating whether the image is in distribution or
not for that particular layer. The detector’s final declaration is an aggregation of all the
layer-level declarations.

The adaptive noise reduction (ANR) algorithm is an unsupervised method that uses
scalar quantization and smoothing spatial image filters to squeeze input images. The
detector compares the categories predicted by the CNN for an image and for its squeezed
version. If these categories are not identical, the image is considered to be adversarial.

The feature squeezing (FS) algorithm is an unsupervised method that applies depth
reduction to an image color bit, a median image filter for local smoothing, and a variant
of the Gaussian kernel for non-local spatial smoothing, leading to a squeezed image. The
detector compares the output vectors predicted by the CNN for squeezed and unsqueezed
images. The L, distance between the two vectors is measured, and if it exceeds a certain
threshold, the image is considered adversarial.

Remark. Ideally, we compare ShuffleDetect with well-known detectors, among which
NIC, LID, ANR, and FS, are introduced above. However, our attempt to do so led us to face
several highly challenging issues, among which the following: The codes of most of these
detectors are not available, the claimed performances are on CNNs different from ours
(Inception V3 trained on ImageNet for instance), or on CNNs trained on different datasets
than ImageNet (such as CIFAR10 or MNIST for instance, which also implies that these
CNNs use images of smaller sizes than ours), the used attacks are not systematically and
clearly documented, the definitions of the used performance indicators vary from one paper
to another. A thorough comparison would require implementing all relevant alternative
detectors essentially from scratch, and challenging them under the same conditions as
ShuffleDetect. We do not undertake this complete task here and keep it for future work.
Nevertheless, we provide in Section 10 a limited comparison between ShuffleDetect and FS.

Evaluation criteria. In the present paper, the performance of the detector is evaluated
with the following indicators [20]:

*  Detection rate (DR) represents the percentage of adversarial images that are correctly
identified as such by the detector.
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*  False positive rate (FPR) represents the percentage of clean ancestor images that are
identified as adversarial by the detector.

e Complexity refers to the time required to train a supervised detector.

*  Overhead refers to the overall memory and computation resources necessary to use
the detector (supervised or not). It depends on the number of parameters and size of
the architecture of the detector, when applicable.

e Inference time latency is the amount of time required by the detector to run on an
image. If the method is supervised, the inference time latency does not take into
account the time needed to train the detector (this part is already taken into account in
the Complexity measurements).

®  Precision, Recall, and F1 scores used to quantify the detection performance are defined

by the following formulae:
TP

Precision = TP+FP (1)
TP
Recall = 2
T TPyEN @
F1<2x Recall x Precision 3)

Recall + Precision

where TP (true positive) is the number of correctly detected adversarial images, FN
(false negative) is the number of adversarial images that escaped the detector, and
FP (false positive) is the number of clean images declared adversarial by the detector.
These formulae are pertinent whenever the number of clean images is equal to the
number of adversarial images created by a given attack for a given CNN. This aspect
is taken into account in Section 9.

4. ShuffleDetect

The general goal of the shuffling process is to interchange different parts of an image.
We noticed in [23] that if one shuffles a clean image, CNNs usually classify the shuffled
image into the same category as the unshuffled clean image. We also noticed that the situa-
tion differs from an adversarial image because CNNs usually tend to classify the shuffled
adversarial image that is no longer in the same category as the unshuffled adversarial
image, at least for those created by the two attacks of [23] (which are considered again in
Section 6).

These findings, valid for the two attacks, led to the detection method exposed below,
which is based on the assumption that shuffling affects the adversarial noise more than it
affects the image’s original components, whichever the attack.

Shuffling an image. One is given image 7 of fixed (square) size n x n fitting the
CNN’s input size, and an integer s, such that patches of size s x s create a partition in
the mathematical meaning of the term, or a grid in the more visual meaning of the term,
of Z. This latter condition requires that s divides n since the number of patches is the
integer N; = (%)2 It is convenient in practice to label the patch P, ;, positioned in the ith
column and jth row of the grid, as P, where k = % (i —1) +jfor 1 <i,j < % (see Table A2 in
Appendix B for an example, which is used in our experiments actually).

The set of possible scrambles of an image of size n x 1 is essentially parametrized by
the symmetric group Sy, of permutations of N letters since Gy, operate on the set of N
patches. Indeed, a permutation o € Gy, is represented as a finite product of cycles, each
of the form (ky,ky, ..., k1), these cycles having two-by-two disjoint supports. Each cycle
symbolizes that the M patches Py, P,, ..., P,,, associated to k1, ko, . .., kp, respectively, are
rotated in a circular way: Py, takes the position of P,, and so on until Py, takes the position
of Pkl .

The group &y, is of order N;!, and is non-trivial provided s is a strict divisor of n,
which we assume from now on.
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Given 0 € Gy, one denotes by shy(Z, s) the image obtained from Z by swapping its
patches according to ¢. Both the unshuffled image Z and the shuffled image sh,(Z,s) are
given to the CNN for classification. Figure 1 illustrates the process with the partition of an
image into 4 patches P;, P>, P53, Py: The permutation 0 € G4, selected among the altogether
4! = 24 elements of &4, is defined as the product of two cycles of length 2, which actually
amounts to interchanging the patches on the diagonals.

NN —_— €1 € w  €q . C1000

NN G| ol & | ol | o |

Figure 1. A 224 x 224 image 7 is divided into 4 patches of size 112 x 112 (top picture). The patches are
shuffled around according to the permutation o = (1,4)(2,3) € &4, leading to shs(Z,112) (bottom
picture). Both Z and shy(Z, 112) are sent to the CNN to extract the output vector.

ShuffleDetect. To some extent, the global design of the algorithm ShuffleDetect
mimics the design of classical probabilistic primality tests (such as those of Fermat, Solovay-
Strassen, or Miller—Rabin, see [24], chapter 7 for instance), where the validity of an equation,
which should be satisfied if a given integer p is a prime, is checked for a series of rounds
until either one has gained confidence (parameterized by the number of rounds) that p is
probably a prime or the equation is not satisfied for one of the rounds, in which case one
knows that p is not a prime. In our context, the equation, which assesses the detection of
whether image 7 is adversarial or not, consists of comparing the dominating categories,
given by a given CNN C, before and after shuffling, for many permutations.

With consistent notations, one round of this detection method for image Z is as follows.
One picks at random a permutation ¢ € Gy, with o # id. Unless all of the patches of
Z addressed by ¢ are identical (what happens if all N; patches of Z are identical, which
occurs, for instance, a fortiori if 7 is absolutely monochrome throughout all its pixels), o # id
ensures that Z # shy(Z,s). The output of ShuffleDetect for Z for the specific permutation o,

denoted by ShufﬂeDetectg (2), is:

1if Dom¢(Z) + Dome (she(Z,s)),

o i )
if Dom¢(Z) = Dome (shy(Z,s)).

The image 7 is said o-adversarial if ShufﬂeDetectg (Z) =1, and o-clean if ShuffleDetectg (Z) =0.

For the full ShuffleDetect algorithm, written as ShufﬂeDetectc’R””t(I ) for the consid-
ered CNN C and image Z, one chooses a fixed number ¢ € [1, N,!] of rounds. For obvious
practical reasons, t should remain relatively small, in particular far smaller than N,!. Then
one selects at random ¢ two-by-two distinct permutations oy, .. ., 07 € S, with 0, # id for all
1 <r <t. One performs the successive t rounds ShufﬂeDe’rec’cg1 @, ... ,ShufﬂeDetectgt (Z).

The threshold ratio Ry, is fixed as a percentage at will. For any number f of per-
mutations, the threshold ratio defines the integer sy, = |tRy;,|, which is the number of
permutations, such that R, ~ 2.

The algorithm ShuffleDetect® R

t declares image I:

*  as”adversarial” for C if the output of ShufﬂeDetectg () is o-adversarial for more than
sy, of the t permutations o7, ..., 0y,
e and as “clean” otherwise.

In more algorithmic terms, ShuffleDetect® Rt on image 7 works as described in the
pseudo-code Algorithm 1. The user decides on the CNN C, the degree of trust Ry, and
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the number of permutations ¢ that index the rounds of the loop composing Steps (7) to
(13). Once these parameters are chosen, Steps (1), (2), (3) are essentially setups, defined
by the choices made for the parameters C, Ry, t, while Steps (4), (5), (6) are essentially
an initializing phase, depending only on Z and C. The choice of Ry, clearly determines
the values of the indicators assessing the performance of the ShuffleDetect method (see
Section 8 for a discussion on this issue and a recommended value).

Algorithm 1 ShufﬂeDetectc’R”“t(I ) pseudo-code

1: Compute and store t permutations o7, ..., 0}

2: Select the size s for the patches

3: Compute the integer sy, = [tRy, ]

4: From C, obtain the classification output vector oz

5: Extract Dom¢ (Z)

6: Set N=0

7: Forifrom 1 to f run ShufﬂeDetectg (Z) as follows:

8 Create shy(Z,s).

9:  From C, obtain the classification output vector O, (Z,5)
10:  Extract Dom¢ (sho(Z,s)).
11:  Compare Dom¢(Z) and Dom¢ (she(Z,s)).
12:  Output 0 if they match, and 1 if they do not. In this latter case, N := N + 1.
13: end
14: Output “adversarial” if N > sy, and “clean” otherwise.

Remarks. (1) Note that the process of comparing dominant categories does not require
a precise assessment of their actual label values. Even in the case where an image is
considered o-clean for a given permutation o, it is likely that, although the same category
dominates both in the unshuffled and shuffled versions of the image, its label values differ
strongly between both images.

(2) Although there is some flexibility a priori in setting the value of parameter s at will,
there are choices that turn out to be more appropriate for a given CNN'’s input size (see
Section 8 for the choice of s and its rationals for the experiments performed in this paper).

(3) When assessing many images of the same size, even if one fixes the number (#)
of rounds once and for all, which is convenient in practice, there is still some flexibility
in when to select the permutations. One option is to “reset” the random choice of ¢
permutations for each image to be tested. Another option is to proceed to the choice of
the permutations at the same time as one chooses the value ¢, so that both ¢ and the set
of t random permutations o7, ..., 0} are decided once for all images to test. There are pros
and cons for both options, the former being (slightly) more time-consuming and (slightly)
more memory-consuming but less biased, the latter saving time, allowing for an easier
comparison and reproduction of the experiments, but providing a possible security leak
because an attacker may ultimately guess what the t-selected permutations are and adapt
to them accordingly. See Section 8 for the choices made in our experiments.

(4) Although there are theoretical measures and bounds of the proportion of com-
posite numbers declared probably primes after ¢ rounds of a probabilistic test, there is
no such thing regarding the proportion of adversarial images that are declared clean af-
ter t rounds of ShuffleDetect. Therefore, for the time being, our choice of parameters is
purely experimental.

(5) One can generalize the ShuffleDetect method thanks to the group of symmetries
that preserve the square, namely the (non-abelian) dihedral group Dg of order 8. In-
deed, with consistent notations, and since each patch is a square, one could add to the
action of a cycle (kq,ky, ..., kp) of a permutation a randomly chosen sequence of elements
Ykys Yiyr -+ 1 Yy € Dg, which will act on the respective corresponding patches as well. We
do not further explore this direction here, and stick to the exposed design of ShuffleDetect,
which actually amounts to taking the identity for all symmetries Vk; € Ds.
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5. The CNNs, the Scenarios, the Ancestor Images

The selection of CNNs used in our experiments followed three criteria involving
practicality, stability, and comparability. First, we required the availability of the pre-
trained versions of the CNNs in the PyTorch [17] library. Moreover, we required the CNNs
to have stable architecture. Finally, to allow comparisons, despite their diversity in terms
of architecture (number of layers, number of parameters, etc.), we required all CNNs to
have the same image input size, and for this input size to be square (note that this later
requirement is fulfilled by most CNNs in general).

This led us to select the following 10 well-known CNNS, trained on ImageNet [25], and
with an input size of 224 x 224, namely C; = VGG16 [26], C; = VGG19 [26],
C3 = ResNet50 [27], C4 = ResNet101 [27] and Cs = ResNet152 [27], Cs = DenseNet121 [28],
Cy = DenseNet169 [28], Cg = DenseNet201 [28], C9 = MobileNet [29], and C19 = MNAS-
Net [30].

Then, from the 1000 categories of ImageNet, we picked at random 10 ancestor classes
and 10 corresponding target classes, as shown in Table 1.

Table 1. For 1 < p < 10, the second column lists the ancestor category ¢4, and its ordinal 1 < a, < 1000
among the categories of ImageNet. Mutatis mutandis in the third column with the target category ct,
and ordinal t.

|4 (ca,, ap) (ct,,tp)

1 (abacus, 398) (bannister, 421)
2 (acorn, 988) (rhinoceros beetle, 306)
3 (baseball, 429) (ladle, 618)

4 (broom, 462) (dingo, 273)
5 (brown bear, 294) (pirate, 724)

6 (canoe, 472) (saluki, 176)
7 (hippopotamus, 344) (trifle, 927)

8 (llama, 355) (agama, 42)

9 (maraca, 641) (conch, 112)
10 (mountain bike, 671) (strainer, 828)

For each of the 10 ancestor classes (1 < p < 10), we randomly selected 10 (1 < g < 10)
ancestor images Ag from the ImageNet validation set, classified as belonging to ¢4, by the
10 CNNs. Whenever necessary, these ancestor images were resized to the CNNs common
input size 224 x 224, thanks to the bilinear interpolation function [31]. Figure Al and
Table Al in Appendix A present the 100 ancestor images As and their original sizes.

Starting with these 100 ancestor images, for each of the 10 CNNSs listed above, the
attacks, described in Section 6, were aimed at creating adversarial images either for the
target scenario (cq,, ct,) of Table 1 (all CNNs produced negligible c;,-label values for the
ancestors as a starting point) or for the untargeted scenario (in which case, it does not
matter which category ¢ # ¢, becomes dominant).

6. The 8 Attacks

This section presents the main features of the attacks employed in this paper and
provides the chosen values for their parameters. Except for the EA attack, all attacks were
applied using the Adversarial Robustness Toolbox (ART) [32], which is a Python library
that includes several attack methods. ART functions and parameters used are specified
in italics.
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6.1. EA

Reference [19] is a black-box evolutionary algorithm-based attack that creates an initial
population consisting of copies of the ancestor X and modifies their pixels over generations.
The goal of the EA is encoded in its fitness function, fit(Ind) = o[c¢]},4, where Ind is a
population individual and o[ct]j,, is the individual’s ¢; probability given by the CNN.
The population size is set to 40, the magnitude by which a pixel could be mutated in one
generation is & = 1/255, the maximum mutation magnitude is € = 8/255, and the maximum
number of generations is N = 10,000. We run both the targeted and untargeted versions of
this attack. In the targeted case, for all CNNSs, the threshold that dictates the adversarial
image’s minimum c; probability was set to meet the good enough requirements of [19].

6.2. FGSM

Reference [4], a white-box attack, is a one-step algorithm that calculates the gradient
of the loss function J(X, y) with respect to input X, to find the direction in which to modify
X. In its untargeted version, the adversarial image is

X0 = X + esign(Ax](X,ca)), (5)

while in its targeted version, it is

X0 = X —esign(AxJ(X, ct)). (6)

In the above equations, € is the perturbation size, defined in the implementation by
eps = 2/255, and A is the gradient function, as used in [4]. We use the FastGradientMethod func-
tion with the default value eps_step = 0.01. We run both targeted = True and targeted = False,
corresponding to targeted and untargeted attacks, respectively.

6.3. BIM
Reference [3], a white-box attack, is an iterative version of FGSM. The adversarial

image ngv is initialized with X and is gradually updated for a given number of steps N,
as follows:

X949 = Clipe{ X§™ +asign(Aa(Je(X{™, ca)))} @)

in its untargeted version and

X§49 = Clipe{X{™ - asign(Aa(Je(X§%,c1))}, ®)

in its targeted version, where « is the step size at each iteration and € (which coincides
with the ART function eps) is the maximum perturbation magnitude of X = X297, We
use the BasiclterativeMethod function with the default values eps_step = 0.01,
max_iter = int(eps x 255 x 1.25), and eps = 1/255. We run with both targeted = True and
targeted = False, corresponding to targeted and untargeted attacks, respectively.

6.4. PGD Inf

Reference [33], a white-box attack, is similar to the BIM attack, with the difference
that the image at the first attack iteration is not initialized with X, but rather with a random
point situated within an Lo,-ball around X. The distance between X and X is measured
using Lo, and the € parameter represents the maximum perturbation magnitude. We use
the ProjectedGradientDescent function with norm = inf, and the default values eps_step = 0.01,
batch_size = 1, and eps = 1/255. We run with both targeted = True and targeted = False,
corresponding to targeted and untargeted attacks, respectively.

6.5. PGD L1

Reference [33], a white-box attack, is similar to PGD Inf, with the difference that Lo,
is replaced with L;. We use the ProjectedGradientDescent function with norm =1, and the
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default values eps_step = 4, batch_size = 1, and eps = 30. We run with both targeted = True
and targeted = False, corresponding to targeted and untargeted attacks, respectively.

6.6. PGD L2

Reference [33], a white-box attack, is similar to PGD Inf, with the difference that Lo,
is replaced with L,. We use the ProjectedGradientDescent function with norm = 2, and the
default values eps_step = 0.1, batch_size = 1, and eps = 1. We run with both targeted = True
and targeted = False, corresponding to targeted and untargeted attacks, respectively.

6.7. CW Inf

Reference [5], a white-box attack, solves the following optimization problem in its
untargeted version:

rnéinHéH +cg(x"), such that x" € [0,1]", 9)

where ¢(x') = max(Z(x’)a - mqtaxZ(x’)i,O) (10)

and Z(x) is the pre-softmax classification output. The measure used to evaluate the
difference between the ancestor X and adversarial X* is Lo,. We use the CarliniLInfMethod
function with the default values of the parameters. We ran with both targeted = True and
targeted = False, corresponding to targeted and untargeted attacks, respectively.

6.8. DeepFool

Reference [34], a white-box attack, is an untargeted attack that calculates the minimum
perturbation J, with which to modify X such that its classification label changes, where
5e = —f(X)w/||wl|*, f(X) = w'x+b, F = {x: f(x) = 0}. The attack solves the following
optimization problem:

argmin ||8j||, such that f(x;) + Af(x;)76, = 0. (11)
[

1

The algorithm stops immediately after the label is changed, and X* = X + §,.. We use
the DeepFool function with the default values of the parameters.

The seven attacks EA, FGSM, BIM, PGD Inf, PGD L1, PGD L2, and CW Inf are used
both in the untargeted and in the target scenario, and the remaining DeepFool attack is used
only in the context of the untargeted scenario. Apart from the black-box EA attack, all others
are white-box attacks.

7. The Adversarial Images Obtained by the 8 Attacks

For each CNN (. provided in Section 5, we run each of the 8 attacks atk given in
Section 6, either for the untargeted scenario or for the target scenario whenever applicable,
for the (potentially resized) 100 ancestor images Ag , referred to in Section 5, and pictured
in Figure A1, Appendix A. A successful attack for the untargeted scenario results in the
image DZtk’untarget(Ag ), adversarial for C for that specific scenario. Mutatis mutandis with
an adversarial image thk’target(Ag ) for the target scenario.

Since there are 8 untargeted and 7 targeted attacks, this amounts to (8 +7) attacks x 10
CNNs x 10 ancestor classes x 10 images per ancestor class. Out of these altogether 15,000 at-
tack runs, 9746 were successful. More precisely, 6727 out of the 8000 untargeted attacks
were successful, and there were 3019 successful targeted attacks out of the 7000 attempts,
as detailed in Table 2.

Clearly, the number of successful attacks should be statistically relevant. We define
this condition as satisfied if an attack succeeds in at least 35% of the cases for a given
CNN (this value appears as a reasonable trade-off based on the experiments leading to
Table 2). This leads us to disregard the targeted attacks performed by FGSM and CW
Inf for all CNNSs, as well as all attacks (untargeted and targeted) performed by PGD
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L1 and the untargeted attack of FGSM on C;. The remaining 9580 statistically relevant
successful attacks are listed in Table 3. The corresponding 2975 adversarial images for the
target scenario and 6505 adversarial images for the untargeted scenario are considered in
subsequent experiments.

Table 2. For each attack atk, and each Cy, the number of successful runs performed on the 100 ancestors
are presented. The results are given as a pair (&, ) or as a single value «, depending on whether atk
is performed for both the untargeted and the targeted scenarios (assessed, respectively, by the values
of «, B in the pair), or only the untargeted scenario (assessed by the single value of «). The successful
attacks on each individual CNN are given in the last row with obvious notations.

atk cy C, C; Cy Cs Ce ¢, Cs Co Cio Total
EA (96,91) (97, 90) (99, 88) (98, 84) (98, 79) (99, 85) (97,89) (98, 86) (99,97) (99, 97) (980, 886)
FGSM (11,0) (83,3) (82,2) (81,3) (80, 2) (86, 3) (77, 4) (80, 2) (92, 13) (89,9) (761, 41)
BIM (93, 43) (91, 38) (96, 57) (96, 52) (93, 46) (98, 56) (95,73) (95, 50) (95, 87) (94,78) (946, 580)
PGDInf  (93,49) (91, 38) (96, 57) (96, 52) (93, 46) (98, 56) (95, 73) (95, 50) (95, 87) (94, 78) (946, 586)
PGD L1 (26, 0) (28,1) (19, 0) 17,1) (12,0) 19,1) (15, 0) (10, 0) (33,0) (32,0) (11,3)
PGD L2 (93, 90) (91, 88) (97, 94) (99, 92) (96, 89) (99, 94) (98,94) (97, 86) (96,97) (95, 99) (961, 923)
CW Inf (94, 0) (95, 0) (98, 0) (99, 0) (98, 0) (100, 0) (97,0) (99, 0) (93,0) (94, 0) (967, 0)
DeepFool 94 97 2 97 94 100 94 97 9% 94 955

Total (600,273)  (673,258)  (679,298)  (683,284)  (664,262)  (699,295)  (668,333)  (671,274)  (699,381)  (691,361)  (6727,3019)

Table 3. For each attack atk, and each Cy, the number of successful runs performed on the 100 ancestors
are presented, for which at least 35% were terminated successfully. The results are given as a pair
(a, B) or as a single value &, depending on whether atk is performed for both the untargeted and the
targeted scenarios (assessed, respectively, by the values of «, 8 in the pair), or only the untargeted
scenario (assessed by the single value of «). The statistically relevant successful attacks on each
individual CNN are given in the last row with obvious notations.

atk [ C, Cs Cy Cs Cs c, Cs Co Co Total

EA (96,91) (97, 90) (99, 88) (98, 84) (98, 79) (99, 85) (97, 89) (98, 86) (99, 97) (99, 97) (980, 886)
FGSM 83 82 81 80 86 77 80 92 89 750

BIM (93, 43) (91, 38) (96, 57) (96, 52) (93, 46) (98, 56) (95,73) (95, 50) (95, 87) (94,78) (946, 580)

PGD Inf (93, 49) (91, 38) (96, 57) (96, 52) (93, 46) (98, 56) (95,73) (95, 50) (95,87) (94, 78) (946, 586)
PGD L2 (93, 90) (91, 88) (97, 94) (99, 92) (96, 89) (99, 94) (98, 94) (97, 86) (96,97) (95, 99) (961, 923)
CW Inf 94 95 98 99 98 100 97 99 93 94 967
DeepFool 94 97 92 97 94 100 94 97 9% 94 955
Total (563,273)  (645,254)  (660,296)  (666,280)  (652,260)  (680,291)  (653,329)  (661,272)  (666,368)  (659,352)  (6505,2975)

8. Parameters and Experiments Performed on ShufﬂeDetectg

In what follows, we essentially consider ShuffleDetectS for each individual permu-
tation o, each CNN C, each clean image, and each image that is adversarial against C.
Altogether, the method is applied to all (resized if necessary) ancestors Ag on the one

hand, as well as to all 2975 successful adversarials thk’targEt(Ag ) and all 6505 successful

adversarials thk’umarget(/l,’; ) that compose Table 3 on the other hand. The ShuffleDetect
parameters are specified below.

Size of patches, number of permutations, and ¥(t,s, ()). Firstly, we selected s = 56
based on experiments detailed in [23]. Indeed, Table 4, extracted from [23], shows the
average outcome for 2 x 437 adversarial images obtained from 84 common ancestor images
(of size 224 x 224) for the same 10 CNNs considered here. The shuffling process was
performed in [23] only for one permutation ¢ per value of s (hence ¢ = 1 in this case) to
obtain the values of Table 4.
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Table 4. Percentages of shuffled images Sho’(As,S) (first percentage), shg(DEA (Ag ),s) (second

percentage), and Shg(DE IM(A,’; ),s) (third percentage) for which the predicted class is c.

s Number of Patches c=ca c¢{ca, ct} c=ct

16 196 0.4,0.1,0.1 99.6,99.9,99.9 0.0,0.0,0.0
32 49 18.0,9.2,5.3 82.0,90.8,94.4 0.0,0.0,0.3
56 16 67.6,39.3,15.8 32.4,60.3,70.1 0.0,04, 14.1
112 4 88.4,62.3,22.3 11.6,33.2,35.9 0.0,4.5,41.8

The experiments performed in [23] show that among the four considered possibilities,
s = 56 provides an optimal balance between the proportion of clean ancestors that are
correctly declared “clean” (67.6%), and the proportion of adversarial images that are
correctly declared “adversarial” (99.6% for the adversarial images created by the EA, and
85.9% for those created by BIM) by our method. The choice of s = 56 being made, there are
consequently 4% = 16 patches of size 56 x 56, and the symmetric group G4 has 16! > 2.10'3
different permutations.

Secondly, to keep the computations manageable, we selected at random 100 permuta-
tions (they are given in Table A3 in Appendix B). For 1 <t <100, one defines P; as the set of
the first ¢ permutations. One has Py, > Py, if t; > t. In particular, the first permutation o7 is
common to all sets P, the second permutation o, is common to all sets P; for t > 2, etc.

Given a set () of images and C a CNN, one defines the function ¥¢(f,5,Q2) as the
proportion of images in () declared c-adversarial for s out of the first f permutations. In
other words, for t and s such that 1 < s < t <100, one has:

#{T ¢ O such that ShuffleDetect (T) = 1 for at least s permutations o € P}
#H{Z O}

TC(trS/ Q) =

Geometrically, C and Q) being fixed, ¥¢ (¢, s, ()) defines a discrete surface. For a given
C, this function provides an assessment of the FPR value of the ShuffleDetect method for
C by choosing for () a set of images known to be clean. This function also provides an
assessment of the DR value by choosing for (2 a set of images known to be adversarial
for C.

As already stated in Section 4, the actual values of FPR and DR are determined by the
choice of the threshold ratio Ry,. Its value is fixed as a consequence of the experiments
performed on clean images, on the one hand, and adversarial images, on the other hand.

Assessment of the clean images. In the first step, we take for () the set ()., of
100 clean ancestors Af; represented in Figure Al (Appendix A). For C = C, one computes

ShufﬂeDetectg"(.Ai,J ) for all 100 permutations ¢ € Pp9. This leads to the 10 histograms
represented in Figure A2 in Appendix C. An example of the outcomes is illustrated in
Figure 2a for C; = VGG16, where each vertical bar assesses the number of clean images
classified as adversarial for a number of permutations given on the x-axis, out of the
100 possible permutations. The notations [4,b] and (a,b] indicate that the number of
permutations is between a and b, with both included in the former case and a excluded in
the latter case. The average outcome (mutatis mutandis) for 10 CNNs is shown in Figure 2b.

Over the 100 clean images, on average, over the 10 CNNs, an image is declared
adversarial by 34.7% of the 100 considered permutations, as indicated in Figure 2b. Table 5
shows that this percentage varies between 26.4% (for Cy) and 44.4% (for Cy).
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C1-Ancestors: A clean image is declared adversarial by 41.6% of the 100 All CNNs - Ancestors: A clean image is declared adversarial by 34.7% of
permutations in average. the 100 permutations in average.

BN
& 8 &

# of False Positives (FP)

.
5

# of False Positives (FP)
o5
.
3 o
K
15
s, 00 [N

# of permutations # of permutations

(a) C1:VGG16 (b) Average overall 10 CNNs

Figure 2. ShuffleDetect performed on 100 clean (ancestor) images with 100 permutations.

Table 5. For each Cy, the number (=percentage) of clean ancestors As declared adversarial for s out of
100 permutations. The first row shows the average number of permutations for which this occurs.
The last row, the sum of the two previous ones, provides an estimate of the FPR, which serves as a
lower bound for ShuffleDetect per CNN via the assessment of ¥ (100,91, Qgjean)-

Cl Cz C3 C4 05 CG C7 Cg C9 C10 Average

s 416 402 317 359 324 268 264 266 444 405 347

(95-100] 18 11 8 13 10 8 8 6 16 11 10.9
(90-95] 5 2 6 5 2 5 3 2 7 4 41
¥e(100,91, Quean) 23 13 14 18 12 13 11 8 23 15 15

The last row of Table 5 provides an estimate of a realistic FPR, which serves as a
lower bound, or an “incompressible” FPR, whatever the choice of the parameter R;;,. On
average, over the 10 CNNs, ¥¢(100,91, Qcjean) = 15%, and its value varies between 8%
(for Cg) and 23% (for C; and Cy). In this context, we noticed that some individual clean
images were declared adversarial by ShufﬂeDetectg for all CNNs C by a large number
(and, therefore, a proportion) of permutations ¢. Indeed, the 7 clean images Ag, A‘z, A,
Al, A3, AS, and A are declared adversarial for all CNNs by more than 91 permutations.
Whatever the ratio threshold Ry;, these 7 images contribute substantially to the FPR of
ShuffleDetect® R for a specific CNN individually, and a fortiori for the FPR average taken
over all CNNs.

Assessment of the adversarial images. In the second step, for C = C, we take for () the
set QS0 of adversarial images thk’sce"”’io(Af;) as of Table 3. One computes the values

of ShufﬂeDetectg" for these images for all 100 permutations o € Py, and one defines

gScenario (k,adv) = 15?&{11360{1‘; lyck (100, 1, ijevl’f;{lrio )= M%}

min
which captures the optimum index that makes sure that ¥, (100, 55" (adv, k), QZ%’?”O
M%, where M% is the maximum possible detection rate of adversarial images created by
the given attack on the given CNN. Clearly M% = 100% if there are no adversarial images

thk’“e"”rio (Af;) for which
Domck (,thk,scenario (A{I; )) _ Doka (Sha(thk,scenario (Ag ), 56))

for all 100 permutations o. While this eventuality does not occur in our experiments with
the target scenario, we shall see that it does for the untargeted scenario for many attacks
and many CNNE.

We proceed firstly with the target scenario. This leads to the 40 histograms (obtained
from 4 targeted attacks performed on the 10 CNNSs) represented in Figures A3-A6 in
Appendix C. The following Figure 3 shows the average behavior over the 10 CNNs of the
ShuffleDetect method for all 100 permutations in the adversarial images created by each
targeted attack. Note that the y-axis indicates the average number of adversarial images
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for a given attack, and all CNNSs are taken together, as derived from Table 3. For example,
there are 580/10 = 58 adversarial images on average for the target scenario for BIM.

EA - targeted attack BIM - targeted attack
All CNNs - Adversarials: An adversarial image is declared as All CNNs - Adversarials: An adversarial image is declared as
adversarial by 99.9% of 100 permutations in average adversarial by 99.6% of 100 permutations in average

Average # of Detections
Average # of Detections
w
g

10

0,5
(5,10

(10, 15!
(15, 20,

# of permutations # of permutations

(a) EA—targeted (b) BIM—targeted

PGD Inf - targeted attack PGD L2 - targeted attack
All CNNs - Adversarials: An adversarial image is declared as All CNNs - Adversarials: An adversarial image is declared as
adversarial by 99.6% of 100 permutations in average. adversarial by 99.6% of 100 permutations in average.

Average # of Detections
&
Average # of Detections

01 01 010101030

# of permutations # of permutations

(c) PGD Inf—targeted (d) PGD L2—targeted

Figure 3. Average outcome over the 10 CNNs of ShuffleDetect performed with 100 permutations on
the adversarial images created for the target scenario by EA, BIM, PGD Inf, and PGD L2.

Table 6 details the outcomes for each CNN individually, and provides an assessment
of the detection rate DR of the ShuffleDetect method for the detection of adversarial
images for the target scenario created by each of the four attacks. More precisely, for
each Cy, for each targeted attack atk, the table first provides the percentage s of the
100 permutations ¢ for which the shuffled-by ¢ image of an adversarial image, namely

ShuffleDetectC" (D”tk tngtEd(Ap ) ), is declared adversarial on average. Consistently with

assessments performed on the clean images, Table 6 provides Y¢, (100,91, erget) Note

that the number of elements of ergd used to compute these values is equal to the

corresponding value $ from Table 3 Fmally, Table 6 provides the values of M% and of
target(k adv)

i We proceed with the untargeted scenario. This leads to the 69 histograms (derived
from 6 untargeted attacks performed on the 10 CNNs, and from the FGSM untargeted
attack performed on 9 CNNs) represented in Figures A7-A13 in Appendix C. The following
Figure 4 provides the average behavior over the 10 (or 9 in the case of FGSM) CNNSs of the
ShuffleDetect method for all 100 permutations on the adversarial images created by each
untargeted attack. Note that the y-axis indicates the average number of adversarial images
for a given attack, all relevant CNNs taken together, derived from Table 3. For instance,
there are 750/9 = 83.3 adversarial images on average for the untargeted scenario for FGSM.

With notations consistent with the already handled case of targeted attacks, Table 7
details the outcome for each CNN individually, and provides an assessment of the DR

of the ShuffleDetect method applied to adversarial images for the untargeted scenarios

unturget

created by each of the seven attacks. The number of elements of (2, used to compute

the values of ¢, (100,91, QZ;;”,:get) is equal to the corresponding Value « from Table 3.
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Table 6. For each Cy, for each targeted attack atk, percentage s of the 100 permutations o for which the

shuffled-by ¢ image of an adversarial image, namely ShufﬂeDetectgk (thk’mr‘gew (.A,’; ) ), is declared

adversarial on average, assessment of ¥¢, (100,91, QZ’;VZ‘:’)?), of the maximum possible detection rate

M%, and of smget(k, adv).

min

Targeted Attacks Ci C € C C C¢ C; Cg Cy Cq9 Average

EA-targeted 100 100 100 99.8 99.8 99.9 99.9 100 100 99.9  99.9
Tck(100,91,0;“§,ft) 100 100 100 100 100 100 100 100 100 100 100
M% 100 100 100 100 100 100 100 100 100 100 100

SISt (k, EA) 100 100 100 93 95 96 98 100 100 9%  97.8
BIM-targeted 100 99.7 99.8 99.4 992 99.6 99.6 99.9 999 992  99.6
Tck(1oo,91,Qf;;§f,‘( 100 100 100 98 97.8 982 98.6 100 100 987  99.1
M% 100 100 100 100 100 100 100 100 100 100 100

s'8¢ (k, BIM) 00 92 97 72 64 8 77 99 98 58 84.2

min
PGD Inf-targeted 999 99.7 998 994 992 99.6 99.6 999 999 99.2 99.6

¥, (100,91, Qpcf ) 100 100 100 98 97.8 982 986 100 100 987  99.1

M% 100 100 100 100 100 100 100 100 100 100 100
s'8¢ (k, PGDInf) 9 92 97 72 64 8 77 99 98 58 84.1

min
PGD L2-targeted 99.7 99.6 998 99.6 995 99.6 995 99.7 999 99.2 99.6
¥, (100,91, 00050 ,,) 100 100 100 989 988 978 989 988 100 979  99.1
M% 100 100 100 100 100 100 100 100 100 100 100

s8¢ (k PGDL2) 9%5 92 9% 72 62 8 78 87 98 54 81.9

min

Table 7. For each Cy, for each untargeted attack atk, the percentage s of the 100 permutations o for

which the shuffled-by ¢ image of an adversarial image, namely ShufﬂeDetectg" (thk’unmrgem (.Ai]J ) ),

unmrgd), of the maximum possible

is declared adversarial on average, the assessment of ¥ ¢, (100,91, Qﬂ ok

detection rate M%, and of s,l:::.;arget(k, adv).

Untargeted Attacks Ci C C3 € C C C; Cg C9 Cq9 Average

EA-untargeted 860 869 911 944 906 922 933 950 917 907 912
¥, (100,91, O V) 697 649 787 836 785 777 855 867 858 787 790
M% 100 100 989 100 100 100 100 100 989 989  99.6
sumarset (k, EA) 2 15 2 1 1 1 2 4 3 24 75

FGSM-untargeted ~ NA 753 848 892 822 815 842 864 822 841 833
¥, (100,91, QFR V%) NA 457 634 740 537 569 688 587 630 617  60.7
M% NA 975 987 987 988 987 987 989 977 997 986

St FGSM) O NA 2 12 4 1 1 16 12 3 17 7.5

min
BIM-untargeted ~ 67.0 687 841 90.1 832 792 867 868 8l6 778  80.6
¥, (100,91, QP U5y 408 406 645 75 666 561 747 621 684 446 593
M% 97.8 945 989 989 978 979 989 989 978 989 980

untarget
s 8% (k, BIM) 1 1 3 9 9 3 10 21 1 2 6.0

PGD Inf-untargeted ~ 67.0 68.6 841 90.0 832 792 867 868 8l6 778  80.6
¥, (100,91, Qph8) 408 395 645 75 666 561 747 621 684 446 592
M% 978 945 989 989 978 979 989 989 978 989 980

S8 (g, PGDInf) 1 1 3 9 9 3 10 21 1 2 6.0

PGD L2-untargeted 669 59.6 786 878 803 743 829 819 756 69.1 759
¥, (100,91, Qp 5"y 43.0 307 525 686 59.3 515 663 53.6 510 37.8 514
M% 967 923 979 989 979 979 989 989 968 97.8 974

setmselgopGpL2) 01 1 13 18 2 3 8 1 3 41
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Table 7. Cont.

Untargeted Attacks Cl Cz C3 C4 C5 C6 C7 Cg Cg
794 820 904 915 884 865 90.8 912 839
e 617 589 765 777 734 670 773 747 645 659

M% 97.8 989 989 989 989 99 989 989 97.8 989
senrsel(k,CWInf) 7 1 15 18 24 10 24 27 1 25

90.5 90.7 930 956 928 933 938 948 915 921
765 783 815 88.6 829 83 829 835 812 829
100 100 989 100 100 99 100 100 98.9 989

C1o
87.8

Average

87.3
69.7
98.7
15.2

92.8
82.1
99.5
12.4

CW Inf-untargeted
TC;( ( 100,91, Qunturget )

DeepFool-untargeted

¥, (100,91, Q478

M%

M8 (k DeepFool) 1 2 3% 16 12 28 5 12 1 12

min

EA- untargeted attack
All CNNs - Adversarials: An adversarial image is declared as
adversarial by 91.2% of 100 permutations in average.

FGSM- untargeted attack
All relavent CNNs - Adversarials: An adversarial image is
declared as adversarial by 83.3% of 100 permutations in
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Figure 4. Average outcome over all relevant CNNs of ShuffleDetect performed with 100 permutations
on the adversarial images created for the untargeted scenario by EA, FGSM, BIM, PGD Inf, PGD L2,
CW Inf, and DeepFool.
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9. Intrinsic Performance of ShuffleDetect&Rent

Indicators and performance. Since ShuffleDetect® R is an unsupervised detector,

the complexity criterion does not apply. The values of the remaining indicators do depend
on the number ¢ of permutations to be considered, and most of them are determined by the
selected threshold ratio Ryy,.

To assess the inference time latency, the creation of t = 100 permutations (Step 1
of Algorithm 1) took 0.064 s using the command SymmetricGroup(16) and 100 calls
of the command RandomElement on Maple 2022 (this timing could certainly be op-
timized). Running ShufﬂeDetectg for a single permutation o (Steps 8 to 12 of Algo-
rithm 1) takes 0.0784 s/permutation on average (over 100 considered permutations, over-
all 10 CNNs, and over 100 random clean images because considering them is suffi-
cient to assess this average). The time required by Steps 2, 3, 6, and 14 (all of which
are outside the loop of the t permutations) is negligible. The overall inference time la-
tency of ShuffleDetect performed on an image with ¢ = 100 permutations amounts to
~0.064 + 1 x 0.0784 + 100 x 0.0784 = 0.064 + 7.918 = 7.982 s /image on average. On the one
hand, the prediction process performed by the CNN (one time in Steps 4 and 5 for the
unshuffled image, and ¢ = 100 times in Steps 9 and 10 for the shuffled images) contributes to
~98.02% of this time consumption. On the other hand, the shuffling process (Step 8, called
t = 100 times) contributes to ~1.98% of this time consumption. See Appendix B, Table A4
for detailed information on all CNNs.

One should take into account two positive aspects of the proposed detector. Firstly, the
0.064 s consumed by the creation of the 100 permutations can be mutualized over several
calls of the detector for different input images. Secondly, the tasks performed iteratively
(Steps (7) to (13)) can be easily distributed; thus, apart from the time required for the
creation of the 100 permutations, the algorithm would require only ~0.0784, plus some
minor time due to the gathering of the distributed information, and the final computation
and comparison.

The Overhead is very limited (and can be optimized). Algorithm 1 shows that the
“permanent storage” is limited to the t = 100 permutations expressed as products of cycles
as in Table A3, Appendix B (which actually can be called upon if the permutations are
computed once for all images to handle as we do in our experiments), the integer s;j,, and
the extracted dominating category Dom¢(Z) (which amounts to a numbering among the
1000 categories of ImageNet in our case). The “incremental storage” is made of the value 0
or 1 as o progresses throughout the t permutations, hence (at most) ¢ such Boolean values
if one wants to keep the whole information. A memory-saving alternative is to keep only
the updated N as o progresses throughout the  permutations. The “ephemeral storage”
(deleted after each run) is composed of the running images sh,(Z,s) and Dom¢ (shy(Z,s)).
The computation resources are essentially limited to the creation of t permutations (to be
done once at the beginning, as recommended), to 1 + ¢ calls to the CNN for the classification
of 7 and sh(Z, 0;), and to the creation of the (up to) t shuffled images sh,(Z,s). Finding
the dominant category, as is necessary once for 7 and (at most) ¢t times for the shuffled
images, amounts to looking for the largest value in the classification output category, which
is immediate in a set of 1000 values, as is the case here.

Note that in what precedes, we mention “at most” a few times since one could stop
the loop before its natural end. This is the case if after some rounds the running threshold
reaches such a value that the remaining rounds, whatever happens, cannot ensure that the
threshold ratio Ry, will not be reached.

The specific value chosen for Ry, clearly impacts the different indicators of the Shuf-
fleDetect algorithm (but, foremost, FPR and DR). To summarize, the smaller the Ry, the
higher the DR and FPR. However, our experiments show that a high Ry, leads to a very
good DR and a moderate FPR. A b-moll to this statement is that the situation differs
according to the nature of the “targeted” or “untargeted” attack, as we shall see now.

For targeted attacks, Table 6 together with Figure A2 led us to consider (for ¢ = 100
permutations) four choices for the value for Ry;:
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* Ry, = 51% matches the requirement that most permutations declare an image as adversarial.
* Ry, = 54% is motivated by the fact that the smallest S:Z:fl’gt
mutations and the four targeted attacks is >54.

* Ry, = 87% is motivated by the fact that the average of the sizl.rfd(k,atk) among the
100 permutations and the four targeted attacks is =87.
* Ry, =91% as a demanding ratio compromise.

(k, atk) among the 100 per-

For untargeted attacks, Table 7 together with Figures A7-A13 (Appendix C) show that
untarget
min raroot
(k,atk) is usually small. More precisely, s%nmge (k,atk) < 35in all cases, and is = 9.8

(for t = 100 permutations) using s (k, atk) is irrelevant for the selection of Ry,. Indeed,

untarget
Smin tareel
on average, as opposed to what occurs for the target scenario, where s rslrfe (k,atk) > 54 in
all cases, and is = 87 on average. Therefore, we limit the selection of Ry, to two values:

* Ry, =51% for the same reason as for the target case.

* Ry, = 91% because it makes sense to keep the same demanding Ry, value for the
detector independently on the scenario of the attack, hence the same value for the
targeted attack.

The values of FP and FPR depend only on the value of Ry, (since no attack is considered
for their computation), and on the CNN. Note that FPR = FP/100 for f = 100 permutations.
One writes FPyye and FPRy for their respective average values over the 10 considered
CNNi s. Table 8 provides the corresponding values for Ry, = 51%, 54%, 87%, and 91% (the
four values used in the context of the target scenario also contain the two values used in
the context of the untargeted scenario) for t = 100 permutations.

Table 8. Table of FP per CNN for each selected value of Ryy,; FPR is deduced from FP by the formula
FPR = FP/100.

Ry, € C Cs Cy Cs Ce Cy Cs Coy Cio  FPaug

51 38 38 30 34 33 26 25 26 40 37 327
54 37 36 29 33 30 25 23 25 40 36 314
87 24 13 16 19 14 15 13 12 29 19 17.4
91 23 13 14 18 12 13 11 8 23 15 15

Remark. The number of adversarial images against each CNN, created either by
targeted or untargeted attacks, is in all cases strictly less than the number of clean ances-
tor images from which these attacks started. As mentioned at the end of Section 3, this
imbalance should be considered to have a fair comparison basis and sound values for the
indicators (what we measure is the performance of the indicator, not of the attack). There-
fore, in Tables 9-12 the clean images selected are those that correspond to the adversarial
images obtained from them. For instance, since the EA-targeted attack succeeded to create
“only” 91 images adversarial against C1, we consider only the exact 91 clean images from
which these adversarial images were obtained to assess the FP value.

For targeted attacks, Tables 9 and 10 show (for ¢ = 100 permutations) the DR (which

coincides with ‘Yck(100,100Rth,0ﬂglft)), TP, EN, precision, recall, and F1 score values
per CNN per targeted attack for each of the four selected values of Ry, as well as their
average values.

For untargeted attacks, Tables 11 and 12 show (for ¢ = 100 permutations) the DR (which

coincides with ¥¢, (100, 100Ry,, stézrget))’ TP, FP, EN, precision, recall, F1 scores per CNN
per untargeted attack for each selected value of Ry, as well as their average values.
Conclusion for the intrinsic performance of ShuffleDetect. Regarding targeted at-
tacks, Tables 9 and 10 show that the difference in values of the indicators obtained when
Ry, = 0.54 versus 0.51 (respectively, 0.87 versus 0.91) remains marginal.
If one knows the nature of “targeted” and “untargeted” attacks, and/or if one knows
which specific attack to expect, one can choose the most appropriate threshold ratio value

Ry, However, one rarely has access to this intelligence in practice.
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Consequently, it makes sense to consider a priori only Ry, = 0.51 or Ry, = 0.91 whatever
the attack (hence, a fortiori whatever its targeted or untargeted nature). Table 13 provides
the values of all indicators per CNN on average over the 4 targeted attacks. It also provides
the worst F; value as a proxy of the worst case for our detector. Similar information for
untargeted attacks is given in Table 14.

Tables 13 and 14 show that our detector achieves very good results. For instance (when
both Ry, = 0.51 and 0.91 are considered) for the two highly significant indicators made of
the detection rate and the F1 values:

e  For all targeted attacks, the detection rate is >98.55, the F1 value is >0.76, and the
average values of these indicators are 99.67 and 0.87, respectively.

e  For untargeted attacks, the detection rate is >51.23, the F1 value is >0.60, and the
average values are 76.77 and 0.75, respectively.

Recall that a defender does not know the nature (targeted or untargeted) of an attack
he is exposed to. For the sake of completeness, Table 15 provides the values of all indicators
per CNN in the average overall attacks, targeted and not targeted, for the two values
Ry, =0.51 and 0.91.

Now, as a defender, it is wise to consider the values of the indicators given in Table 14
for untargeted attacks, since then one is also “on the safe side” for targeted attacks as well.

A remaining issue is whether one can achieve results as those given in Table 14
(allowing one to be “on the safe side”, as pointed out above), say for DR, precision, recall,
and F1, with less than 100 permutations. For instance for C;, can one achieve (DR, precision,
recall, F1) = (77.5, 0.7, 0.8, 0.7) in less than 100 permutations? Indeed, doing so would
clearly speed up the process (see Table A4 to assess time savings per spared permutation).

We performed a series of tests with increasing values of the number of permutations,
aimed at indicator values, as those of Table 14. More precisely, we fixed the indicator values
as those of Table 14, and we added permutations one by one (following their numbering,
as given in Table A3), and stopped when we achieved those fixed indicator values. Note
that the minimal number of permutations, with which it makes sense, from a mathematical
point of view, to start this process, depends on the value of Ry,.

For Ry, = 0.51, it makes sense to consider ¢ > 3, while for R;;, = 0.91, it makes sense
to consider t > 12. Therefore, for each CNN C, for each attack atk, targeted or untargeted
accordingly, starting with the first 3 permutations for R;;, = 0.51 (respectively, the first
12 permutations for R;;, = 0.91), we added the subsequent permutations whenever appro-
priate, and stopped the process when the minimal number f,pyipai,c,atk Of permutations
fulfilling the above criteria was achieved. Table 16 provides the outcome of this experiment.

Finally, which value for Ry, do we privilege? We considered the DR indicator as
the most significant one to make our choice. With this indicator, we concluded that the
“democratic” value Ry, = 0.51 is an appropriate and reasonable choice for most applica-
tions of ShuffleDetect. In terms of the number of permutations, one can use the number
toptimal,c = MaXax{toptimal,c atk }, defined for Ry, = 0.51 in Table 16, according to the CNN C
considered. This value is convenient for the relevant 4 targeted attacks and 7 untargeted
attacks studied here. However, especially in view of the low time and memory price to
pay for additional permutations, we consider that a defender who uses 100 permutations
is better prepared against unknown attacks. Refinements in this regard are still possible,
especially since ShuffleDetect is on the defender’s side, the defender knows which CNNs
to protect so that he can adapt accordingly.
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Table 9. Targeted attacks—DR as a percentage, and TP, FP, FN, precision, recall, F1 scores for CNN,
per attack, for selected values of Ry, = 0.51 and 0.54, and their corresponding averages.

R, Kffltfd Metrics  Cq C Cs Cy Cs Ce ¢ Cs Co Cio Avg
DR 100 100 100 100 100 100 100 100 100 100 100
P 91 90 88 84 79 85 89 86 97 97 88.6
FP 37 37 28 32 29 25 23 25 39 37 31.2

EA FN 0 0 0 0 0 0 0 0 0 0 0
Precision  0.71 0.70 0.75 0.72 0.73 0.77 0.79 0.77 0.71 0.72 0.73

Recall 1 1 1 1 1 1 1 1 1 1 1
F1 083 0.82 0.85 0.83 0.84 0.87 0.88 0.87 0.83 0.83 0.84
DR 100 100 100 100 100 100 100 100 100 100 100

P 43 38 57 52 46 56 73 50 87 78 58
FP 23 23 20 19 21 18 17 15 35 31 2.2

BIM FN 0 0 0 0 0 0 0 0 0 0 0
Precision  0.65 0.62 0.74 0.73 0.68 0.75 0.81 0.76 0.71 0.71 0.71

Recall 1 1 1 1 1 1 1 1 1 1 1
o1 F1 078 0.76 0.85 0.84 0.8 0.85 0.89 0.86 0.83 0.83 0.82
’ DR 100 100 100 100 100 100 100 100 100 100 100
P 49 38 57 52 46 56 73 50 87 78 58.6
FP 23 23 20 19 21 18 17 15 35 31 2.2

PGD Inf FN 0 0 0 0 0 0 0 0 0 0 0
Precision  0.68 0.62 0.74 0.73 0.68 0.75 0.81 0.76 0.71 0.71 0.71

Recall 1 1 1 1 1 1 1 1 1 1 1
F1 080 0.76 0.85 0.84 0.80 0.85 0.89 0.86 0.83 0.83 0.83
DR 100 100 100 100 100 100 100 100 100 100 100
TP 90 88 94 92 89 94 94 86 97 99 92.3
FP 23 23 20 31 29 26 24 24 38 36 27.4

PGD L2 EN 0 0 0 0 0 0 0 0 0 0 0
Precision  0.79 0.79 0.82 0.74 0.75 0.78 0.79 0.78 0.71 0.73 0.76

Recall 1 1 1 1 1 1 1 1 1 1 1
F1 088 0.88 0.90 0.85 0.85 0.87 0.88 0.87 0.83 0.84 0.86
DR 100 100 100 100 100 100 100 100 100 100 100
P 91 90 88 84 79 85 89 86 97 97 88.6
FP 36 35 27 31 26 24 21 24 39 36 29.9

EA FN 0 0 0 0 0 0 0 0 0 0 0
Precision  0.71 0.72 0.76 0.73 0.75 0.77 0.80 0.78 0.71 0.72 0.74

Recall 1 1 1 1 1 1 1 1 1 1 1
F1 083 0.83 0.86 0.84 0.85 0.87 0.88 0.87 0.83 0.83 0.84
DR 100 100 100 100 100 100 100 100 100 100 100

P 43 38 57 52 46 56 73 50 87 78 58
FP 22 2 19 19 19 18 16 14 35 30 214

BIM FN 0 0 0 0 0 0 0 0 0 0 0
Precision  0.66 0.63 0.75 0.73 0.70 0.75 0.82 0.78 0.71 0.72 0.72

Recall 1 1 1 1 1 1 1 1 1 1 1
05t F1 079 0.77 0.85 0.84 0.82 0.85 0.90 0.87 0.83 0.83 0.83
: DR 100 100 100 100 100 100 100 100 100 100 100
TP 49 38 57 52 46 56 73 50 87 78 58.6
FP 22 2 19 19 19 18 16 14 35 30 214

PGD Inf FN 0 0 0 0 0 0 0 0 0 0 0
Precision  0.69 0.63 0.75 0.73 0.70 0.75 0.82 0.78 0.71 0.72 0.72

Recall 1 1 1 1 1 1 1 1 1 1 1
F1 081 0.77 0.85 0.84 0.82 0.85 0.9 0.87 0.83 0.83 0.83
DR 100 100 100 100 100 100 100 100 100 100 100
TP 90 88 94 ) 89 94 94 86 97 99 92.3
FP 22 2 19 30 26 25 2 23 38 35 26.2

PGD L2 EN 0 0 0 0 0 0 0 0 0 0 0
Precision  0.80 0.80 0.83 0.75 0.77 0.78 0.81 0.78 0.71 0.73 0.77

Recall 1 1 1 1 1 1 1 1 1 1 1
F1 088 0.88 0.90 0.85 0.87 0.87 0.89 0.87 0.83 0.84 0.86
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Table 10. Targeted attacks—DR as a percentage, and TP, FP, FN, precision, recall, F1 scores per CNN

per attack for each selected value of Ry, = 0.87 and 0.91, and their corresponding averages.

R, Kffltfd Metrics  Cq C Cs Cy Cs Ce ¢ Cs Co Cio Avg
DR 100 100 100 100 100 100 100 100 100 100 100
P 91 90 88 84 79 85 89 86 97 97 88.6
FP 23 13 16 18 12 15 12 12 29 19 16.9
EA FN 0 0 0 0 0 0 0 0 0 0 0
Precision  0.79 0.87 0.84 0.82 0.86 0.85 0.88 0.87 0.76 0.83 0.83
Recall 1 1 1 1 1 1 1 1 1 1 1
F1 088 0.93 091 0.90 0.92 091 0.93 0.93 0.86 0.90 0.9
DR 100 100 100 98.1 97.8 98.2 98.6 100 100 98.7 99.1
TP 43 38 57 51 45 55 72 50 87 77 57.5
FP 17 9 11 15 1 1 1 9 27 18 13.9
BIM FN 0 0 0 1 1 1 1 0 0 1 0.5
Precision  0.71 0.80 0.83 0.77 0.80 0.83 0.86 0.84 0.76 0.81 0.8
Recall 1 1 1 098 0978 0982  0.986 1 1 0987  0.99
o5 F1 083 0.88 0.90 0.86 0.88 0.89 091 091 0.86 0.88 0.87
’ DR 100 100 100 98 97.8 98.2 98.6 100 100 98.7 99.1
P 49 38 57 51 45 55 72 50 87 77 58.1
FP 17 9 11 15 1 1 1 9 27 18 13.9
PGD Inf FN 0 0 0 1 1 1 1 0 0 1 0.5
Precision  0.74 0.80 0.83 0.77 0.80 0.83 0.86 0.84 0.76 0.81 0.8
Recall 1 1 1 098 0978 0982 0986 1 1 0987  0.99
F1 085 0.88 0.90 0.86 0.88 0.89 091 091 0.86 0.88 0.88
DR 100 100 100 98.9 98.8 98.9 98.9 100 100 98.9 99.4
TP 90 88 94 91 88 93 93 86 97 98 91.8
FP 17 9 1 19 12 15 12 1 28 19 15.3
PGD L2 FN 0 0 0 1 1 1 1 0 0 1 0.5
Precision  0.84 0.90 0.89 0.82 0.88 0.86 0.88 0.88 0.77 0.83 0.85
Recall 1 1 1 0.98 0.98 0.98 0.98 1 1 0.98 0.99
F1 091 0.94 0.94 0.89 0.92 091 0.92 0.93 0.87 0.89 0.91
DR 100 100 100 100 100 100 100 100 100 100 100
P 91 90 88 84 79 85 89 86 97 97 88.6
FP 23 13 14 17 1 13 10 8 23 15 14.7
EA FN 0 0 0 0 0 0 0 0 0 0 0
Precision  0.79 0.87 0.86 0.83 0.87 0.86 0.89 091 0.80 0.86 0.85
Recall 1 1 1 1 1 1 1 1 1 1 1
F1 088 0.93 0.92 0.90 0.93 0.92 0.94 0.95 0.88 0.92 0.91
DR 10000 100.00 100.00 9800  97.80 9820 9860  100.00 100.00 9870  99.10
P 43 38 57 51 45 55 72 50 87 77 57.5
FP 17 9 9 15 10 9 9 7 2 14 12.1
BIM FN 0 0 0 1 1 1 1 0 0 1 0.5
Precision  0.71 0.80 0.86 0.77 0.81 0.85 0.88 0.87 0.79 0.84 0.81
Recall 1 1 1 098 0978 0982 0986 1 1 0987  0.99
o1 F1 083 0.88 0.92 0.86 0.88 091 0.92 0.93 0.88 0.90 0.89
) DR 100 100 100 98 97.8 98.2 98.6 100 100 98.7 99.1
TP 49 38 57 51 45 55 72 50 87 77 58.1
FP 17 9 9 15 10 9 9 7 2 14 12.1
PGD Inf FN 0 0 0 1 1 1 1 0 0 1 0.5
Precision  0.74 0.80 0.86 0.77 0.81 0.85 0.88 0.87 0.79 0.84 0.82
Recall 1 1 1 0.98 0.97 0.98 0.98 1 1 0.98 0.99
F1 085 0.88 0.92 0.86 0.88 091 0.92 0.93 0.88 0.90 0.89
DR 100 100 100 98.9 98.8 97.8 98.9 98.8 100 97.9 99.1
TP 90 88 94 91 88 92 93 85 97 97 91.5
FP 17 9 9 18 1 13 10 8 2 15 13.2
PGD L2 FN 0 0 0 1 1 2 1 1 0 2 0.8
Precision  0.84 0.90 091 0.83 0.88 0.87 0.90 091 0.81 0.86 0.87
Recall 1 1 1 0989 0988 0978 0989 0988 1 0979 0.9
F1 091 0.94 0.95 0.9 0.93 0.92 0.94 0.94 0.89 091 0.91
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Table 11. Untargeted attacks—DR as a percentage, and TP, FP, FN, precision, recall, F1 scores per

CNN per attack for each selected value of Ry, = 0.51, and their corresponding averages.

Ry K;‘t?:kgeted Metrics  Cy C Cs Cs Cs Ce c; Cs Co Cro Avg
DR 85 97 99 99 99 959 99 979 939 939 945

™ 8 88 93 95 95 95 94 9% 93 93 92.7

P 38 38 29 34 3 26 25 26 39 36 324

EA N 11 9 6 3 3 4 3 2 6 6 5.3
Precision 069 069 076 073 074 078 078 078 070 072 074

Recall 088 090 093 096 09 095 09 097 093 093 094

F1L 077 078 08 08 08 085 08 08 079 081 082

DR 807 80 925 82 872 87 925 88 85 8.3

TP 67 73 75 69 75 66 74 79 77 72.7

FP 3 28 31 29 23 » 23 34 30 281

FGSM FN 16 9 6 11 11 11 6 13 12 105
Precision 067 072 070 070 076 075 076 069 071 072

Recall 080 08 092 08 087 08 092 08 086 087

F1 072 079 079 077 081 079 083 076 077 078

DR 666 725 864 937 860 8.6 884 926 842 840 838

™ 6 66 83 90 80 82 84 88 80 79 79.4

FP 34 » 28 3 29 24 » 24 3 31 289

BIM N 31 25 13 6 13 16 11 7 15 15 152
Precision 064 067 074 073 073 077 079 078 070 071 073

Recall 066 072 08 093 08 08 08 092 084 084 083

FI 064 069 079 081 078 079 08 08 076 076 077

DR 666 725 864 937 860 836 884 926 842 840 838

™ 6 66 83 90 80 82 84 88 80 79 79.4

P 34 » 28 3 29 24 » 24 3 31 289

051  PGD Inf N 31 25 13 6 13 16 11 7 15 15 152
Precision 064 067 074 073 073 077 079 078 070 071 073

Recall 066 072 086 093 08 083 08 092 084 084 083

FI 064 069 079 081 078 079 08 08 076 076 077

DR 688 615 804 919 83 777 87 886 781 736 790

TP 64 56 78 91 80 77 85 86 75 70 76.2

FP 34 31 27 3 29 24 » 24 34 3 289

PGD L2 N 29 35 19 8 16 2 13 11 21 25 19.9
Precision 065 064 074 073 073 076 079 078 068 068 072

Recall 068 061 080 091 08 077 08 08 078 073  0.79

FI 066 062 076 081 077 076 08 08 072 07 075

DR 797 863 938 939 918 900 938 969 8.1 893 903

™ 75 82 92 93 90 90 91 9% 82 84 87.5

FP 34 3 28 3 30 25 21 24 31 30 28.8

CW Inf N 19 13 6 6 8 10 6 3 11 10 9.2
Precision 068 071 076 074 075 078 081 080 072 073 075

Recall 079 086 093 093 091 090 093 09 088 08 090

Fl 073 077 08 08 08 083 08 087 079 0.8 0.81

DR 946 938 956 99 978 90 978 979 947 936 958

™ 89 91 88 94 9 9% 92 95 91 88 91.6

P 36 37 27 33 28 25 » 25 37 3 302

DeepFool N 5 6 4 3 2 4 2 2 5 6 3.9
Precision 071 071 076 074 076 079 080 079 071 073 075

Recall 094 093 095 096 097 09 097 097 094 093 095

F1 08 08 084 083 085 08 087 08 08 081 083




Appl. Sci. 2023, 13, 4068 23 of 44

Table 12. Untargeted attacks—DR as a percentage, and TP, FP, FN, precision, recall, F1 scores per
CNN per attack for each selected value of Ry, = 0.91, and their corresponding averages.

Ry Ki‘g‘:kgeted Metrics ~ C; C C Cs Cs Ce c, Cs Co Cio  Avg
DR 697 649 787 86 785 777 855 8.7 858 787 789

™ 67 63 78 82 77 77 83 85 85 78 77.5
P 23 13 13 18 12 13 11 8 2 14 14.7

EA N 29 34 21 16 21 » 14 13 14 21 205
Precision 074 082 085 082 08 085 08 091 079 084 083

Recall 069 064 078 083 078 077 08 08 08 078 078

Fl 071 071 081 08 08l 08 086 088 081 0.8 0.8
DR 457 634 740 537 569 688 587 630 617  60.7

TP 38 52 60 83 49 53 47 58 55 50.6

FP 11 13 16 9 12 10 8 17 11 119

FGSM FN 45 30 21 37 37 2% 33 34 34 32.8
Precision 077 080 078 08 080 08 085 077 083 0.8

Recall 045 063 074 053 056 068 058 063 06l 0.6

F1 0.56 07 075 064 065 075 068  0.69 07 068

DR 408 406 645 750 666 561 747 621 684 446 593

P 38 37 62 72 62 55 71 59 65 0 56.3

P 20 11 13 16 9 12 10 8 16 11 12.6

BIM N 55 54 34 2% 31 3 25 36 30 52 38.4
Precision 065 077 08 081 087 08 08 088 08 079 0.8

Recall 040 040 064 075 066 056 073 062 068 044 058
FI 049 05 071 077 075 066 079 072 073 056  0.67

DR 408 395 645 750 666 561 747 621 684 446 592

™ 38 36 62 7 62 55 71 59 65 0 56.2

P 20 13 13 16 9 12 10 8 16 11 12.8

091  PGD Inf N 55 55 34 2% 31 3 24 36 30 52 38.4
Precision 065 073 08 081 087 08 08 08 08 079 0.8

Recall 040 039 064 075 066 056 074 062 068 044  0.58

F1 049 0.5 071 077 075 066 079 072 073 056 0.6

DR 430 307 525 686 593 515 663 536 510 378 514
TP 40 28 51 68 57 51 65 52 49 36 497
P 20 11 12 16 9 12 10 8 17 12 12.7

PGD L2 N 53 63 46 31 39 48 33 45 47 59 464
Precision 066 071 080 080 086 080 08 086 074 075 078

Recall 043 030 052 068 059 051 066 053 051 037 051

FI 052 042 063 073 069 062 074 065 06 049 0.6
DR 617 589 765 777 734 670 773 747 645 659 697

TP 58 56 75 77 72 67 75 74 60 62 67.6

P 20 11 13 16 10 12 9 8 14 11 124

CW Inf N 36 39 23 2 2 3 2 25 33 2 291
Precision 074 083 085 082 087 084 08 090 08 084 083

Recall 061 058 076 077 073 067 077 074 064 065  0.69

FI 066 068 0.8 079 079 074 08 081 071 073 075

DR 765 783 815 86 89 80 89 85 812 89 81

™ 7 76 75 86 78 83 78 81 78 78 78.5

P 2 12 12 17 12 12 9 8 20 12 13.6

DeepFool N 2 21 17 11 16 17 16 16 18 16 17
Precision 076 086 086 083 086 087 08 091 079 086 084

Recall 0.76 0.78 0.81 0.88 0.82 0.83 0.82 0.83 0.81 0.82 0.81
F1 0.76 0.81 0.83 0.85 0.83 0.84 0.85 0.86 0.79 0.83 0.82
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Table 13. Average for all indicators (worst case for F1) per CNN over all 4 targeted attacks.
Targeted Attacks
Ry, C1 Cy Cs Cy Cs Ce Cy Cs Coy Cio Avg
DR 100 100 100 100 100 100 100 100 100 100 100
TP 68.3 63.5 74.0 70.0 65.0 728 823 68.0 92.0 88.0 744
FP 26.5 26.5 22.0 25.3 25.0 21.8 203 19.8 36.8 33.8 25.8
051 FN 0 0 0 0 0 0 0 0 0 0 0
Precision 071 0.68 0.76 0.73 071 0.76 0.80 0.77 071 0.72 0.73
Recall 1 1 1 1 1 1 1 1 1 1 1
F1 0.82 0.81 0.86 0.84 0.82 0.86 0.89 0.87 0.83 0.83 0.84
Flworst 0.78 0.76 0.85 0.83 0.80 0.85 0.88 0.86 0.83 0.83 0.82
DR 100 100 100 98.73 98.6 98.55 99.03 99.7 100 98.83 99.34
TP 68.25 635 74 69.25 64.25 71.75 815 67.75 92 87 73.93
FP 185 10 10.25 16.25 10.5 11 9.5 7.5 22.25 145 13.03
0.91 FN 0 0 0 0.75 0.75 1 0.75 0.25 0 1 0.45
Precision 0.77 0.84 0.87 0.8 0.84 0.86 0.89 0.89 0.79 0.85 0.84
Recall 1 1 1 0.99 0.98 0.99 0.99 0.99 1 0.99 0.99
F1 0.87 0.91 0.93 0.88 0.91 0.92 0.93 0.94 0.88 0.91 0.90
Flworst 0.83 0.88 0.92 0.86 0.88 0.91 0.92 0.93 0.88 0.9 0.89
Table 14. Average for all indicators (worst case for F1) per CNN over all 7 untargeted attacks.
Untargeted Attacks
R C C, Cs Cs Cs Ce c, Cs Co Cuo Avg
DR 77.5 79.7 89.4 94.2 89.7 87.7 91.1 94.1 87.0 86.4 87.7
TP 72.8 73.7 843 89.7 83.7 853 85.1 89.0 82.9 814 82.8
FP 35.0 337 27.9 32.3 29.6 244 223 243 344 317 29.6
051 FN 21.0 18.4 10.0 5.4 9.4 11.9 8.1 5.4 12.3 127 11.5
Precision 0.7 0.7 07 07 0.7 0.8 0.8 0.8 0.7 0.7 07
Recall 0.8 0.8 0.9 09 09 0.9 0.9 0.9 09 09 0.9
F1 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
Flworst 0.64 0.62 0.76 0.81 0.77 076 0.82 0.82 0.72 0.70 07
DR 55.42 51.23 68.8 77.5 68.71 64.04 75.74 68.77 68.9 59.46 65.86
TP 52.17 47.71 65 73.86 64.43 62.43 70.86 65.29 65.71 56.14 62.36
FP 20.83 11.71 12.71 16.43 10 12.14 9.857 8 17.43 11.71 13.08
091 FN 41.67 4443 29.29 21.29 2871 3471 22.57 29.14 29.43 38 31.92
Precision 0.70 0.78 0.83 0.81 0.86 0.83 0.87 0.88 0.79 0.81 0.82
Recall 0.55 0.51 0.68 0.77 0.68 0.64 0.75 0.68 0.69 0.59 0.65
F1 0.61 0.60 0.74 0.78 0.75 071 0.80 0.76 0.72 0.67 071
Flworst 049 0.42 0.63 0.73 0.69 0.62 0.74 0.65 0.6 0.49 0.61
Table 15. Average for all indicators (worst case for F1) per CNN over all attacks.
All Attacks
Ry, c C, Cs C Cs Ce c, Cs Co Cio Avg
DR 88.73 89.86 94.68 97.11 94.86 93.86 95.55 97.07 93.50 93.21 93.84
TP 70.54 68.61 79.14 79.86 74.36 79.02 83.70 78.50 87.43 84.71 78.59
FP 30.75 30.11 24.93 28.77 27.29 23.09 21.27 22.02 35.59 32.73 27.65
051 FN 10.50 9.21 5.00 271 471 5.93 4.07 271 6.14 6.36 5.74
Precision 0.69 0.68 0.75 073 0.72 0.77 0.79 0.77 0.71 072 073
Recall 0.88 0.90 0.94 0.97 0.95 0.94 0.95 0.97 0.93 0.93 0.94
F1 0.76 0.76 0.83 0.83 0.81 0.84 0.86 0.86 0.80 0.80 0.82
Flyorst 0.71 0.69 0.81 0.82 0.79 0.81 0.85 0.84 0.78 0.77 0.78
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Table 15. Cont.

All Attacks
R Cq Cy Cs Cy Cs Ce C; Cg () Cio Avg
DR 77.71 75.61 84.40 88.11 83.66 81.30 87.38 84.24 84.45 79.14 82.60
TP 60.21 55.61 69.50 71.55 64.34 67.09 76.18 66.52 78.86 71.57 68.14
FP 19.67 10.86 11.48 16.34 10.25 11.57 9.68 7.75 19.84 13.11 13.05
0.91 FN 20.83 22.21 14.64 11.02 14.73 17.86 11.66 14.70 14.71 19.50 16.19
Precision 0.74 0.81 0.85 0.81 0.85 0.84 0.88 0.89 0.79 0.83 0.83
Recall 0.77 0.75 0.84 0.88 0.83 0.81 0.87 0.84 0.84 0.79 0.82
F2 0.74 0.75 0.83 0.83 0.83 0.81 0.87 0.85 0.80 0.79 0.81
Flworst 0.66 0.65 0.78 0.80 0.79 0.77 0.83 0.79 0.74 0.70 0.75

Table 16. For Ry, = 0.51 and 0.91, the optimal number of permutations f,ptimai,c,atk per CNN and
attack, and the optimal number of permutations f,,4u.,c per CNN valid for all tested attacks
(potentially relevant to assess unknown attacks).

Optimal Number t,,tia1,c,atx Of Permutations per CNN and Attack

Ry, Scenario Attacks C; C Cs Cy Cs Cs C; Cs Cy Cio
EA 3 3 3 3 3 3 3 3 3 3
FGSM 3 19 13 3 9 9 7 13 5
BIM 3 3 11 5 11 19 3 17 13 5
Untargeted PGD Inf 3 3 11 5 11 19 3 17 13 5
PGD L2 3 7 3 7 5 15 66 27 7 9
051 CW Inf 3 5 25 17 5 3 5 23 7 3
DeepFool 5 3 7 3 37 9 68 3 3 3
EA 12 12 12 12 12 12 12 12 12 12
BIM 12 12 12 12 12 12 12 12 12 12
Targeted PGD Inf 12 12 12 12 12 12 12 12 12 12
PGD L2 12 12 12 12 12 12 12 12 12 12
Eoptimal,c per CNN 2 12 25 17 3 19 6 27 13 12
EA 12 12 12 12 12 12 12 12 12 12
FGSM 12 12 12 12 12 12 12 12 12
BIM 12 12 12 12 12 12 12 12 100 12
Untargeted PGD Inf 12 12 12 12 12 12 12 12 100 12
PGD L2 12 12 12 12 12 12 12 12 12 12
0.91 CW Inf 12 12 23 12 34 12 12 12 12 12
DeepFool 12 34 12 12 12 12 12 12 12 12
EA 12 12 12 12 12 12 12 12 12 12
BIM 12 12 12 12 12 12 12 12 12 12
Targeted PGD Inf 12 12 12 12 12 12 12 12 12 12
PGD L2 12 67 12 12 12 12 12 12 12 12
Eoptimal,c per CNN 12 e 2 12 3 12 12 12 100 12

10. Performance Comparison of ShuffleDetect and Feature Squeezer (FS)

To assess the extrinsic performance of ShuffleDetect, we compared it with the FS
detector [13]. We selected this detector since, similar to ShuffleDetect, it is an unsupervised
detector, which also presents no significant complexity issues. The comparison between
ShuffleDetect and FS is performed only according to the detection rate, and not according
to the other indicators mentioned in Section 3, since, for instance, the value of FPR in [13] is
determined by the behavior of FS as compared to another detector (MagNet [35]); hence,
it is not an intrinsic value, to the difference of what we do in Section 9 for ShuffleDetect.
Therefore, the comparisons of the detectors are performed on the 9480 images of Table 3,
adversarial against the 10 considered CNNs (Section 7).
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In our experiments, we used multiple squeezers for FS as suggested in [13] (we keep
their notations in what follows). The L1 norm is used to measure the difference between the
prediction by the CNN of the input image and the prediction of the squeezed input image:

score™ Ysqueezed = ||g(x) - g(xsqueezed l |L1 ’ (12)
where x is the input image and g(x) is the classification vector of the CNN according to the
different categories. Multiple feature squeezers are combined in the FS detector. In practice,
one computes the maximum distance:

scorel®™ (x) = max(score™ 1, score™ 512, score™¥si3) (13)

The values of the parameters of the FS squeezers are chosen as the optimal values
recommended in [13]:

*  Color depth reduction: the image color depth is decreased to 5 bits.

*  Median smoothing: the filter size is set to 2 x 2.

*  Non-local means: the search window size is set to 11 x 11, the patch size is set to 3 x 3,
and the filter strength is set to 4.

*  The threshold is set to 1.2128.

The image is declared by the FS detector as adversarial if score/® (x) > 1.2128 and is
declared clean otherwise.

For ShufﬂeDetectC'th’t, consistently with the outcomes of Section 9, we set t = 100,
Ry, = 0.51 for all CNNs in the experiments (note that the size s x s of the patches is kept to
56 x 56 for the images considered here).

Table 17 compares the detection rates of ShuffleDetect and FS for the 9480 adversarial
images referred to. For the 2975 adversarial images for the targeted scenario, both detectors
demonstrate high success rates. Even if FS achieves DR over 92%, it is outperformed by
ShuffleDetect, which achieves 100% in all cases. For the 6505 adversarial images for the
untargeted scenario, the success rates of both detectors experience a decline. FS achieves
slightly better results than ShuffleDetect for DeepFool and CW Inf, and significantly better
results for PGD Inf, BIM, PGD, and L2; it is outperformed by ShuffleDetect, slightly for
FGSM, and highly significant for EA. Regarding the overall performance (see the last row
of Table 17), ShuffleDetect achieves a higher success rate than FS on average (both scenarios
and all CNNs considered).

Table 17. Performance comparison of ShuffleDetect and FS regarding detection rates.

Scenario Attacks Detectors Cy C, Cs Cy Cs Ce Cy [ Cy Cio AVG
ShuffleDetect 100 100 100 100 100 100 100 100 100 100 100.0

EA FS  89.0 100.0 90.9 94.0 911 9.6 89.9 91.9 93.8 95.9 92.7

ShuffleDetect 100 100 100 100 100 100 100 100 100 100 100.0

M FS 1000 947 98.2 100.0 97.8 98.2 97.3 98.0 9.6 97.4 97.8

Targeted ShuffleDetect 100 100 100 100 100 100 100 100 100 100 100.0
PGD Inf FS 980 94.7 98.2 100.0 97.8 98.2 97.3 98.0 9.6 97.4 97.6

ShuffleDetect 100 100 100 100 100 100 100 100 100 100 100.0

FGDL2 FS 1000 1000 1000  100.0 97.8 1000 1000 1000 1000  100.0 99.8

ShuffleDetect 885 90.7 93.9 9.9 9.9 95.9 96.9 97.9 93.9 93.9 945

EA FS  53.1 33 455 39.8 40 33.3 33 35.7 475 354 406

ShuffleDetect 80.7 89.0 925 86.2 87.2 85.7 925 85.8 86.5 87.3

Untargeted FesM FS 81.9 86.6 86.4 85 76.7 83.1 775 88 85.4 834
ShuffleDetect  66.6 725 86.4 93.7 86.0 83.6 88.4 92.6 84.2 84.0 83.8

M FS 968 90.1 94.8 96.9 98 90.8 96.8 94.7 94.7 93.6 94.7

ShuffleDetect 66.6 72.5 86.4 93.7 86.0 83.6 88.4 92.6 84.2 84.0 83.8
PGD Inf FS 96.8 90.1 94.8 96.9 98 90.8 96.8 94.7 94.7 93.6 94.7
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Table 17. Cont.
Scenario Attacks C1 C, Cs Cy Cs Ce Cy Cs Cy Cio AVG
ShuffleDetect 68.8 61.5 80.4 91.9 83.3 77.7 86.7 88.6 78.1 73.6 79.1
PGD L2
FS 97.8 90.1 94.8 97 97 90.9 94.9 93.8 95.8 91.6 94.4
ShuffleDetect 79.7 86.3 93.8 93.9 91.8 90.0 93.8 96.9 88.1 89.3 90.4
Untargeted CW Inf
FS 93.6 92.6 929 91.9 92 89 96.9 91.9 95.7 91.5 92.8
ShuffleDetect 94.6 93.8 95.6 96.9 97.8 96.0 97.8 97.9 94.7 93.6 95.9
DeepFool
FS 98.9 96.9 97.8 96.9 95 95 97.9 96.9 99 100 97.4
ShuffleDetect 86.5 87.1 93.2 96.3 93.5 92.2 94.3 96.3 91.7 91.4 92.2
Overall
FS 92.4 88.6 90.4 90.9 89.9 86.7 89.4 88.5 91.1 89.3 89.7

11. Conclusions

In this paper, we presented ShuffleDetect as a new unsupervised method for the
detection of image adversarials against trained CNNs. We provided a complete design
and recommendations for the selection of the values of its parameters. Given a CNN
and an image potentially resized to fit the CNN'’s input size, the steps that essentially
compose this new detection method are fairly simple. During the initiation phase, the
dominant category in which the CNN sorts the input image is required, the image is split
into non-overlapping patches (of fixed sizes, depending on the CNN’s own input size), and
a fixed set of appropriate permutations is selected at random. Then a loop is performed
according to the successive permutations, where the patches are shuffled with the running
permutation, and the dominant category in which the CNN sorts the shuffled image is
compared with the outcome for the unshuffled image, leading to a Boolean value. Finally,
one assesses the proportion of permutations for which the CNN classifies the shuffled
image into a different category than the unshuffled input image. ShuffleDetect declares
the image as adversarial if this proportion exceeds a threshold value Ry; and declares the
image clean otherwise.

Our extensive experiments with 10 diverse and state-of-the-art CNNss, trained on
ImageNet with images usually resized to 224 x 224, with 8 attacks (one "black-box’ and seven
"white-box”), and with 9500 clean and adversarial images for the targeted or untargeted
scenario led us to recommend a size of 56 x 56 for the altogether 16 patches, and the
“democratic” value Ry, = 0.51. Although running ShuffleDetect with 100 permutations is
perfectly feasible and could be considered a safe option, a smaller number of permutations,
varying between 12 and 68 according to the considered CNN, may also lead to a satisfactory
detection rate. Additionally, if the defender has more information about the type of attack
expected, the number of permutations can be fine-tuned accordingly. This said, and since
this type of knowledge occurs rarely, we recommend taking at least 100 permutations.

Apart from the time needed for the creation of a fixed set of permutations, namely
0.064 s to obtain 100 permutations, which can be performed once for all (at least in our
implementation), the intrinsic performance of ShuffleDetect on our computers shows an
inference time latency of ~0.0784 s per image per permutation. The algorithm can be
easily parallelized so that the required time for a complete run of the algorithm can be
significantly less than the ~7.982 s/image when this task is not distributed. Out of this time-
consuming process, the classification process of an image by the CNN is ~98.02%; therefore,
the shuffling process itself requires only ~1.98%. The overhead is very limited since its
main part, the “permanent storage”, is required essentially only for the 100 permutations
(the storage per permutation is a sequence of groups of distinct integers between 1 and
16 in our case), and the dominating category of the unshuffled image. Among the main
indicators of a detector, the most relevant ones are the false positive rate and the detection
rate. With Ry, = 0.51 and 100 permutations, as well as the average overall considered
CNNs and images, ShuffleDetect achieves an average FPR of 32.7%, an average DR of 100%
for the adversarial images obtained by targeted attacks, and 87.79% of those obtained by
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untargeted attacks. Our study also provides the scores of the other relevant indicators, i.e.,
TP, FP, FN, precision, recall, and F1.

While performing a thorough comparison with other detectors requires overcoming
the difficult challenges outlined in Section 3, in order to make sound comparisons under
the same conditions, we performed this task for one detector, namely FS, and showed that,
on average, ShuffleDetect achieves better detection rates than FS.

Independent of the outcome of any comparison process with other detectors, our Shuf-
fleDetect method could be used as a first line of defense before applying more sophisticated,
time-consuming, and overhead-consuming detection methods than ShuffleDetect.

As a potential area for future research, it would be worthwhile to assess the effec-
tiveness of ShuffleDetect using CNNs trained on Cifar10 and MNIST datasets. This could
result in determining the optimal patch size as a ratio to the image size. Additionally, it
would be beneficial to explore the optimal patch size for images containing very small or
very large objects.
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Appendix A
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Figure A1. The 100 ancestor images Ag used in the experiments. .Ag pictured in the gth row and gth
column (1 < p,q < 10) is randomly chosen from the ImageNet validation set of the ancestor category
ca, specified on the left of the gth row.
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Table Al. The original sizes (1 x w) of the 100 ancestor images Af; before resizing with the bilinear
interpolation function.

Ancestor Images .AZ and Their Original Size (h x w)

Cay . P 1 2 3 4 5 6 7 8 9 10
abacus 1 (206,250)  (960,1280)  (262,275)  (598,300)  (377,500)  (501,344)  (375,500)  (448,500)  (500,500) (150, 200)
acorn 2 (374,500)  (500,469)  (375,500)  (500,375)  (500,500)  (500,500)  (375,500)  (374,500)  (461,500)  (333,500)
baseball 3 (398,543)  (240,239)  (180,240)  (333,500)  (262,350) (310,310)  (404,500)  (344,500)  (375,500) (285, 380)
broom 4 (113,160)  (150,150)  (333,500)  (500,333) (497,750)  (336,500)  (188,250)  (375,500)  (334,500) (419, 640)
brown bear 5 (500,333)  (286,490)  (360,480)  (298,298)  (413,550)  (366,500)  (400,400)  (348,500)  (346,500) (640, 480)
canoe 6 (500,332)  (450,600)  (500,375)  (375,500)  (406,613)  (600,400)  (1067,1600)  (333,500)  (1536,2048) (375, 500)
hippopotamus 7 (375,500)  (1200,1600)  (333,500)  (450,291)  (525,525)  (375,500)  (500,457)  (424,475)  (500,449) (339, 500)
llama 8 (500,333)  (618,468)  (500,447)  (253,380)  (500,333)  (333,500)  (375,500)  (375,500)  (290,345)  (375,500)
maraca 9 (375,500)  (375,500)  (470,627)  (151,220) (250,510) (375,500)  (99,104)  (375,500)  (375,500) (500, 375)

—_
(=}

(375,500)  (500,375)  (375,500)  (333,500)  (500,375)  (300,402)  (375,500)  (446,500)  (375,500) (500, 333)

mountain bike

Appendix B

Table A2. For a 224 x 224 image, grid of its 16 patches of size 56 x 56, represented as P; ; (left grid),
and as Py, -, P4 (right grid) as used by the permutations oy.

Left Grid Right Grid
Py Py Py Py by D D3 Py
Pa Py D Py Ds Ps by Dy
P34 Ps» P33 P34 Py Pyg Py Ppp
Py Pys Pys3 Pyy Pi3 Py Py Pig

Table A3. For t up to 100 rounds, the list of random permutations o for 1 < r < 100. Each o7 is
represented as the product of cycles operating on 16 patches of a 224 x 224 image.

t =100

Round r Permutation o, Round r Permutation o,
1 (1,13,4,6)(2,14,10)(3,11,12,5,9)(7,16,15,8) 51 (1,9,10,8,13,6,2,15,5,14,4,7,11)(3,16)
2 (1,8,9,2,6,11,15,12)(3,4,5,10,7)(14,16) 52 (1,11,15,4,10,2,3,5,12,9,13,8,16,7)(6,14)
3 (1,2,10,12)(3,11,16,15)(4,6,13,7,14,9,5) 53 (1,12,3,7,2,5,6,15,16,14,4,10)(8,13)(9,11)
4 (1,12,7,6,9,5,13,16)(2,4,14,10)(3,11,15,8) 54 (1,2,13,12,7)(3,6,4,8)(9,10)(11,15)
5 (3,5,14,16,7,4,12,6,13,11)(8,15,9,10) 55 (1,6,3)(2,12,14,4,15,7)(5,9)(8,13,10,11,16)
6 (1,7,49,2,5)(3,14)(6,16,8,13,10,15,12,11) 56 (1,8,3,4,13,109,16,5,2,7,11,12)(6,15)
7 (1,7,15,5,10,4,2,13,14,12,6,9)(3,11,16,8) 57 (1,5,12,9,15,4,7,11,2,10,6,16,8,3,14)
8 (1,2,5)(3,11,16,10,12,9,7,6,15,4,13,8) 58 (1,12)(2,6,13,10,7,8)(3,15,5,16,11,9)(4,14)
9 (1,7,15,8,13,5,9,11)(2,12)(3,16,14,4)(6,10) 59 (2,11,13,6)(3,12,10,7,16,4)(5,8)(9,15,14)
10 (1,16,8,15,4,5,6)(3,14,13)(7,12)(9,10,11) 60 (1,13,15,8,4,14,5,9,12,7,10,11,16,3,6,2)
11 (1,8,10,13,9,6,2)(3,12,5,15,14,4,7)(11,16) 61 (1,2,14,6,10,7)(4,5,12,9,8,16,11)
12 (1,4,14,16,5,6,11,13,15,9)(2,12,10,3,8) 62 (1,11)(2,7,4,5,10,12,14,9)(3,6,8,13,15,16)
13 (1,5,14,13,10)(2,6,7,4,8)(3,15,11,9,16,12) 63 (1,9,14,15,11,5,8,10,2,4,3,12,16,13,6,7)
14 (1,16,9,4,3,2,5,7,6,11,12,10,8,15,14,13) 64 (2,11,12,10,5)(3,16,14,13,4,8,6,15)(7,9)
15 (1,16,5,13,8,6)(2,15,14,10,11,12,9,3,7,4) 65 (1,5,12,3,2,6,11,13,16,14)(7,10,15)
16 (1,14,12,2,13,7,10,8,3,15,11,6,16,4) 66 (1,15,7,11,12,2)(3,10,4,14,5,8,6,16,9,13)
17 (1,2,5,13)(4,11,8,10,16,14,15)(6,7)(9,12) 67 (1,4)(2,6,15,11,12,16)(3,5,14)(7,8)(9,10)
18 (1,12,13,16,3,8,10,2,11,14,7,4,15,6) 68 (1,13,6,14,2,10,5,15,11,9,4,12,8,3,7,16)
19 (1,8,4,16,3,13,6,7,15)(2,12)(5,14,11)(9,10) 69 (1,9,15,6,8,10,11,2,12,16,4,13,14,7)(3,5)
20 (1,14,15,5)(2,4,12,13)(3,8,16,11)(6,7)(9,10) 70 (1,2,6,8,3)(4,12)(5,7,13,10,15)(9,11,14,16)
21 (1,2,6)(3,8,14,10,13,12)(5,9,16,15) 71 (2,10,16,6,13,3,14,12)(4,5,8,15,7,9,11)




Appl. Sci. 2023, 13, 4068

30 of 44

Table A3. Cont.

t =100

Round r Permutation o, Round r Permutation o
22 (1,3,11,14,2,10)(4,12,6,7,15,5,16,9)(8,13) 72 (1,8,13,7)(2,10,15,6,14,9,3,16,5,11)
23 (1,411,9,14,7,2,5,3,8,6)(10,15) 73 (1,5,16,12,6,2,8,11,4,10,9,13,14)(7,15)
24 (1,12,8,7)(2,4,5,14,6,9,3,13,16)(10,15,11) 74 (1,6,16,13,11,5,14,4,3,9,15,2,8,10,7)
25 (1,14,6,4,10,16,5,13,12,2,8,15,9,3,7,11) 75 (1,12,9,6,154,5,14,2,3)(7,11,16)(8,13)
26 (1,15,5)(2,13,4,9,16,8,11,12,3,6,10,14,7) 76 (1,11,15,16,9)(2,12,5,3,8,13,6)(7,10,14)
27 (1,10,8,12,14,7,2)(3,13,11,5,6)(4,15) 77 (2,8,15,10,16,9,12,7,4)(3,5,11,14)(6,13)
28 (1,8,11,7,16,5,6,12,4,14)(2,15,3,10,9) 78 (1,15,11,8,16,5,2,12,3,13,6,10,14)(4,9)
29 (1,5,3,12,15,11)(2,14,10,6,8,9,7,13,16) 79 (1,16,13,5,3,10,6,4,15,2,11)(7,14,9)
30 (1,10,8,15)(3,9,7,4,12)(5,11,6) 80 (2,10,13,11,15,6,5,8,3,16,4,7,9,14)
31 (1,3,10,6,9,7,16,2,8)(4,5,14)(12,13) 81 (1,5,15,2,16,10,9,14,11,4,12,6,3)
32 (1,2,11,16,10,15)(3,14,6,5,9)(4,7,13,12) 82 (1,13,5,10,2,15,11,4,16,7,12,9,14,3,8,6)
33 (1,16,14,13,10,7,12,3,6,11,9,5)(2,4) 83 (1,14,89,15,3,5,2,7,10,4,12,6,11,16)
34 (1,6,14)(2,10,3,15,9,12,11,4,16,13,8,7) 84 (1,15,8,9,4,3,16,6,7,14,5,12,2,10,13,11)
35 (1,2)(3,15,16,13,12,4,5,6,7,9,10,11)(8,14) 85 (1,9,3,13)(4,11,15,12)(5,16,6,10,7,8,14)
36 (3,12,8,6,7,10,16,5,15,13)(4,9) 86 (1,9,15,8,13,14,6,11,7)(2,10,12,3,16,5,4)
37 (1,3,104,15,8,16,12,13,7,14,9,2) 87 (1,3,9,7,6/4,5)(10,12,14,16,11)(13,15)
38 (14,16)(2,9,5,13,10,14,3,11,8,7)(12,15) 88 (1,9,8,12,14,5,10,6,15,4,3)(2,11,16,13)
39 (14,5,2,11,10,12,9,14,15,3,16,13)(7,8) 89 (1,13,2,9,16)(3,14,11,8,7,15,6)(5,12,10)
40 (1,9,8,15,5,10,11,12,4,14,2,3,13,16,6,7) 90 (1,8,16,2,6,3,10,14,7,13,4,9,12,5,11)
41 (1,89,11,16,4)(2,13,14,15,7,12)(3,10,5) 91 (1,5,16,6,10,3,11,15,9,12,14,8,7,2,4)
42 (1,9,4,15,14,5)(2,11,12,3,6,10,13)(7,8,16) 92 (1,10,16,11,4,8,5,12,13,3,14,9)(2,7,15)
43 (2,8,149,7,16,12,10,13,6,15,3,11,4,5) 93 (14,2,13,6,9,14,3,10,8,16,11,15,7)
44 (1,11,12,14,2,13,8,9,3,10,6)(5,15,16) 94 (1,16,15,3,9,2,6,7,11,4)(5,8,14,12)(10,13)
45 (1,3,16,4)(2,5,6,15,7,11)(8,9,10)(13,14) 95 (3,10,13,15,12,9,14,16,7,5,4,6,8,11)
46 (1,6,12,10,8,15,5)(2,4,16,3,13)(7,14,9,11) 96 (1,6,15,4,5,3,16,13,9,10,12,2,8,7)
47 (1,7,14,3,4,16,8,13)(2,9)(5,12,6,11)(10,15) 97 (1,14,2,7,3,13,8,16,5,11,15,4,6,10,9,12)
48 (1,8,14,6,11,13,3,10,12,16,2,15,5,7,4) 98 (1,13,3,16)(2,11,6,14,5)(4,9,10,7,12,8,15)
49 (1,8,12,10,11,6,9,15)(3,13,4,7)(5,16,14) 99 (1,6,13,5,12,15,2)(3,14,8)(7,11)(9,16,10)
50 (1,5,16,2,11,4,13,15,12,3,8,7,14,6) 100 (1,12,11,8,2,3)(4,14,16,7,10,6)(5,13,15)

Table A4. The duration, in s, of each of the main steps of Algorithm 1 for each CNN.

Per Permutation

Shuffling Predicting
(¢ Steps: 8-12 Shuff% Pred%

Step: 8 Steps: 9-10
G, 0.0955 0.0014 0.0941 1.483 98.511
G 0.1176 0.0014 0.1162 1.228 98.767
Cs 0.0578 0.0016 0.0563 2.727 97.264
Cy 0.0933 0.0016 0.0917 1.664 98.330
Cs 0.1262 0.0016 0.1246 1.233 98.763
Cs 0.0660 0.0016 0.0644 2.449 97.542
Cy 0.0844 0.0017 0.0828 1.975 98.018
Cs 0.1017 0.0017 0.1000 1.678 98.316
Cy 0.0213 0.0015 0.0198 6.930 93.047
Cio 0.0196 0.0015 0.0182 7.563 92.411
AVG 0.0784 0.0015 0.077 1.978 98.015
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C2-Ancestors: A clean image is declared adversarial by 40.2% of the 100
permutations in average.
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Figure A2. Shuffling test results of 100 clean (ancestor) images on C = C for 1 < k < 10 over 100

permutations.
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Figure A3. ShuffleDetect results for adversarial images generated by the EA-targeted attack on C = C

for 1 < k <10 over 100 permutations.
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Figure A4. ShuffleDetect results for adversarial images generated by the BIM-targeted attack on

C =C for 1 < k <10 over 100 permutations.
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Figure A5. ShuffleDetect results for adversarial images generated by the PGD Inf-targeted attack on

C =C for 1 <k <10 over 100 permutations.
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Figure A6. ShuffleDetect results for adversarial images generated by the PGD L2-targeted attack on

C =C for 1 < k <10 over 100 permutations.
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Figure A7. ShuffleDetect results for adversarial images generated by the EA-untargeted attack on
C =C for 1 < k <10 over 100 permutations.
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Figure A8. ShuffleDetect results for adversarial images generated by the FGSM-untargeted attack

on C = C for 2 < k <10 over 100 permutations.
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Figure A9. ShuffleDetect results for adversarial images generated by the BIM-untargeted attack on

C =C for 1 < k <10 over 100 permutations.
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Figure A10. ShuffleDetect results for adversarial images generated by the PGD Inf-untargeted attack
on C =C for 1 < k <10 over 100 permutations.
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Figure A11. ShuffleDetect results for adversarial images generated by the PGD L2-untargeted attack
on C =C for 1 < k <10 over 100 permutations.



Appl. Sci. 2023, 13, 4068

41 of 44

C1-Adversarials: an adversarial image is declared
adversarial by 79.4 % of the 100 permutations in

average
60
49
., 50
s
S a0
2
£30
[=)
5 20 .
*
10 6 4
22237123121 111121
. — =il
PSRN o nNonoRonNonoRg RS
NSNRRBRSYRINBERREBIRS
S oMo ouWouWouwa o wo wo &
SodddlaoITLnlerEERnsy

# of Permutations

Axis Title

C2-Adversarials: an adversarial image is declared
adversarial by 82.0 % of the 100 permutations in
average

49

6
1 32122211
. 00000 -—_———__--.-

# of Permutations

C3-Adversarials: an adversarial image is declared
adversarial by 90.4 % of the 100 permutations in
average

# of Permutations

C4-Adversarials: an adversarial image is declared
adversarial by 91.5% of the 100 permutations in
average

# of Permutations

C5-Adversarials: an adversarial image is declared
adversarial by 88.4 % of the 100 permutations in

C6-Adversarials: an adversarial image is declared
adversarial by 86.5 % of the 100 permutations in

# of Permutations

average average
70 61 70 60
60 60
« «
50 )
S 40 S 40
© °
830 830
5 20 5 20
£ £ 7
10 10 346
111 1 211 2 1 2
o o 0z ° lmm -
FeRonNonNonNonNonNonLonNona
C;HHNNMMQ‘Q‘V!V\LD\DV\V\MDOO\O\S
S oo uWouWouWouWouow oo
TEeSSd0mMIIT L NS OoRERRRS Y
# of Permutations # of Permutations
C7-Adversarials: an adversarial image is declared C8-Adversarials: an adversarial image is declared
adversarial by 90.8 % of the 100 permutations in adversarial by 91.2 % of the 100 permutations in
average average
80 71 70 62
70 60
w w
5% S 50
550 540
£ 40 @
&3 830
2 20 S0 12
0 1900020010231 90223144 0 1 9000100010223 1243
0o — — — — ——— [ — 0o — — — — — I |
S hmonNonmononNononhomano o hmononmononononhomano
SAARARAMIIANSBREIBE &8 SRARAAMIIANSBREIBE &8
S oo oyouwouWwd oo L S oo ouwoyouwouWdouo L
DS A B S A S S s N SRR S S - TEdSd 0 aITIOLBLOLCER RSy
# of Permutations # of Permutations
C9-Adversarials: an adversarial image is declared C10-Adversarials: an adversarial image is declared
adversarial by 83.9 % of the 100 permutations in adversarial by 87.8 % of the 100 permutations in
average average
55
60 5 60
., 50 ., 50
2 2
240 240
8 8
£30 £30
o o
5 20 5 20
T3 211311 4, 5 6 I 1 233 12211877
0 N e —__0-—--. 0 2000200 o 0_——__-..
FEe R o nNomMonNonNonNonhonona FehonNoNonNonNonNobhonona
SRARAAmMIIANISRRIRE R S SRYRARAITINIBREILIAS
S oo uWouWo ooy Sy oS S o uWouWouWo oo ow oSy o
TosdfdonIsIIInunLeLepibsxon TofdddonIInnLeLpnsxs oy

# of Permutations

Figure A12. ShuffleDetect results for adversarial images generated by the CW Inf-untargeted attack

on C =C for 1 < k <10 over 100 permutations.
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Figure A13. ShuffleDetect results for adversarial images generated by the Deep Fool-untargeted
attack on C = C for 1 < k < 10 over 100 permutations.
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