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Abstract: Recently, convolutional neural networks (CNNs) have become the main drivers in many
image recognition applications. However, they are vulnerable to adversarial attacks, which can lead
to disastrous consequences. This paper introduces ShuffleDetect as a new and efficient unsupervised
method for the detection of adversarial images against trained convolutional neural networks. Its
main feature is to split an input image into non-overlapping patches, then swap the patches according
to permutations, and count the number of permutations for which the CNN classifies the unshuffled
input image and the shuffled image into different categories. The image is declared adversarial
if and only if the proportion of such permutations exceeds a certain threshold value. A series of
8 targeted or untargeted attacks was applied on 10 diverse and state-of-the-art ImageNet-trained
CNNs, leading to 9500 relevant clean and adversarial images. We assessed the performance of Shuf-
fleDetect intrinsically and compared it with another detector. Experiments show that ShuffleDetect is
an easy-to-implement, very fast, and near memory-free detector that achieves high detection rates
and low false positive rates.

Keywords: adversarial attacks; detection; evolutionary algorithms; convolutional neural networks;
security

1. Introduction

Convolutional neural networks (CNNs) trained on large sets of examples are domi-
nant tools for object recognition [1]. Although CNNs are capable of accurately classifying
new images into object categories, they can nevertheless be deceived by adversarial at-
tacks [2], whose strategies generally consist of altering inputs with perturbations that lead
to classification errors.

These attacks can be classified in terms of the amount of information that the attackers
have at their disposal. Gradient-based attacks (e.g., [3–6]) require information about the
CNN’s architecture and weights. Transfer-based attacks (e.g., [7–9]) require less insider
knowledge about the CNN but query the CNN for a set of inputs, and the collected
information is used to create a substitute model, similar to the targeted CNN. This substitute
model is attacked by gradient-based methods, leading to adversarial images that also fool
the target CNN. Score-based attacks (see [10]) are even less demanding. They do not have
access to the training data, model architecture, or CNN parameters. They only make use of
the CNN’s predicted output probabilities for all or a subset of object classes.

Ideally, security issues posed by adversarial attacks are prevented by methods that
detect malicious input images, potentially exclude them from further processing by the
CNN, and alert the user. Such detectors may be tailor-made for a specific type of attack
or applied efficiently to a large variety of attacks. Their performances are encompassed
by a series of indicators that assess how far their outputs can be trusted, and the memory
overhead, time, or complexity required to finish their tasks.
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These detectors can be classified as supervised and unsupervised. On the one hand,
supervised techniques have knowledge of adversarial images, and may attempt to rein-
force CNNs by adding adversarial images to the training set [4]. These techniques are
particularly effective when attacks are known in advance. On the other hand, unsupervised
techniques [11–14] operate without prior access to adversarial images. Instead, they apply
transformations to the input image and analyze the consistency of predictions between the
input image and its transformed versions. These techniques operate on the premise that
CNNs maintain consistent predictions for clean images.

This paper introduces ShuffleDetect as a new unsupervised method for the detection
of adversarial images; it is simple to implement and works efficiently against adversarial im-
ages created by a series of 8 different attacks applied to 10 different ImageNet-trained CNNs.

To summarize, given image I, ShuffleDetect assesses whether I (resized to a square
N ×N image, if necessary, to fit the CNN’s input size) is adversarial or not for a given CNN
C. Firstly, the algorithm extracts the dominating category DomC(I) in which C classifies
I. Secondly, the algorithm essentially “splits” I into non-overlapping patches of an equal
size s × s. Thirdly, for each permutation σ of a set of t permutations of these patches, the
algorithm creates a shuffled image sh(I, σ), and requires from C the dominating category
DomC(sh(I, σ)) in which C classifies the shuffled image. Lastly, the algorithm compares
the outcome with DomC(I). The detector classifies an input image I as “adversarial” if the
proportion of permutations σ among t permutations is such that the dominant categories
of I and shσ(I, s) differ by more than a certain threshold value Rth.

The remainder of this paper is organized as follows. Section 2 provides an overview of
how CNNs perform image classification, defines the attack scenarios and adversarial image
requisites, and fixes some concepts and notations used throughout the article. Section 3
is devoted to related works, provides the topography of detection methods, and lists the
main evaluation criteria used to assess their performances. The design of the ShuffleDetect
method is detailed in Section 4, where the pseudo-code of the ShuffleDetectC,Rth ,t algorithm
is also given explicitly.

To evaluate the reliability of our ShuffleDetect method, we tested it against a large set
of adversarial attacks deceiving a significant series of CNNs. Section 5 lists the 10 selected
CNNs trained on ImageNet, as well as the reasons for their choices, the 100 clean ancestor
images, and the specific scenarios used in our experiments. Section 6 lists the 8 attacks
that are considered in this paper, seven of which are “white-box”, while one is “black-box”.
Whenever applicable, we performed both the targeted and untargeted versions of the at-
tacks. A total of 15,000 attack runs led to 9580 relevant adversarial images: 2975 adversarial
images for the targeted scenario and 6505 adversarial images for the untargeted scenario,
as described in Section 7.

Section 8 specifies the parameters used by our detector for images handled by CNNs
trained on ImageNet. This section essentially amounts to measuring the outcomes of
ShuffleDetectCσ individually for each permutation σ, each CNN C, each clean image, and
each image adversarial for C, obtained by each attack for each scenario. The results lead
to the selection of candidates for the threshold value Rth. The performance of the detector
ShuffleDetectC,Rth ,t is then assessed in Section 9 against the indicators given in Section 3 for
the candidate values of Rth. Beyond this intrinsic performance assessment, ShuffleDetect is
compared with the well-known detector Feature Squeezing in Section 10.

Section 11 summarizes our findings, specifies our recommendations for the values of
the parameters relevant to ShuffleDetect, and indicates some directions for future work.

Additional figures, tables, and relevant data are provided in the Appendix, includ-
ing the original clean images, the permutations used, and individual performances of
ShuffleDetect per CNN per attack per scenario.

Algorithms and experiments were implemented using Python 3.8 [15] with NumPy
1.19 [16] and PyTorch 1.9 [17] (including in particular the Adversarial Robustness Toolbox
Python library used in Section 6). In addition, we used Maple 2022 to create the permuta-
tions used in Sections 8 and 9. The main computations were performed on nodes using



Appl. Sci. 2023, 13, 4068 3 of 44

Nvidia Tesla V100 GPUs, which are part of the IRIS HPC Cluster at the University of
Luxembourg [18].

2. CNNs and Adversarial Images

A CNN, which is expected to perform image classification, is first trained on a large
dataset S of images. Training consists of sorting the given images into a finite set of
predefined categories. The categories c1, . . . , c`, their number `, and the images used in the
process are associated with S, and are common to any CNN trained on S. The training
phase of a CNN consists of two phases. Firstly, the CNN is given the training images, and,
for each training image, a vector of length `, where each real-value component assesses
the probability that the training image represents an object in the corresponding category.
Secondly, CNN is challenged against a validation set of images that assesses its ability to
sort images accurately. Once trained, a CNN can be exposed to an arbitrary image, and
perform its classification according to ` categories.

An important, albeit technical, issue involves the sizes of the images. While the sizes
of the images of S are arbitrary and may vary from one image to another, a CNN handles
images of a fixed input size. Therefore, a resizing process is usually necessary to adapt a
given image to the input size of the CNN before classification. To simplify the notation, we
consider that this resizing process has been performed, and the input size handled by the
CNN is square (Section 5 specifies which resizing function is used in the experiments). We
also often identify image I with its resized version, which fits the input size of the CNN.

Image classification and label values. Concretely, given an input image I , the trained
CNN produces a classification output vector

oI = (oI[1], . . . , oI[`]),

where 0 ≤ oI[i] ≤ 1 for 1 ≤ i ≤ `, and ∑`
i=1 oI[i] = 1. Each component oI[i] defines the ci-

label value measuring the probability that image I belongs to the category ci. Consequently,
the CNN classifies image I as belonging to the category ck if k = arg max1≤i≤`(oI[i]). One
denotes (ck, oI[k]) this outcome, and DomC(I) = ck the dominating category in which C
classifies I . The higher the label value oI[k], the higher the confidence that I represents an
object of the category ck.

Adversarial image requisites. Assume that we are given C a trained CNN, ca a
category among the ` possible categories, and A an image classified by C as belonging to ca,
with τa its ca-label value.

For any attack scenario that we consider in this paper (namely the target or the untar-
geted scenario, as made precise below), we assume that the attack aims at creating a new
adversarial image D(A), which remains so close to the ancestor’s clean image A that a human
would not be able to distinguish between D(A) and A. The quantity ε(A,D(A)), which
controls (or restricts) the global maximum amplitude allowed for the value modification of
each individual pixel of A to obtain D(A), numerically assesses this human perception.

In the untargeted scenario, C is only required to classify the adversarial image D(A) as
any class c ≠ ca. In the target scenario, one selects, a priori, a target category ct ≠ ca. One would
expect the adversarial imageD(A) to be classified by C as belonging to the target category ct,
without any requirements on the ct-label value beyond it being strictly dominant among all
label values (this coincides with the concept of a good enough adversarial image introduced
in [19]; see [19] for variants of the target scenario involving τ-strong adversarial images).

Throughout the remainder of this article, any attack leading to the creation of adver-
sarial images will be referred to as atk.

3. Related Works and Evaluation Criteria

As pointed out in the Introduction (Section 1), addressing the security issues posed by
adversarial attacks often requires some warning that an attack is indeed taking place. The
role of detectors is key in this process because their principal role is to decide whether an
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image is clean or not. Such detectors can be categorized into two groups: supervised and
unsupervised detectors (see [20]).

Supervised detectors are designed and trained with images known to be adversarial
and obtained from one or more attacks. In contrast, unsupervised detectors require no prior
access to adversarial images and are, therefore, not limited to any particular type of attack.
This suggests that unsupervised methods, which are more resource-efficient because they
do not require any training for new attacks, may be more robust against new adversarial
attacks than supervised attacks.

Numerous detection methods from both categories have been introduced (some of
which aim at detecting adversarial images for ImageNet-trained CNNs). One can mention
the following four detection methods referred to in [20]: the supervised LID [21], the
unsupervised NIC [22], ANR [14], and FS [13].

The supervised Local intrinsic dimensionality (LID) method extracts intermediate
layer activations from the CNN when fed with either clean or adversarial inputs. At each
layer, the activations stemming from the image (clean or adversarial) and the activations
stemming from a limited number of clean neighbors of the image are used to compute
the local intrinsic dimensionality. The authors of [21] found that adversarial images tend
to have higher local intrinsic dimensionality values. This property is exploited using the
extracted values as features to train a binary classifier that declares an image as clean
or adversarial.

The network invariant approach (NIC) is an unsupervised method that declares an
image to be adversarial if it is out-of-distribution, and clean if it is in distribution. This
notion refers to the distribution observed for the ImageNet training set, which consists
of only clean images, for each CNN layer activation. For a given image, one obtains a
collection of layer-level declarations, indicating whether the image is in distribution or
not for that particular layer. The detector’s final declaration is an aggregation of all the
layer-level declarations.

The adaptive noise reduction (ANR) algorithm is an unsupervised method that uses
scalar quantization and smoothing spatial image filters to squeeze input images. The
detector compares the categories predicted by the CNN for an image and for its squeezed
version. If these categories are not identical, the image is considered to be adversarial.

The feature squeezing (FS) algorithm is an unsupervised method that applies depth
reduction to an image color bit, a median image filter for local smoothing, and a variant
of the Gaussian kernel for non-local spatial smoothing, leading to a squeezed image. The
detector compares the output vectors predicted by the CNN for squeezed and unsqueezed
images. The L1 distance between the two vectors is measured, and if it exceeds a certain
threshold, the image is considered adversarial.

Remark. Ideally, we compare ShuffleDetect with well-known detectors, among which
NIC, LID, ANR, and FS, are introduced above. However, our attempt to do so led us to face
several highly challenging issues, among which the following: The codes of most of these
detectors are not available, the claimed performances are on CNNs different from ours
(Inception V3 trained on ImageNet for instance), or on CNNs trained on different datasets
than ImageNet (such as CIFAR10 or MNIST for instance, which also implies that these
CNNs use images of smaller sizes than ours), the used attacks are not systematically and
clearly documented, the definitions of the used performance indicators vary from one paper
to another. A thorough comparison would require implementing all relevant alternative
detectors essentially from scratch, and challenging them under the same conditions as
ShuffleDetect. We do not undertake this complete task here and keep it for future work.
Nevertheless, we provide in Section 10 a limited comparison between ShuffleDetect and FS.

Evaluation criteria. In the present paper, the performance of the detector is evaluated
with the following indicators [20]:

• Detection rate (DR) represents the percentage of adversarial images that are correctly
identified as such by the detector.
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• False positive rate (FPR) represents the percentage of clean ancestor images that are
identified as adversarial by the detector.

• Complexity refers to the time required to train a supervised detector.
• Overhead refers to the overall memory and computation resources necessary to use

the detector (supervised or not). It depends on the number of parameters and size of
the architecture of the detector, when applicable.

• Inference time latency is the amount of time required by the detector to run on an
image. If the method is supervised, the inference time latency does not take into
account the time needed to train the detector (this part is already taken into account in
the Complexity measurements).

• Precision, Recall, and F1 scores used to quantify the detection performance are defined
by the following formulae:

Precision = TP
TP+FP

(1)

Recall = TP
TP+FN

(2)

F1 = 2× Recall×Precision
Recall + Precision

(3)

where TP (true positive) is the number of correctly detected adversarial images, FN
(false negative) is the number of adversarial images that escaped the detector, and
FP (false positive) is the number of clean images declared adversarial by the detector.
These formulae are pertinent whenever the number of clean images is equal to the
number of adversarial images created by a given attack for a given CNN. This aspect
is taken into account in Section 9.

4. ShuffleDetect

The general goal of the shuffling process is to interchange different parts of an image.
We noticed in [23] that if one shuffles a clean image, CNNs usually classify the shuffled
image into the same category as the unshuffled clean image. We also noticed that the situa-
tion differs from an adversarial image because CNNs usually tend to classify the shuffled
adversarial image that is no longer in the same category as the unshuffled adversarial
image, at least for those created by the two attacks of [23] (which are considered again in
Section 6).

These findings, valid for the two attacks, led to the detection method exposed below,
which is based on the assumption that shuffling affects the adversarial noise more than it
affects the image’s original components, whichever the attack.

Shuffling an image. One is given image I of fixed (square) size n × n fitting the
CNN’s input size, and an integer s, such that patches of size s × s create a partition in
the mathematical meaning of the term, or a grid in the more visual meaning of the term,
of I. This latter condition requires that s divides n since the number of patches is the

integer Ns = ( n
s )

2
. It is convenient in practice to label the patch Pi,j, positioned in the ith

column and jth row of the grid, as Pk, where k = n
s (i − 1) + j for 1 ≤ i, j ≤ n

s (see Table A2 in
Appendix B for an example, which is used in our experiments actually).

The set of possible scrambles of an image of size n × n is essentially parametrized by
the symmetric group SNs of permutations of Ns letters since SNs operate on the set of Ns
patches. Indeed, a permutation σ ∈ SNs is represented as a finite product of cycles, each
of the form (k1, k2, . . . , kM), these cycles having two-by-two disjoint supports. Each cycle
symbolizes that the M patches Pk1

, Pk2 , . . . , PkM , associated to k1, k2, . . . , kM, respectively, are
rotated in a circular way: Pk1

takes the position of Pk2 , and so on until PkM takes the position
of Pk1

.
The group SNs is of order Ns!, and is non-trivial provided s is a strict divisor of n,

which we assume from now on.
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Given σ ∈ SNs , one denotes by shσ(I, s) the image obtained from I by swapping its
patches according to σ. Both the unshuffled image I and the shuffled image shσ(I, s) are
given to the CNN for classification. Figure 1 illustrates the process with the partition of an
image into 4 patches P1, P2, P3, P4: The permutation σ ∈S4, selected among the altogether
4! = 24 elements of S4, is defined as the product of two cycles of length 2, which actually
amounts to interchanging the patches on the diagonals.

Figure 1. A 224× 224 image I is divided into 4 patches of size 112× 112 (top picture). The patches are
shuffled around according to the permutation σ = (1, 4)(2, 3) ∈ S4, leading to shσ(I, 112) (bottom
picture). Both I and shσ(I, 112) are sent to the CNN to extract the output vector.

ShuffleDetect. To some extent, the global design of the algorithm ShuffleDetect
mimics the design of classical probabilistic primality tests (such as those of Fermat, Solovay–
Strassen, or Miller–Rabin, see [24], chapter 7 for instance), where the validity of an equation,
which should be satisfied if a given integer p is a prime, is checked for a series of rounds
until either one has gained confidence (parameterized by the number of rounds) that p is
probably a prime or the equation is not satisfied for one of the rounds, in which case one
knows that p is not a prime. In our context, the equation, which assesses the detection of
whether image I is adversarial or not, consists of comparing the dominating categories,
given by a given CNN C, before and after shuffling, for many permutations.

With consistent notations, one round of this detection method for image I is as follows.
One picks at random a permutation σ ∈ SNs , with σ ≠ id. Unless all of the patches of
I addressed by σ are identical (what happens if all Ns patches of I are identical, which
occurs, for instance, a fortiori if I is absolutely monochrome throughout all its pixels), σ ≠ id
ensures that I ≠ shσ(I, s). The output of ShuffleDetect for I for the specific permutation σ,
denoted by ShuffleDetectCσ(I), is:

1 if DomC(I) ≠ DomC(shσ(I, s)),

0 if DomC(I) = DomC(shσ(I, s)).
(4)

The image I is said σ-adversarial if ShuffleDetectCσ(I) = 1, and σ-clean if ShuffleDetectCσ(I) = 0.
For the full ShuffleDetect algorithm, written as ShuffleDetectC,Rth ,t(I) for the consid-

ered CNN C and image I, one chooses a fixed number t ∈ [1, Ns!] of rounds. For obvious
practical reasons, t should remain relatively small, in particular far smaller than Ns!. Then
one selects at random t two-by-two distinct permutations σ1, . . . , σt ∈SNs , with σr ≠ id for all
1 ≤ r ≤ t. One performs the successive t rounds ShuffleDetectCσ1

(I), . . . , ShuffleDetectCσt
(I).

The threshold ratio Rth is fixed as a percentage at will. For any number t of per-
mutations, the threshold ratio defines the integer sth = ⌊tRth⌋, which is the number of
permutations, such that Rth ≃ sth

t .
The algorithm ShuffleDetectC,Rth ,t declares image I:

• as “adversarial” for C if the output of ShuffleDetectCσ(I) is σ-adversarial for more than
sth of the t permutations σ1, . . . , σt,

• and as “clean” otherwise.

In more algorithmic terms, ShuffleDetectC,Rth ,t on image I works as described in the
pseudo-code Algorithm 1. The user decides on the CNN C, the degree of trust Rth, and
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the number of permutations t that index the rounds of the loop composing Steps (7) to
(13). Once these parameters are chosen, Steps (1), (2), (3) are essentially setups, defined
by the choices made for the parameters C, Rth, t, while Steps (4), (5), (6) are essentially
an initializing phase, depending only on I and C. The choice of Rth clearly determines
the values of the indicators assessing the performance of the ShuffleDetect method (see
Section 8 for a discussion on this issue and a recommended value).

Algorithm 1 ShuffleDetectC,Rth ,t(I) pseudo-code

1: Compute and store t permutations σ1, . . . , σt
2: Select the size s for the patches
3: Compute the integer sth = ⌊tRth⌋
4: From C, obtain the classification output vector oI
5: Extract DomC(I)
6: Set N = 0
7: For i from 1 to t run ShuffleDetectCσi(I) as follows:
8: Create shσ(I, s).
9: From C, obtain the classification output vector oshσ(I,s)

10: Extract DomC(shσ(I, s)).
11: Compare DomC(I) and DomC(shσ(I, s)).
12: Output 0 if they match, and 1 if they do not. In this latter case, N ∶= N + 1.
13: end
14: Output “adversarial” if N ≥ sth, and “clean” otherwise.

Remarks. (1) Note that the process of comparing dominant categories does not require
a precise assessment of their actual label values. Even in the case where an image is
considered σ-clean for a given permutation σ, it is likely that, although the same category
dominates both in the unshuffled and shuffled versions of the image, its label values differ
strongly between both images.

(2) Although there is some flexibility a priori in setting the value of parameter s at will,
there are choices that turn out to be more appropriate for a given CNN’s input size (see
Section 8 for the choice of s and its rationals for the experiments performed in this paper).

(3) When assessing many images of the same size, even if one fixes the number (t)
of rounds once and for all, which is convenient in practice, there is still some flexibility
in when to select the permutations. One option is to “reset” the random choice of t
permutations for each image to be tested. Another option is to proceed to the choice of
the permutations at the same time as one chooses the value t, so that both t and the set
of t random permutations σ1, . . . , σt are decided once for all images to test. There are pros
and cons for both options, the former being (slightly) more time-consuming and (slightly)
more memory-consuming but less biased, the latter saving time, allowing for an easier
comparison and reproduction of the experiments, but providing a possible security leak
because an attacker may ultimately guess what the t-selected permutations are and adapt
to them accordingly. See Section 8 for the choices made in our experiments.

(4) Although there are theoretical measures and bounds of the proportion of com-
posite numbers declared probably primes after t rounds of a probabilistic test, there is
no such thing regarding the proportion of adversarial images that are declared clean af-
ter t rounds of ShuffleDetect. Therefore, for the time being, our choice of parameters is
purely experimental.

(5) One can generalize the ShuffleDetect method thanks to the group of symmetries
that preserve the square, namely the (non-abelian) dihedral group D8 of order 8. In-
deed, with consistent notations, and since each patch is a square, one could add to the
action of a cycle (k1, k2, . . . , kM) of a permutation a randomly chosen sequence of elements
γk1

, γk2 , . . . , γkM ∈ D8, which will act on the respective corresponding patches as well. We
do not further explore this direction here, and stick to the exposed design of ShuffleDetect,
which actually amounts to taking the identity for all symmetries γkj

∈ D8.
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5. The CNNs, the Scenarios, the Ancestor Images

The selection of CNNs used in our experiments followed three criteria involving
practicality, stability, and comparability. First, we required the availability of the pre-
trained versions of the CNNs in the PyTorch [17] library. Moreover, we required the CNNs
to have stable architecture. Finally, to allow comparisons, despite their diversity in terms
of architecture (number of layers, number of parameters, etc.), we required all CNNs to
have the same image input size, and for this input size to be square (note that this later
requirement is fulfilled by most CNNs in general).

This led us to select the following 10 well-known CNNs, trained on ImageNet [25], and
with an input size of 224 × 224, namely C1 = VGG16 [26], C2 = VGG19 [26],
C3 = ResNet50 [27], C4 = ResNet101 [27] and C5 = ResNet152 [27], C6 = DenseNet121 [28],
C7 = DenseNet169 [28], C8 = DenseNet201 [28], C9 = MobileNet [29], and C10 = MNAS-
Net [30].

Then, from the 1000 categories of ImageNet, we picked at random 10 ancestor classes
and 10 corresponding target classes, as shown in Table 1.

Table 1. For 1 ≤ p ≤ 10, the second column lists the ancestor category cap and its ordinal 1 ≤ ap ≤ 1000
among the categories of ImageNet. Mutatis mutandis in the third column with the target category ctp

and ordinal tp.

p (cap , ap) (ctp , tp)

1 (abacus, 398) (bannister, 421)

2 (acorn, 988) (rhinoceros beetle, 306)

3 (baseball, 429) (ladle, 618)

4 (broom, 462) (dingo, 273)

5 (brown bear, 294) (pirate, 724)

6 (canoe, 472) (saluki, 176)

7 (hippopotamus, 344) (trifle, 927)

8 (llama, 355) (agama, 42)

9 (maraca, 641) (conch, 112)

10 (mountain bike, 671) (strainer, 828)

For each of the 10 ancestor classes (1 ≤ p ≤ 10), we randomly selected 10 (1 ≤ q ≤ 10)
ancestor images Ap

q from the ImageNet validation set, classified as belonging to cap by the
10 CNNs. Whenever necessary, these ancestor images were resized to the CNNs common
input size 224 × 224, thanks to the bilinear interpolation function [31]. Figure A1 and
Table A1 in Appendix A present the 100 ancestor images Ap

q and their original sizes.
Starting with these 100 ancestor images, for each of the 10 CNNs listed above, the

attacks, described in Section 6, were aimed at creating adversarial images either for the
target scenario (cap , ctp) of Table 1 (all CNNs produced negligible ctp -label values for the
ancestors as a starting point) or for the untargeted scenario (in which case, it does not
matter which category c ≠ ca becomes dominant).

6. The 8 Attacks

This section presents the main features of the attacks employed in this paper and
provides the chosen values for their parameters. Except for the EA attack, all attacks were
applied using the Adversarial Robustness Toolbox (ART) [32], which is a Python library
that includes several attack methods. ART functions and parameters used are specified
in italics.
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6.1. EA

Reference [19] is a black-box evolutionary algorithm-based attack that creates an initial
population consisting of copies of the ancestor X and modifies their pixels over generations.
The goal of the EA is encoded in its fitness function, f it(Ind) = o[ct]Ind, where Ind is a
population individual and o[ct]Ind is the individual’s ct probability given by the CNN.
The population size is set to 40, the magnitude by which a pixel could be mutated in one
generation is α = 1/255, the maximum mutation magnitude is ε = 8/255, and the maximum
number of generations is N = 10,000. We run both the targeted and untargeted versions of
this attack. In the targeted case, for all CNNs, the threshold that dictates the adversarial
image’s minimum ct probability was set to meet the good enough requirements of [19].

6.2. FGSM

Reference [4], a white-box attack, is a one-step algorithm that calculates the gradient
of the loss function J(X, y) with respect to input X, to find the direction in which to modify
X. In its untargeted version, the adversarial image is

Xadv = X + εsign(∆X J(X, ca)), (5)

while in its targeted version, it is

Xadv = X − εsign(∆X J(X, ct)). (6)

In the above equations, ε is the perturbation size, defined in the implementation by
eps = 2/255, and ∆ is the gradient function, as used in [4]. We use the FastGradientMethod func-
tion with the default value eps_step = 0.01. We run both targeted = True and targeted = False,
corresponding to targeted and untargeted attacks, respectively.

6.3. BIM

Reference [3], a white-box attack, is an iterative version of FGSM. The adversarial
image Xadv

0 is initialized with X and is gradually updated for a given number of steps N,
as follows:

Xadv
`+1 = Clipε{Xadv

` + αsign(∆A(JC(Xadv
` , ca)))} (7)

in its untargeted version and

Xadv
`+1 = Clipε{Xadv

` − αsign(∆A(JC(Xadv
` , ct)))}, (8)

in its targeted version, where α is the step size at each iteration and ε (which coincides
with the ART function eps) is the maximum perturbation magnitude of Xadv = Xadv

N . We
use the BasicIterativeMethod function with the default values eps_step = 0.01,
max_iter = int(eps × 255× 1.25), and eps = 1/255. We run with both targeted = True and
targeted = False, corresponding to targeted and untargeted attacks, respectively.

6.4. PGD Inf

Reference [33], a white-box attack, is similar to the BIM attack, with the difference
that the image at the first attack iteration is not initialized with X, but rather with a random
point situated within an L∞-ball around X. The distance between X and Xadv is measured
using L∞ and the ε parameter represents the maximum perturbation magnitude. We use
the ProjectedGradientDescent function with norm = inf, and the default values eps_step = 0.01,
batch_size = 1, and eps = 1/255. We run with both targeted = True and targeted = False,
corresponding to targeted and untargeted attacks, respectively.

6.5. PGD L1

Reference [33], a white-box attack, is similar to PGD Inf, with the difference that L∞
is replaced with L1. We use the ProjectedGradientDescent function with norm = 1, and the
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default values eps_step = 4, batch_size = 1, and eps = 30. We run with both targeted = True
and targeted = False, corresponding to targeted and untargeted attacks, respectively.

6.6. PGD L2

Reference [33], a white-box attack, is similar to PGD Inf, with the difference that L∞
is replaced with L2. We use the ProjectedGradientDescent function with norm = 2, and the
default values eps_step = 0.1, batch_size = 1, and eps = 1. We run with both targeted = True
and targeted = False, corresponding to targeted and untargeted attacks, respectively.

6.7. CW Inf

Reference [5], a white-box attack, solves the following optimization problem in its
untargeted version:

min
δ

∣∣δ∣∣ + cg(x′), such that x′ ∈ [0, 1]n, (9)

where g(x′) = max(Z(x′)a −max
i≠a

Z(x′)i, 0) (10)

and Z(x) is the pre-softmax classification output. The measure used to evaluate the
difference between the ancestor X and adversarial Xadv is L∞. We use the CarliniLInfMethod
function with the default values of the parameters. We ran with both targeted = True and
targeted = False, corresponding to targeted and untargeted attacks, respectively.

6.8. DeepFool

Reference [34], a white-box attack, is an untargeted attack that calculates the minimum
perturbation δ∗ with which to modify X such that its classification label changes, where
δ∗ = − f (X)w/∣∣w∣∣2, f (X) = wTx + b, F = {x ∶ f (x) = 0}. The attack solves the following
optimization problem:

arg min
δl

∣∣δl ∣∣2 such that f (xl) +∆ f (xl)Tδl = 0. (11)

The algorithm stops immediately after the label is changed, and Xadv = X + δ∗. We use
the DeepFool function with the default values of the parameters.

The seven attacks EA, FGSM, BIM, PGD Inf, PGD L1, PGD L2, and CW Inf are used
both in the untargeted and in the target scenario, and the remaining DeepFool attack is used
only in the context of the untargeted scenario. Apart from the black-box EA attack, all others
are white-box attacks.

7. The Adversarial Images Obtained by the 8 Attacks

For each CNN Ck provided in Section 5, we run each of the 8 attacks atk given in
Section 6, either for the untargeted scenario or for the target scenario whenever applicable,
for the (potentially resized) 100 ancestor images Ap

q , referred to in Section 5, and pictured
in Figure A1, Appendix A. A successful attack for the untargeted scenario results in the
image Datk,untarget

k (Ap
q), adversarial for Ck for that specific scenario. Mutatis mutandis with

an adversarial image Datk,target
k (Ap

q) for the target scenario.
Since there are 8 untargeted and 7 targeted attacks, this amounts to (8+ 7) attacks × 10

CNNs × 10 ancestor classes × 10 images per ancestor class. Out of these altogether 15,000 at-
tack runs, 9746 were successful. More precisely, 6727 out of the 8000 untargeted attacks
were successful, and there were 3019 successful targeted attacks out of the 7000 attempts,
as detailed in Table 2.

Clearly, the number of successful attacks should be statistically relevant. We define
this condition as satisfied if an attack succeeds in at least 35% of the cases for a given
CNN (this value appears as a reasonable trade-off based on the experiments leading to
Table 2). This leads us to disregard the targeted attacks performed by FGSM and CW
Inf for all CNNs, as well as all attacks (untargeted and targeted) performed by PGD
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L1 and the untargeted attack of FGSM on C1. The remaining 9580 statistically relevant
successful attacks are listed in Table 3. The corresponding 2975 adversarial images for the
target scenario and 6505 adversarial images for the untargeted scenario are considered in
subsequent experiments.

Table 2. For each attack atk, and each Ck, the number of successful runs performed on the 100 ancestors
are presented. The results are given as a pair (α, β) or as a single value α, depending on whether atk
is performed for both the untargeted and the targeted scenarios (assessed, respectively, by the values
of α, β in the pair), or only the untargeted scenario (assessed by the single value of α). The successful
attacks on each individual CNN are given in the last row with obvious notations.

atk C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Total

EA (96, 91) (97, 90) (99, 88) (98, 84) (98, 79) (99, 85) (97, 89) (98, 86) (99, 97) (99, 97) (980, 886)

FGSM (11, 0) (83, 3) (82, 2) (81, 3) (80, 2) (86, 3) (77, 4) (80, 2) (92, 13) (89, 9) (761, 41)

BIM (93, 43) (91, 38) (96, 57) (96, 52) (93, 46) (98, 56) (95, 73) (95, 50) (95, 87) (94, 78) (946, 580)

PGD Inf (93, 49) (91, 38) (96, 57) (96, 52) (93, 46) (98, 56) (95, 73) (95, 50) (95, 87) (94, 78) (946, 586)

PGD L1 (26, 0) (28, 1) (19, 0) (17, 1) (12, 0) (19, 1) (15, 0) (10, 0) (33, 0) (32, 0) (211, 3)

PGD L2 (93, 90) (91, 88) (97, 94) (99, 92) (96, 89) (99, 94) (98, 94) (97, 86) (96, 97) (95, 99) (961, 923)

CW Inf (94, 0) (95, 0) (98, 0) (99, 0) (98, 0) (100, 0) (97, 0) (99, 0) (93, 0) (94, 0) (967, 0)

DeepFool 94 97 92 97 94 100 94 97 96 94 955

Total (600, 273) (673, 258) (679, 298) (683, 284) (664, 262) (699, 295) (668, 333) (671, 274) (699, 381) (691, 361) (6727, 3019)

Table 3. For each attack atk, and each Ck, the number of successful runs performed on the 100 ancestors
are presented, for which at least 35% were terminated successfully. The results are given as a pair
(α, β) or as a single value α, depending on whether atk is performed for both the untargeted and the
targeted scenarios (assessed, respectively, by the values of α, β in the pair), or only the untargeted
scenario (assessed by the single value of α). The statistically relevant successful attacks on each
individual CNN are given in the last row with obvious notations.

atk C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Total

EA (96, 91) (97, 90) (99, 88) (98, 84) (98, 79) (99, 85) (97, 89) (98, 86) (99, 97) (99, 97) (980, 886)

FGSM 83 82 81 80 86 77 80 92 89 750

BIM (93, 43) (91, 38) (96, 57) (96, 52) (93, 46) (98, 56) (95, 73) (95, 50) (95, 87) (94, 78) (946, 580)

PGD Inf (93, 49) (91, 38) (96, 57) (96, 52) (93, 46) (98, 56) (95, 73) (95, 50) (95, 87) (94, 78) (946, 586)

PGD L2 (93, 90) (91, 88) (97, 94) (99, 92) (96, 89) (99, 94) (98, 94) (97, 86) (96, 97) (95, 99) (961, 923)

CW Inf 94 95 98 99 98 100 97 99 93 94 967

DeepFool 94 97 92 97 94 100 94 97 96 94 955

Total (563, 273) (645, 254) (660, 296) (666, 280) (652, 260) (680, 291) (653, 329) (661, 272) (666, 368) (659, 352) (6505, 2975)

8. Parameters and Experiments Performed on ShuffleDetectCσ
In what follows, we essentially consider ShuffleDetectCσ for each individual permu-

tation σ, each CNN C, each clean image, and each image that is adversarial against C.
Altogether, the method is applied to all (resized if necessary) ancestors Ap

q on the one

hand, as well as to all 2975 successful adversarials Datk,target
k (Ap

q) and all 6505 successful

adversarials Datk,untarget
k (Ap

q) that compose Table 3 on the other hand. The ShuffleDetect
parameters are specified below.

Size of patches, number of permutations, and ΨC(t, s, Ω). Firstly, we selected s = 56
based on experiments detailed in [23]. Indeed, Table 4, extracted from [23], shows the
average outcome for 2× 437 adversarial images obtained from 84 common ancestor images
(of size 224 × 224) for the same 10 CNNs considered here. The shuffling process was
performed in [23] only for one permutation σ per value of s (hence t = 1 in this case) to
obtain the values of Table 4.
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Table 4. Percentages of shuffled images shσ(Ap
q , s) (first percentage), shσ(DEA

k (Ap
q), s) (second

percentage), and shσ(DBIM
k (Ap

q), s) (third percentage) for which the predicted class is c.

s Number of Patches c = ca c ∉ {ca, ct} c = ct

16 196 0.4, 0.1, 0.1 99.6, 99.9, 99.9 0.0, 0.0, 0.0

32 49 18.0, 9.2, 5.3 82.0, 90.8, 94.4 0.0, 0.0, 0.3

56 16 67.6, 39.3, 15.8 32.4, 60.3, 70.1 0.0, 0.4, 14.1

112 4 88.4, 62.3, 22.3 11.6, 33.2, 35.9 0.0, 4.5, 41.8

The experiments performed in [23] show that among the four considered possibilities,
s = 56 provides an optimal balance between the proportion of clean ancestors that are
correctly declared “clean” (67.6%), and the proportion of adversarial images that are
correctly declared “adversarial” (99.6% for the adversarial images created by the EA, and
85.9% for those created by BIM) by our method. The choice of s = 56 being made, there are
consequently 42 = 16 patches of size 56× 56, and the symmetric group S16 has 16! > 2.1013

different permutations.
Secondly, to keep the computations manageable, we selected at random 100 permuta-

tions (they are given in Table A3 in Appendix B). For 1 ≤ t ≤ 100, one defines Pt as the set of
the first t permutations. One has Pt1 ⊃ Pt2 if t1 ≥ t2. In particular, the first permutation σ1 is
common to all sets Pt, the second permutation σ2 is common to all sets Pt for t ≥ 2, etc.

Given a set Ω of images and C a CNN, one defines the function ΨC(t, s, Ω) as the
proportion of images in Ω declared σ-adversarial for s out of the first t permutations. In
other words, for t and s such that 1 ≤ s ≤ t ≤ 100, one has:

ΨC(t, s, Ω) = #{I ∈ Ω such that ShuffleDetectCσ(I) = 1 for at least s permutations σ ∈ Pt}
#{I ∈ Ω} .

Geometrically, C and Ω being fixed, ΨC(t, s, Ω) defines a discrete surface. For a given
C, this function provides an assessment of the FPR value of the ShuffleDetect method for
C by choosing for Ω a set of images known to be clean. This function also provides an
assessment of the DR value by choosing for Ω a set of images known to be adversarial
for C.

As already stated in Section 4, the actual values of FPR and DR are determined by the
choice of the threshold ratio Rth. Its value is fixed as a consequence of the experiments
performed on clean images, on the one hand, and adversarial images, on the other hand.

Assessment of the clean images. In the first step, we take for Ω the set Ωclean of
100 clean ancestors Ap

q represented in Figure A1 (Appendix A). For C = C, one computes

ShuffleDetectCk
σ (Ap

q) for all 100 permutations σ ∈ P100. This leads to the 10 histograms
represented in Figure A2 in Appendix C. An example of the outcomes is illustrated in
Figure 2a for C1 = VGG16, where each vertical bar assesses the number of clean images
classified as adversarial for a number of permutations given on the x-axis, out of the
100 possible permutations. The notations [a, b] and (a, b] indicate that the number of
permutations is between a and b, with both included in the former case and a excluded in
the latter case. The average outcome (mutatis mutandis) for 10 CNNs is shown in Figure 2b.

Over the 100 clean images, on average, over the 10 CNNs, an image is declared
adversarial by 34.7% of the 100 considered permutations, as indicated in Figure 2b. Table 5
shows that this percentage varies between 26.4% (for C7) and 44.4% (for C9).
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(a) C1:VGG16
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(b) Average overall 10 CNNs

Figure 2. ShuffleDetect performed on 100 clean (ancestor) images with 100 permutations.

Table 5. For each Ck, the number (=percentage) of clean ancestorsAp
q declared adversarial for s out of

100 permutations. The first row shows the average number of permutations for which this occurs.
The last row, the sum of the two previous ones, provides an estimate of the FPR, which serves as a
lower bound for ShuffleDetect per CNN via the assessment of ΨC(100, 91, Ωclean).

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Average

s 41.6 40.2 31.7 35.9 32.4 26.8 26.4 26.6 44.4 40.5 34.7

(95–100] 18 11 8 13 10 8 8 6 16 11 10.9

(90–95] 5 2 6 5 2 5 3 2 7 4 4.1

ΨC(100, 91, Ωclean) 23 13 14 18 12 13 11 8 23 15 15

The last row of Table 5 provides an estimate of a realistic FPR, which serves as a
lower bound, or an “incompressible” FPR, whatever the choice of the parameter Rth. On
average, over the 10 CNNs, ΨC(100, 91, Ωclean) = 15%, and its value varies between 8%
(for C8) and 23% (for C1 and C9). In this context, we noticed that some individual clean
images were declared adversarial by ShuffleDetectCσ for all CNNs C by a large number
(and, therefore, a proportion) of permutations σ. Indeed, the 7 clean images A9

3, A5
6, A9

6,
A1

9, A5
9, A6

9, and A7
9 are declared adversarial for all CNNs by more than 91 permutations.

Whatever the ratio threshold Rth, these 7 images contribute substantially to the FPR of
ShuffleDetectC,Rth ,t for a specific CNN individually, and a fortiori for the FPR average taken
over all CNNs.

Assessment of the adversarial images. In the second step, for C = C, we take for Ω the
set Ωscenario

adv,k of adversarial images Datk,scenario
k (Ap

q) as of Table 3. One computes the values

of ShuffleDetectCk
σ for these images for all 100 permutations σ ∈ P100, and one defines

sscenario
min (k, adv) = Max

1≤i≤100
{i; ΨCk(100, i, Ωscenario

adv,k ) = M%}

which captures the optimum index that makes sure that ΨCk(100, sscenario
min (adv, k), Ωscenario

adv,k ) =
M%, where M% is the maximum possible detection rate of adversarial images created by
the given attack on the given CNN. Clearly M% = 100% if there are no adversarial images
Datk,scenario

k (Ap
q) for which

DomCk(D
atk,scenario
k (Ap

q)) = DomCk(shσ(Datk,scenario
k (Ap

q), 56))

for all 100 permutations σ. While this eventuality does not occur in our experiments with
the target scenario, we shall see that it does for the untargeted scenario for many attacks
and many CNNs.

We proceed firstly with the target scenario. This leads to the 40 histograms (obtained
from 4 targeted attacks performed on the 10 CNNs) represented in Figures A3–A6 in
Appendix C. The following Figure 3 shows the average behavior over the 10 CNNs of the
ShuffleDetect method for all 100 permutations in the adversarial images created by each
targeted attack. Note that the y-axis indicates the average number of adversarial images
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for a given attack, and all CNNs are taken together, as derived from Table 3. For example,
there are 580/10 = 58 adversarial images on average for the target scenario for BIM.
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(d) PGD L2—targeted

Figure 3. Average outcome over the 10 CNNs of ShuffleDetect performed with 100 permutations on
the adversarial images created for the target scenario by EA, BIM, PGD Inf, and PGD L2.

Table 6 details the outcomes for each CNN individually, and provides an assessment
of the detection rate DR of the ShuffleDetect method for the detection of adversarial
images for the target scenario created by each of the four attacks. More precisely, for
each Ck, for each targeted attack atk, the table first provides the percentage s of the
100 permutations σ for which the shuffled-by σ image of an adversarial image, namely
ShuffleDetectCk

σ (Datk,targeted
k (Ap

q)), is declared adversarial on average. Consistently with

assessments performed on the clean images, Table 6 provides ΨCk(100, 91, Ωtarget
adv,k ). Note

that the number of elements of Ωtarget
adv,k used to compute these values is equal to the

corresponding value β from Table 3. Finally, Table 6 provides the values of M% and of
starget

min (k, adv).
We proceed with the untargeted scenario. This leads to the 69 histograms (derived

from 6 untargeted attacks performed on the 10 CNNs, and from the FGSM untargeted
attack performed on 9 CNNs) represented in Figures A7–A13 in Appendix C. The following
Figure 4 provides the average behavior over the 10 (or 9 in the case of FGSM) CNNs of the
ShuffleDetect method for all 100 permutations on the adversarial images created by each
untargeted attack. Note that the y-axis indicates the average number of adversarial images
for a given attack, all relevant CNNs taken together, derived from Table 3. For instance,
there are 750/9 = 83.3 adversarial images on average for the untargeted scenario for FGSM.

With notations consistent with the already handled case of targeted attacks, Table 7
details the outcome for each CNN individually, and provides an assessment of the DR
of the ShuffleDetect method applied to adversarial images for the untargeted scenarios
created by each of the seven attacks. The number of elements of Ωuntarget

adv,k used to compute

the values of ΨCk(100, 91, Ωuntarget
adv,k ) is equal to the corresponding value α from Table 3.
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Table 6. For each Ck, for each targeted attack atk, percentage s of the 100 permutations σ for which the
shuffled-by σ image of an adversarial image, namely ShuffleDetectCk

σ (Datk,targeted
k (Ap

q)), is declared

adversarial on average, assessment of ΨCk(100, 91, Ωtarget
adv,k ), of the maximum possible detection rate

M%, and of starget
min (k, adv).

Targeted Attacks C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Average

EA-targeted 100 100 100 99.8 99.8 99.9 99.9 100 100 99.9 99.9
ΨCk(100, 91, Ωtarget

EA,k ) 100 100 100 100 100 100 100 100 100 100 100
M% 100 100 100 100 100 100 100 100 100 100 100

starget
min (k, EA) 100 100 100 93 95 96 98 100 100 96 97.8

BIM-targeted 100 99.7 99.8 99.4 99.2 99.6 99.6 99.9 99.9 99.2 99.6
ΨCk(100, 91, Ωtarget

BIM,k) 100 100 100 98 97.8 98.2 98.6 100 100 98.7 99.1
M% 100 100 100 100 100 100 100 100 100 100 100

starget
min (k, BIM) 100 92 97 72 64 85 77 99 98 58 84.2

PGD Inf-targeted 99.9 99.7 99.8 99.4 99.2 99.6 99.6 99.9 99.9 99.2 99.6
ΨCk(100, 91, Ωtarget

PGD Inf,k) 100 100 100 98 97.8 98.2 98.6 100 100 98.7 99.1
M% 100 100 100 100 100 100 100 100 100 100 100

starget
min (k, PGDIn f ) 99 92 97 72 64 85 77 99 98 58 84.1

PGD L2-targeted 99.7 99.6 99.8 99.6 99.5 99.6 99.5 99.7 99.9 99.2 99.6
ΨCk(100, 91, Ωtarget

PGD L2,k) 100 100 100 98.9 98.8 97.8 98.9 98.8 100 97.9 99.1
M% 100 100 100 100 100 100 100 100 100 100 100

starget
min (k, PGDL2) 95 92 96 72 62 85 78 87 98 54 81.9

Table 7. For each Ck, for each untargeted attack atk, the percentage s of the 100 permutations σ for
which the shuffled-by σ image of an adversarial image, namely ShuffleDetectCk

σ (Datk,untargeted
k (Ap

q)),

is declared adversarial on average, the assessment of ΨCk(100, 91, Ωuntarget
adv,k ), of the maximum possible

detection rate M%, and of suntarget
min (k, adv).

Untargeted Attacks C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Average

EA-untargeted 86.0 86.9 91.1 94.4 90.6 92.2 93.3 95.0 91.7 90.7 91.2
ΨCk(100, 91, Ωuntarget

EA,k ) 69.7 64.9 78.7 83.6 78.5 77.7 85.5 86.7 85.8 78.7 79.0
M% 100 100 98.9 100 100 100 100 100 98.9 98.9 99.6

suntarget
min (k, EA) 2 15 22 1 1 1 2 4 3 24 7.5

FGSM-untargeted NA 75.3 84.8 89.2 82.2 81.5 84.2 86.4 82.2 84.1 83.3
ΨCk(100, 91, Ωuntarget

EA,k ) NA 45.7 63.4 74.0 53.7 56.9 68.8 58.7 63.0 61.7 60.7
M% NA 97.5 98.7 98.7 98.8 98.7 98.7 98.9 97.7 99.7 98.6

suntarget
min (k, FGSM) NA 2 12 4 1 1 16 12 3 17 7.5

BIM-untargeted 67.0 68.7 84.1 90.1 83.2 79.2 86.7 86.8 81.6 77.8 80.6
ΨCk(100, 91, Ωuntarget

EA,k ) 40.8 40.6 64.5 75 66.6 56.1 74.7 62.1 68.4 44.6 59.3
M% 97.8 94.5 98.9 98.9 97.8 97.9 98.9 98.9 97.8 98.9 98.0

suntarget
min (k, BIM) 1 1 3 9 9 3 10 21 1 2 6.0

PGD Inf-untargeted 67.0 68.6 84.1 90.0 83.2 79.2 86.7 86.8 81.6 77.8 80.6
ΨCk(100, 91, Ωuntarget

EA,k ) 40.8 39.5 64.5 75 66.6 56.1 74.7 62.1 68.4 44.6 59.2
M% 97.8 94.5 98.9 98.9 97.8 97.9 98.9 98.9 97.8 98.9 98.0

suntarget
min (k, PGDIn f ) 1 1 3 9 9 3 10 21 1 2 6.0

PGD L2-untargeted 66.9 59.6 78.6 87.8 80.3 74.3 82.9 81.9 75.6 69.1 75.9
ΨCk(100, 91, Ωuntarget

EA,k ) 43.0 30.7 52.5 68.6 59.3 51.5 66.3 53.6 51.0 37.8 51.4
M% 96.7 92.3 97.9 98.9 97.9 97.9 98.9 98.9 96.8 97.8 97.4

suntarget
min (k, PGDL2) 1 1 13 1 8 2 3 8 1 3 4.1
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Table 7. Cont.

Untargeted Attacks C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Average

CW Inf-untargeted 79.4 82.0 90.4 91.5 88.4 86.5 90.8 91.2 83.9 87.8 87.3
ΨCk(100, 91, Ωuntarget

EA,k ) 61.7 58.9 76.5 77.7 73.4 67.0 77.3 74.7 64.5 65.9 69.7
M% 97.8 98.9 98.9 98.9 98.9 99 98.9 98.9 97.8 98.9 98.7

suntarget
min (k, CWIn f ) 7 1 15 18 24 10 24 27 1 25 15.2

DeepFool-untargeted 90.5 90.7 93.0 95.6 92.8 93.3 93.8 94.8 91.5 92.1 92.8
ΨCk(100, 91, Ωuntarget

EA,k ) 76.5 78.3 81.5 88.6 82.9 83 82.9 83.5 81.2 82.9 82.1
M% 100 100 98.9 100 100 99 100 100 98.9 98.9 99.5

suntarget
min (k, DeepFool) 1 2 35 16 12 28 5 12 1 12 12.4
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Figure 4. Average outcome over all relevant CNNs of ShuffleDetect performed with 100 permutations
on the adversarial images created for the untargeted scenario by EA, FGSM, BIM, PGD Inf, PGD L2,
CW Inf, and DeepFool.
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9. Intrinsic Performance of ShuffleDetectC,Rth,t

Indicators and performance. Since ShuffleDetectC,Rth ,t is an unsupervised detector,
the complexity criterion does not apply. The values of the remaining indicators do depend
on the number t of permutations to be considered, and most of them are determined by the
selected threshold ratio Rth.

To assess the inference time latency, the creation of t = 100 permutations (Step 1
of Algorithm 1) took 0.064 s using the command SymmetricGroup(16) and 100 calls
of the command RandomElement on Maple 2022 (this timing could certainly be op-
timized). Running ShuffleDetectC

σ for a single permutation σ (Steps 8 to 12 of Algo-
rithm 1) takes 0.0784 s/permutation on average (over 100 considered permutations, over-
all 10 CNNs, and over 100 random clean images because considering them is suffi-
cient to assess this average). The time required by Steps 2, 3, 6, and 14 (all of which
are outside the loop of the t permutations) is negligible. The overall inference time la-
tency of ShuffleDetect performed on an image with t = 100 permutations amounts to
≃0.064+ 1× 0.0784+ 100× 0.0784 = 0.064+ 7.918 = 7.982 s/image on average. On the one
hand, the prediction process performed by the CNN (one time in Steps 4 and 5 for the
unshuffled image, and t = 100 times in Steps 9 and 10 for the shuffled images) contributes to
≃98.02% of this time consumption. On the other hand, the shuffling process (Step 8, called
t = 100 times) contributes to ≃1.98% of this time consumption. See Appendix B, Table A4
for detailed information on all CNNs.

One should take into account two positive aspects of the proposed detector. Firstly, the
0.064 s consumed by the creation of the 100 permutations can be mutualized over several
calls of the detector for different input images. Secondly, the tasks performed iteratively
(Steps (7) to (13)) can be easily distributed; thus, apart from the time required for the
creation of the 100 permutations, the algorithm would require only ≃0.0784, plus some
minor time due to the gathering of the distributed information, and the final computation
and comparison.

The Overhead is very limited (and can be optimized). Algorithm 1 shows that the
“permanent storage” is limited to the t = 100 permutations expressed as products of cycles
as in Table A3, Appendix B (which actually can be called upon if the permutations are
computed once for all images to handle as we do in our experiments), the integer sth, and
the extracted dominating category DomC(I) (which amounts to a numbering among the
1000 categories of ImageNet in our case). The “incremental storage” is made of the value 0
or 1 as σ progresses throughout the t permutations, hence (at most) t such Boolean values
if one wants to keep the whole information. A memory-saving alternative is to keep only
the updated N as σ progresses throughout the t permutations. The “ephemeral storage”
(deleted after each run) is composed of the running images shσ(I, s) and DomC(shσ(I, s)).
The computation resources are essentially limited to the creation of t permutations (to be
done once at the beginning, as recommended), to 1+ t calls to the CNN for the classification
of I and sh(I, σi), and to the creation of the (up to) t shuffled images shσ(I, s). Finding
the dominant category, as is necessary once for I and (at most) t times for the shuffled
images, amounts to looking for the largest value in the classification output category, which
is immediate in a set of 1000 values, as is the case here.

Note that in what precedes, we mention “at most” a few times since one could stop
the loop before its natural end. This is the case if after some rounds the running threshold
reaches such a value that the remaining rounds, whatever happens, cannot ensure that the
threshold ratio Rth will not be reached.

The specific value chosen for Rth clearly impacts the different indicators of the Shuf-
fleDetect algorithm (but, foremost, FPR and DR). To summarize, the smaller the Rth, the
higher the DR and FPR. However, our experiments show that a high Rth leads to a very
good DR and a moderate FPR. A b-moll to this statement is that the situation differs
according to the nature of the “targeted” or “untargeted” attack, as we shall see now.

For targeted attacks, Table 6 together with Figure A2 led us to consider (for t = 100
permutations) four choices for the value for Rth:
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• Rth = 51% matches the requirement that most permutations declare an image as adversarial.
• Rth = 54% is motivated by the fact that the smallest starget

min (k, atk) among the 100 per-
mutations and the four targeted attacks is ≥54.

• Rth = 87% is motivated by the fact that the average of the starget
min (k, atk) among the

100 permutations and the four targeted attacks is =87.
• Rth = 91% as a demanding ratio compromise.

For untargeted attacks, Table 7 together with Figures A7–A13 (Appendix C) show that
(for t = 100 permutations) using suntarget

min (k, atk) is irrelevant for the selection of Rth. Indeed,
suntarget

min (k, atk) is usually small. More precisely, suntarget
min (k, atk) ≤ 35 in all cases, and is = 9.8

on average, as opposed to what occurs for the target scenario, where starget
min (k, atk) ≥ 54 in

all cases, and is = 87 on average. Therefore, we limit the selection of Rth to two values:

• Rth = 51% for the same reason as for the target case.
• Rth = 91% because it makes sense to keep the same demanding Rth value for the

detector independently on the scenario of the attack, hence the same value for the
targeted attack.

The values of FP and FPR depend only on the value of Rth (since no attack is considered
for their computation), and on the CNN. Note that FPR = FP/100 for t = 100 permutations.
One writes FPavg and FPRavg for their respective average values over the 10 considered
CNNs. Table 8 provides the corresponding values for Rth = 51%, 54%, 87%, and 91% (the
four values used in the context of the target scenario also contain the two values used in
the context of the untargeted scenario) for t = 100 permutations.

Table 8. Table of FP per CNN for each selected value of Rth; FPR is deduced from FP by the formula
FPR = FP/100.

Rth C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 FPavg

51 38 38 30 34 33 26 25 26 40 37 32.7
54 37 36 29 33 30 25 23 25 40 36 31.4
87 24 13 16 19 14 15 13 12 29 19 17.4
91 23 13 14 18 12 13 11 8 23 15 15

Remark. The number of adversarial images against each CNN, created either by
targeted or untargeted attacks, is in all cases strictly less than the number of clean ances-
tor images from which these attacks started. As mentioned at the end of Section 3, this
imbalance should be considered to have a fair comparison basis and sound values for the
indicators (what we measure is the performance of the indicator, not of the attack). There-
fore, in Tables 9–12 the clean images selected are those that correspond to the adversarial
images obtained from them. For instance, since the EA-targeted attack succeeded to create
“only” 91 images adversarial against C1, we consider only the exact 91 clean images from
which these adversarial images were obtained to assess the FP value.

For targeted attacks, Tables 9 and 10 show (for t = 100 permutations) the DR (which
coincides with ΨCk(100, 100Rth, Ωtarget

atk,k )), TP, FN, precision, recall, and F1 score values
per CNN per targeted attack for each of the four selected values of Rth, as well as their
average values.

For untargeted attacks, Tables 11 and 12 show (for t = 100 permutations) the DR (which
coincides with ΨCk(100, 100Rth, Ωuntarget

atk,k )), TP, FP, FN, precision, recall, F1 scores per CNN
per untargeted attack for each selected value of Rth, as well as their average values.

Conclusion for the intrinsic performance of ShuffleDetect. Regarding targeted at-
tacks, Tables 9 and 10 show that the difference in values of the indicators obtained when
Rth = 0.54 versus 0.51 (respectively, 0.87 versus 0.91) remains marginal.

If one knows the nature of “targeted” and “untargeted” attacks, and/or if one knows
which specific attack to expect, one can choose the most appropriate threshold ratio value
Rth. However, one rarely has access to this intelligence in practice.
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Consequently, it makes sense to consider a priori only Rth = 0.51 or Rth = 0.91 whatever
the attack (hence, a fortiori whatever its targeted or untargeted nature). Table 13 provides
the values of all indicators per CNN on average over the 4 targeted attacks. It also provides
the worst F1 value as a proxy of the worst case for our detector. Similar information for
untargeted attacks is given in Table 14.

Tables 13 and 14 show that our detector achieves very good results. For instance (when
both Rth = 0.51 and 0.91 are considered) for the two highly significant indicators made of
the detection rate and the F1 values:

• For all targeted attacks, the detection rate is ≥98.55, the F1 value is ≥0.76, and the
average values of these indicators are 99.67 and 0.87, respectively.

• For untargeted attacks, the detection rate is ≥51.23, the F1 value is ≥0.60, and the
average values are 76.77 and 0.75, respectively.

Recall that a defender does not know the nature (targeted or untargeted) of an attack
he is exposed to. For the sake of completeness, Table 15 provides the values of all indicators
per CNN in the average overall attacks, targeted and not targeted, for the two values
Rth = 0.51 and 0.91.

Now, as a defender, it is wise to consider the values of the indicators given in Table 14
for untargeted attacks, since then one is also “on the safe side” for targeted attacks as well.

A remaining issue is whether one can achieve results as those given in Table 14
(allowing one to be “on the safe side”, as pointed out above), say for DR, precision, recall,
and F1, with less than 100 permutations. For instance for C1, can one achieve (DR, precision,
recall, F1) = (77.5, 0.7, 0.8, 0.7) in less than 100 permutations? Indeed, doing so would
clearly speed up the process (see Table A4 to assess time savings per spared permutation).

We performed a series of tests with increasing values of the number of permutations,
aimed at indicator values, as those of Table 14. More precisely, we fixed the indicator values
as those of Table 14, and we added permutations one by one (following their numbering,
as given in Table A3), and stopped when we achieved those fixed indicator values. Note
that the minimal number of permutations, with which it makes sense, from a mathematical
point of view, to start this process, depends on the value of Rth.

For Rth = 0.51, it makes sense to consider t ≥ 3, while for Rth = 0.91, it makes sense
to consider t ≥ 12. Therefore, for each CNN C, for each attack atk, targeted or untargeted
accordingly, starting with the first 3 permutations for Rth = 0.51 (respectively, the first
12 permutations for Rth = 0.91), we added the subsequent permutations whenever appro-
priate, and stopped the process when the minimal number toptimal,C,atk of permutations
fulfilling the above criteria was achieved. Table 16 provides the outcome of this experiment.

Finally, which value for Rth do we privilege? We considered the DR indicator as
the most significant one to make our choice. With this indicator, we concluded that the
“democratic” value Rth = 0.51 is an appropriate and reasonable choice for most applica-
tions of ShuffleDetect. In terms of the number of permutations, one can use the number
toptimal,C = Maxatk{toptimal,C,atk}, defined for Rth = 0.51 in Table 16, according to the CNN C
considered. This value is convenient for the relevant 4 targeted attacks and 7 untargeted
attacks studied here. However, especially in view of the low time and memory price to
pay for additional permutations, we consider that a defender who uses 100 permutations
is better prepared against unknown attacks. Refinements in this regard are still possible,
especially since ShuffleDetect is on the defender’s side, the defender knows which CNNs
to protect so that he can adapt accordingly.
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Table 9. Targeted attacks—DR as a percentage, and TP, FP, FN, precision, recall, F1 scores for CNN,
per attack, for selected values of Rth = 0.51 and 0.54, and their corresponding averages.

Rth
Targeted
Attack Metrics C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Avg

0.51

EA

DR 100 100 100 100 100 100 100 100 100 100 100
TP 91 90 88 84 79 85 89 86 97 97 88.6
FP 37 37 28 32 29 25 23 25 39 37 31.2
FN 0 0 0 0 0 0 0 0 0 0 0

Precision 0.71 0.70 0.75 0.72 0.73 0.77 0.79 0.77 0.71 0.72 0.73
Recall 1 1 1 1 1 1 1 1 1 1 1

F1 0.83 0.82 0.85 0.83 0.84 0.87 0.88 0.87 0.83 0.83 0.84

BIM

DR 100 100 100 100 100 100 100 100 100 100 100
TP 43 38 57 52 46 56 73 50 87 78 58
FP 23 23 20 19 21 18 17 15 35 31 22.2
FN 0 0 0 0 0 0 0 0 0 0 0

Precision 0.65 0.62 0.74 0.73 0.68 0.75 0.81 0.76 0.71 0.71 0.71
Recall 1 1 1 1 1 1 1 1 1 1 1

F1 0.78 0.76 0.85 0.84 0.8 0.85 0.89 0.86 0.83 0.83 0.82

PGD Inf

DR 100 100 100 100 100 100 100 100 100 100 100
TP 49 38 57 52 46 56 73 50 87 78 58.6
FP 23 23 20 19 21 18 17 15 35 31 22.2
FN 0 0 0 0 0 0 0 0 0 0 0

Precision 0.68 0.62 0.74 0.73 0.68 0.75 0.81 0.76 0.71 0.71 0.71
Recall 1 1 1 1 1 1 1 1 1 1 1

F1 0.80 0.76 0.85 0.84 0.80 0.85 0.89 0.86 0.83 0.83 0.83

PGD L2

DR 100 100 100 100 100 100 100 100 100 100 100
TP 90 88 94 92 89 94 94 86 97 99 92.3
FP 23 23 20 31 29 26 24 24 38 36 27.4
FN 0 0 0 0 0 0 0 0 0 0 0

Precision 0.79 0.79 0.82 0.74 0.75 0.78 0.79 0.78 0.71 0.73 0.76
Recall 1 1 1 1 1 1 1 1 1 1 1

F1 0.88 0.88 0.90 0.85 0.85 0.87 0.88 0.87 0.83 0.84 0.86

0.54

EA

DR 100 100 100 100 100 100 100 100 100 100 100
TP 91 90 88 84 79 85 89 86 97 97 88.6
FP 36 35 27 31 26 24 21 24 39 36 29.9
FN 0 0 0 0 0 0 0 0 0 0 0

Precision 0.71 0.72 0.76 0.73 0.75 0.77 0.80 0.78 0.71 0.72 0.74
Recall 1 1 1 1 1 1 1 1 1 1 1

F1 0.83 0.83 0.86 0.84 0.85 0.87 0.88 0.87 0.83 0.83 0.84

BIM

DR 100 100 100 100 100 100 100 100 100 100 100
TP 43 38 57 52 46 56 73 50 87 78 58
FP 22 22 19 19 19 18 16 14 35 30 21.4
FN 0 0 0 0 0 0 0 0 0 0 0

Precision 0.66 0.63 0.75 0.73 0.70 0.75 0.82 0.78 0.71 0.72 0.72
Recall 1 1 1 1 1 1 1 1 1 1 1

F1 0.79 0.77 0.85 0.84 0.82 0.85 0.90 0.87 0.83 0.83 0.83

PGD Inf

DR 100 100 100 100 100 100 100 100 100 100 100
TP 49 38 57 52 46 56 73 50 87 78 58.6
FP 22 22 19 19 19 18 16 14 35 30 21.4
FN 0 0 0 0 0 0 0 0 0 0 0

Precision 0.69 0.63 0.75 0.73 0.70 0.75 0.82 0.78 0.71 0.72 0.72
Recall 1 1 1 1 1 1 1 1 1 1 1

F1 0.81 0.77 0.85 0.84 0.82 0.85 0.9 0.87 0.83 0.83 0.83

PGD L2

DR 100 100 100 100 100 100 100 100 100 100 100
TP 90 88 94 92 89 94 94 86 97 99 92.3
FP 22 22 19 30 26 25 22 23 38 35 26.2
FN 0 0 0 0 0 0 0 0 0 0 0

Precision 0.80 0.80 0.83 0.75 0.77 0.78 0.81 0.78 0.71 0.73 0.77
Recall 1 1 1 1 1 1 1 1 1 1 1

F1 0.88 0.88 0.90 0.85 0.87 0.87 0.89 0.87 0.83 0.84 0.86
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Table 10. Targeted attacks—DR as a percentage, and TP, FP, FN, precision, recall, F1 scores per CNN
per attack for each selected value of Rth = 0.87 and 0.91, and their corresponding averages.

Rth
Targeted
Attack Metrics C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Avg

0.87

EA

DR 100 100 100 100 100 100 100 100 100 100 100
TP 91 90 88 84 79 85 89 86 97 97 88.6
FP 23 13 16 18 12 15 12 12 29 19 16.9
FN 0 0 0 0 0 0 0 0 0 0 0

Precision 0.79 0.87 0.84 0.82 0.86 0.85 0.88 0.87 0.76 0.83 0.83
Recall 1 1 1 1 1 1 1 1 1 1 1

F1 0.88 0.93 0.91 0.90 0.92 0.91 0.93 0.93 0.86 0.90 0.9

BIM

DR 100 100 100 98.1 97.8 98.2 98.6 100 100 98.7 99.1
TP 43 38 57 51 45 55 72 50 87 77 57.5
FP 17 9 11 15 11 11 11 9 27 18 13.9
FN 0 0 0 1 1 1 1 0 0 1 0.5

Precision 0.71 0.80 0.83 0.77 0.80 0.83 0.86 0.84 0.76 0.81 0.8
Recall 1 1 1 0.98 0.978 0.982 0.986 1 1 0.987 0.99

F1 0.83 0.88 0.90 0.86 0.88 0.89 0.91 0.91 0.86 0.88 0.87

PGD Inf

DR 100 100 100 98 97.8 98.2 98.6 100 100 98.7 99.1
TP 49 38 57 51 45 55 72 50 87 77 58.1
FP 17 9 11 15 11 11 11 9 27 18 13.9
FN 0 0 0 1 1 1 1 0 0 1 0.5

Precision 0.74 0.80 0.83 0.77 0.80 0.83 0.86 0.84 0.76 0.81 0.8
Recall 1 1 1 0.98 0.978 0.982 0.986 1 1 0.987 0.99

F1 0.85 0.88 0.90 0.86 0.88 0.89 0.91 0.91 0.86 0.88 0.88

PGD L2

DR 100 100 100 98.9 98.8 98.9 98.9 100 100 98.9 99.4
TP 90 88 94 91 88 93 93 86 97 98 91.8
FP 17 9 11 19 12 15 12 11 28 19 15.3
FN 0 0 0 1 1 1 1 0 0 1 0.5

Precision 0.84 0.90 0.89 0.82 0.88 0.86 0.88 0.88 0.77 0.83 0.85
Recall 1 1 1 0.98 0.98 0.98 0.98 1 1 0.98 0.99

F1 0.91 0.94 0.94 0.89 0.92 0.91 0.92 0.93 0.87 0.89 0.91

0.91

EA

DR 100 100 100 100 100 100 100 100 100 100 100
TP 91 90 88 84 79 85 89 86 97 97 88.6
FP 23 13 14 17 11 13 10 8 23 15 14.7
FN 0 0 0 0 0 0 0 0 0 0 0

Precision 0.79 0.87 0.86 0.83 0.87 0.86 0.89 0.91 0.80 0.86 0.85
Recall 1 1 1 1 1 1 1 1 1 1 1

F1 0.88 0.93 0.92 0.90 0.93 0.92 0.94 0.95 0.88 0.92 0.91

BIM

DR 100.00 100.00 100.00 98.00 97.80 98.20 98.60 100.00 100.00 98.70 99.10
TP 43 38 57 51 45 55 72 50 87 77 57.5
FP 17 9 9 15 10 9 9 7 22 14 12.1
FN 0 0 0 1 1 1 1 0 0 1 0.5

Precision 0.71 0.80 0.86 0.77 0.81 0.85 0.88 0.87 0.79 0.84 0.81
Recall 1 1 1 0.98 0.978 0.982 0.986 1 1 0.987 0.99

F1 0.83 0.88 0.92 0.86 0.88 0.91 0.92 0.93 0.88 0.90 0.89

PGD Inf

DR 100 100 100 98 97.8 98.2 98.6 100 100 98.7 99.1
TP 49 38 57 51 45 55 72 50 87 77 58.1
FP 17 9 9 15 10 9 9 7 22 14 12.1
FN 0 0 0 1 1 1 1 0 0 1 0.5

Precision 0.74 0.80 0.86 0.77 0.81 0.85 0.88 0.87 0.79 0.84 0.82
Recall 1 1 1 0.98 0.97 0.98 0.98 1 1 0.98 0.99

F1 0.85 0.88 0.92 0.86 0.88 0.91 0.92 0.93 0.88 0.90 0.89

PGD L2

DR 100 100 100 98.9 98.8 97.8 98.9 98.8 100 97.9 99.1
TP 90 88 94 91 88 92 93 85 97 97 91.5
FP 17 9 9 18 11 13 10 8 22 15 13.2
FN 0 0 0 1 1 2 1 1 0 2 0.8

Precision 0.84 0.90 0.91 0.83 0.88 0.87 0.90 0.91 0.81 0.86 0.87
Recall 1 1 1 0.989 0.988 0.978 0.989 0.988 1 0.979 0.99

F1 0.91 0.94 0.95 0.9 0.93 0.92 0.94 0.94 0.89 0.91 0.91
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Table 11. Untargeted attacks—DR as a percentage, and TP, FP, FN, precision, recall, F1 scores per
CNN per attack for each selected value of Rth = 0.51, and their corresponding averages.

Rth
Untargeted
Attack Metrics C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Avg

0.51

EA

DR 88.5 90.7 93.9 96.9 96.9 95.9 96.9 97.9 93.9 93.9 94.5
TP 85 88 93 95 95 95 94 96 93 93 92.7
FP 38 38 29 34 33 26 25 26 39 36 32.4
FN 11 9 6 3 3 4 3 2 6 6 5.3

Precision 0.69 0.69 0.76 0.73 0.74 0.78 0.78 0.78 0.70 0.72 0.74
Recall 0.88 0.90 0.93 0.96 0.96 0.95 0.96 0.97 0.93 0.93 0.94

F1 0.77 0.78 0.83 0.82 0.83 0.85 0.86 0.86 0.79 0.81 0.82

FGSM

DR 80.7 89.0 92.5 86.2 87.2 85.7 92.5 85.8 86.5 87.3
TP 67 73 75 69 75 66 74 79 77 72.7
FP 33 28 31 29 23 22 23 34 30 28.1
FN 16 9 6 11 11 11 6 13 12 10.5

Precision 0.67 0.72 0.70 0.70 0.76 0.75 0.76 0.69 0.71 0.72
Recall 0.80 0.89 0.92 0.86 0.87 0.85 0.92 0.85 0.86 0.87

F1 0.72 0.79 0.79 0.77 0.81 0.79 0.83 0.76 0.77 0.78

BIM

DR 66.6 72.5 86.4 93.7 86.0 83.6 88.4 92.6 84.2 84.0 83.8
TP 62 66 83 90 80 82 84 88 80 79 79.4
FP 34 32 28 32 29 24 22 24 33 31 28.9
FN 31 25 13 6 13 16 11 7 15 15 15.2

Precision 0.64 0.67 0.74 0.73 0.73 0.77 0.79 0.78 0.70 0.71 0.73
Recall 0.66 0.72 0.86 0.93 0.86 0.83 0.88 0.92 0.84 0.84 0.83

F1 0.64 0.69 0.79 0.81 0.78 0.79 0.83 0.84 0.76 0.76 0.77

PGD Inf

DR 66.6 72.5 86.4 93.7 86.0 83.6 88.4 92.6 84.2 84.0 83.8
TP 62 66 83 90 80 82 84 88 80 79 79.4
FP 34 32 28 32 29 24 22 24 33 31 28.9
FN 31 25 13 6 13 16 11 7 15 15 15.2

Precision 0.64 0.67 0.74 0.73 0.73 0.77 0.79 0.78 0.70 0.71 0.73
Recall 0.66 0.72 0.86 0.93 0.86 0.83 0.88 0.92 0.84 0.84 0.83

F1 0.64 0.69 0.79 0.81 0.78 0.79 0.83 0.84 0.76 0.76 0.77

PGD L2

DR 68.8 61.5 80.4 91.9 83.3 77.7 86.7 88.6 78.1 73.6 79.0
TP 64 56 78 91 80 77 85 86 75 70 76.2
FP 34 31 27 32 29 24 22 24 34 32 28.9
FN 29 35 19 8 16 22 13 11 21 25 19.9

Precision 0.65 0.64 0.74 0.73 0.73 0.76 0.79 0.78 0.68 0.68 0.72
Recall 0.68 0.61 0.80 0.91 0.83 0.77 0.86 0.88 0.78 0.73 0.79

F1 0.66 0.62 0.76 0.81 0.77 0.76 0.82 0.82 0.72 0.7 0.75

CW Inf

DR 79.7 86.3 93.8 93.9 91.8 90.0 93.8 96.9 88.1 89.3 90.3
TP 75 82 92 93 90 90 91 96 82 84 87.5
FP 34 33 28 32 30 25 21 24 31 30 28.8
FN 19 13 6 6 8 10 6 3 11 10 9.2

Precision 0.68 0.71 0.76 0.74 0.75 0.78 0.81 0.80 0.72 0.73 0.75
Recall 0.79 0.86 0.93 0.93 0.91 0.90 0.93 0.96 0.88 0.89 0.90

F1 0.73 0.77 0.83 0.82 0.82 0.83 0.86 0.87 0.79 0.8 0.81

DeepFool

DR 94.6 93.8 95.6 96.9 97.8 96.0 97.8 97.9 94.7 93.6 95.8
TP 89 91 88 94 92 96 92 95 91 88 91.6
FP 36 37 27 33 28 25 22 25 37 32 30.2
FN 5 6 4 3 2 4 2 2 5 6 3.9

Precision 0.71 0.71 0.76 0.74 0.76 0.79 0.80 0.79 0.71 0.73 0.75
Recall 0.94 0.93 0.95 0.96 0.97 0.96 0.97 0.97 0.94 0.93 0.95

F1 0.8 0.8 0.84 0.83 0.85 0.86 0.87 0.87 0.8 0.81 0.83
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Table 12. Untargeted attacks—DR as a percentage, and TP, FP, FN, precision, recall, F1 scores per
CNN per attack for each selected value of Rth = 0.91, and their corresponding averages.

Rth
Untargeted
Attack Metrics C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Avg

0.91

EA

DR 69.7 64.9 78.7 83.6 78.5 77.7 85.5 86.7 85.8 78.7 78.9
TP 67 63 78 82 77 77 83 85 85 78 77.5
FP 23 13 13 18 12 13 11 8 22 14 14.7
FN 29 34 21 16 21 22 14 13 14 21 20.5

Precision 0.74 0.82 0.85 0.82 0.86 0.85 0.88 0.91 0.79 0.84 0.83
Recall 0.69 0.64 0.78 0.83 0.78 0.77 0.85 0.86 0.85 0.78 0.78

F1 0.71 0.71 0.81 0.82 0.81 0.8 0.86 0.88 0.81 0.8 0.8

FGSM

DR 45.7 63.4 74.0 53.7 56.9 68.8 58.7 63.0 61.7 60.7
TP 38 52 60 43 49 53 47 58 55 50.6
FP 11 13 16 9 12 10 8 17 11 11.9
FN 45 30 21 37 37 24 33 34 34 32.8

Precision 0.77 0.80 0.78 0.82 0.80 0.84 0.85 0.77 0.83 0.8
Recall 0.45 0.63 0.74 0.53 0.56 0.68 0.58 0.63 0.61 0.6

F1 0.56 0.7 0.75 0.64 0.65 0.75 0.68 0.69 0.7 0.68

BIM

DR 40.8 40.6 64.5 75.0 66.6 56.1 74.7 62.1 68.4 44.6 59.3
TP 38 37 62 72 62 55 71 59 65 42 56.3
FP 20 11 13 16 9 12 10 8 16 11 12.6
FN 55 54 34 24 31 43 25 36 30 52 38.4

Precision 0.65 0.77 0.82 0.81 0.87 0.82 0.87 0.88 0.80 0.79 0.8
Recall 0.40 0.40 0.64 0.75 0.66 0.56 0.73 0.62 0.68 0.44 0.58

F1 0.49 0.52 0.71 0.77 0.75 0.66 0.79 0.72 0.73 0.56 0.67

PGD Inf

DR 40.8 39.5 64.5 75.0 66.6 56.1 74.7 62.1 68.4 44.6 59.2
TP 38 36 62 72 62 55 71 59 65 42 56.2
FP 20 13 13 16 9 12 10 8 16 11 12.8
FN 55 55 34 24 31 43 24 36 30 52 38.4

Precision 0.65 0.73 0.82 0.81 0.87 0.82 0.87 0.88 0.80 0.79 0.8
Recall 0.40 0.39 0.64 0.75 0.66 0.56 0.74 0.62 0.68 0.44 0.58

F1 0.49 0.5 0.71 0.77 0.75 0.66 0.79 0.72 0.73 0.56 0.66

PGD L2

DR 43.0 30.7 52.5 68.6 59.3 51.5 66.3 53.6 51.0 37.8 51.4
TP 40 28 51 68 57 51 65 52 49 36 49.7
FP 20 11 12 16 9 12 10 8 17 12 12.7
FN 53 63 46 31 39 48 33 45 47 59 46.4

Precision 0.66 0.71 0.80 0.80 0.86 0.80 0.86 0.86 0.74 0.75 0.78
Recall 0.43 0.30 0.52 0.68 0.59 0.51 0.66 0.53 0.51 0.37 0.51

F1 0.52 0.42 0.63 0.73 0.69 0.62 0.74 0.65 0.6 0.49 0.6

CW Inf

DR 61.7 58.9 76.5 77.7 73.4 67.0 77.3 74.7 64.5 65.9 69.7
TP 58 56 75 77 72 67 75 74 60 62 67.6
FP 20 11 13 16 10 12 9 8 14 11 12.4
FN 36 39 23 22 26 33 22 25 33 32 29.1

Precision 0.74 0.83 0.85 0.82 0.87 0.84 0.89 0.90 0.81 0.84 0.83
Recall 0.61 0.58 0.76 0.77 0.73 0.67 0.77 0.74 0.64 0.65 0.69

F1 0.66 0.68 0.8 0.79 0.79 0.74 0.82 0.81 0.71 0.73 0.75

DeepFool

DR 76.5 78.3 81.5 88.6 82.9 83.0 82.9 83.5 81.2 82.9 82.1
TP 72 76 75 86 78 83 78 81 78 78 78.5
FP 22 12 12 17 12 12 9 8 20 12 13.6
FN 22 21 17 11 16 17 16 16 18 16 17

Precision 0.76 0.86 0.86 0.83 0.86 0.87 0.89 0.91 0.79 0.86 0.84
Recall 0.76 0.78 0.81 0.88 0.82 0.83 0.82 0.83 0.81 0.82 0.81

F1 0.76 0.81 0.83 0.85 0.83 0.84 0.85 0.86 0.79 0.83 0.82
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Table 13. Average for all indicators (worst case for F1) per CNN over all 4 targeted attacks.

Targeted Attacks

Rth C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Avg

0.51

DR 100 100 100 100 100 100 100 100 100 100 100

TP 68.3 63.5 74.0 70.0 65.0 72.8 82.3 68.0 92.0 88.0 74.4

FP 26.5 26.5 22.0 25.3 25.0 21.8 20.3 19.8 36.8 33.8 25.8

FN 0 0 0 0 0 0 0 0 0 0 0

Precision 0.71 0.68 0.76 0.73 0.71 0.76 0.80 0.77 0.71 0.72 0.73

Recall 1 1 1 1 1 1 1 1 1 1 1

F1 0.82 0.81 0.86 0.84 0.82 0.86 0.89 0.87 0.83 0.83 0.84

F1Worst 0.78 0.76 0.85 0.83 0.80 0.85 0.88 0.86 0.83 0.83 0.82

0.91

DR 100 100 100 98.73 98.6 98.55 99.03 99.7 100 98.83 99.34

TP 68.25 63.5 74 69.25 64.25 71.75 81.5 67.75 92 87 73.93

FP 18.5 10 10.25 16.25 10.5 11 9.5 7.5 22.25 14.5 13.03

FN 0 0 0 0.75 0.75 1 0.75 0.25 0 1 0.45

Precision 0.77 0.84 0.87 0.8 0.84 0.86 0.89 0.89 0.79 0.85 0.84

Recall 1 1 1 0.99 0.98 0.99 0.99 0.99 1 0.99 0.99

F1 0.87 0.91 0.93 0.88 0.91 0.92 0.93 0.94 0.88 0.91 0.90

F1Worst 0.83 0.88 0.92 0.86 0.88 0.91 0.92 0.93 0.88 0.9 0.89

Table 14. Average for all indicators (worst case for F1) per CNN over all 7 untargeted attacks.

Untargeted Attacks

Rth C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Avg

0.51

DR 77.5 79.7 89.4 94.2 89.7 87.7 91.1 94.1 87.0 86.4 87.7

TP 72.8 73.7 84.3 89.7 83.7 85.3 85.1 89.0 82.9 81.4 82.8

FP 35.0 33.7 27.9 32.3 29.6 24.4 22.3 24.3 34.4 31.7 29.6

FN 21.0 18.4 10.0 5.4 9.4 11.9 8.1 5.4 12.3 12.7 11.5

Precision 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7

Recall 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

F1 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

F1Worst 0.64 0.62 0.76 0.81 0.77 0.76 0.82 0.82 0.72 0.70 0.7

0.91

DR 55.42 51.23 68.8 77.5 68.71 64.04 75.74 68.77 68.9 59.46 65.86

TP 52.17 47.71 65 73.86 64.43 62.43 70.86 65.29 65.71 56.14 62.36

FP 20.83 11.71 12.71 16.43 10 12.14 9.857 8 17.43 11.71 13.08

FN 41.67 44.43 29.29 21.29 28.71 34.71 22.57 29.14 29.43 38 31.92

Precision 0.70 0.78 0.83 0.81 0.86 0.83 0.87 0.88 0.79 0.81 0.82

Recall 0.55 0.51 0.68 0.77 0.68 0.64 0.75 0.68 0.69 0.59 0.65

F1 0.61 0.60 0.74 0.78 0.75 0.71 0.80 0.76 0.72 0.67 0.71

F1Worst 0.49 0.42 0.63 0.73 0.69 0.62 0.74 0.65 0.6 0.49 0.61

Table 15. Average for all indicators (worst case for F1) per CNN over all attacks.

All Attacks

Rth C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Avg

0.51

DR 88.73 89.86 94.68 97.11 94.86 93.86 95.55 97.07 93.50 93.21 93.84

TP 70.54 68.61 79.14 79.86 74.36 79.02 83.70 78.50 87.43 84.71 78.59

FP 30.75 30.11 24.93 28.77 27.29 23.09 21.27 22.02 35.59 32.73 27.65

FN 10.50 9.21 5.00 2.71 4.71 5.93 4.07 2.71 6.14 6.36 5.74

Precision 0.69 0.68 0.75 0.73 0.72 0.77 0.79 0.77 0.71 0.72 0.73

Recall 0.88 0.90 0.94 0.97 0.95 0.94 0.95 0.97 0.93 0.93 0.94

F1 0.76 0.76 0.83 0.83 0.81 0.84 0.86 0.86 0.80 0.80 0.82

F1Worst 0.71 0.69 0.81 0.82 0.79 0.81 0.85 0.84 0.78 0.77 0.78
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Table 15. Cont.

All Attacks

Rth C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Avg

0.91

DR 77.71 75.61 84.40 88.11 83.66 81.30 87.38 84.24 84.45 79.14 82.60

TP 60.21 55.61 69.50 71.55 64.34 67.09 76.18 66.52 78.86 71.57 68.14

FP 19.67 10.86 11.48 16.34 10.25 11.57 9.68 7.75 19.84 13.11 13.05

FN 20.83 22.21 14.64 11.02 14.73 17.86 11.66 14.70 14.71 19.50 16.19

Precision 0.74 0.81 0.85 0.81 0.85 0.84 0.88 0.89 0.79 0.83 0.83

Recall 0.77 0.75 0.84 0.88 0.83 0.81 0.87 0.84 0.84 0.79 0.82

F2 0.74 0.75 0.83 0.83 0.83 0.81 0.87 0.85 0.80 0.79 0.81

F1Worst 0.66 0.65 0.78 0.80 0.79 0.77 0.83 0.79 0.74 0.70 0.75

Table 16. For Rth = 0.51 and 0.91, the optimal number of permutations toptimal,C,atk per CNN and
attack, and the optimal number of permutations toptimal,C per CNN valid for all tested attacks
(potentially relevant to assess unknown attacks).

Optimal Number toptimal,C,atk of Permutations per CNN and Attack

Rth Scenario Attacks C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

0.51

Untargeted

EA 3 3 3 3 3 3 3 3 3 3

FGSM 3 19 13 3 9 9 7 13 5

BIM 3 3 11 5 11 19 3 17 13 5

PGD Inf 3 3 11 5 11 19 3 17 13 5

PGD L2 3 7 3 7 5 15 66 27 7 9

CW Inf 3 5 25 17 5 3 5 23 7 3

DeepFool 5 3 7 3 37 9 68 3 3 3

Targeted

EA 12 12 12 12 12 12 12 12 12 12

BIM 12 12 12 12 12 12 12 12 12 12

PGD Inf 12 12 12 12 12 12 12 12 12 12

PGD L2 12 12 12 12 12 12 12 12 12 12

toptimal,C per CNN 12 12 25 17 37 19 68 27 13 12

0.91

Untargeted

EA 12 12 12 12 12 12 12 12 12 12

FGSM 12 12 12 12 12 12 12 12 12

BIM 12 12 12 12 12 12 12 12 100 12

PGD Inf 12 12 12 12 12 12 12 12 100 12

PGD L2 12 12 12 12 12 12 12 12 12 12

CW Inf 12 12 23 12 34 12 12 12 12 12

DeepFool 12 34 12 12 12 12 12 12 12 12

Targeted

EA 12 12 12 12 12 12 12 12 12 12

BIM 12 12 12 12 12 12 12 12 12 12

PGD Inf 12 12 12 12 12 12 12 12 12 12

PGD L2 12 67 12 12 12 12 12 12 12 12

toptimal,C per CNN 12 67 23 12 34 12 12 12 100 12

10. Performance Comparison of ShuffleDetect and Feature Squeezer (FS)

To assess the extrinsic performance of ShuffleDetect, we compared it with the FS
detector [13]. We selected this detector since, similar to ShuffleDetect, it is an unsupervised
detector, which also presents no significant complexity issues. The comparison between
ShuffleDetect and FS is performed only according to the detection rate, and not according
to the other indicators mentioned in Section 3, since, for instance, the value of FPR in [13] is
determined by the behavior of FS as compared to another detector (MagNet [35]); hence,
it is not an intrinsic value, to the difference of what we do in Section 9 for ShuffleDetect.
Therefore, the comparisons of the detectors are performed on the 9480 images of Table 3,
adversarial against the 10 considered CNNs (Section 7).
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In our experiments, we used multiple squeezers for FS as suggested in [13] (we keep
their notations in what follows). The L1 norm is used to measure the difference between the
prediction by the CNN of the input image and the prediction of the squeezed input image:

scorex,xsqueezed = ∣∣g(x) − g(xsqueezed)∣∣L1 , (12)

where x is the input image and g(x) is the classification vector of the CNN according to the
different categories. Multiple feature squeezers are combined in the FS detector. In practice,
one computes the maximum distance:

scorejoint(x) = max(scorex,xsq1 , scorex,xsq2 , scorex,xsq3) (13)

The values of the parameters of the FS squeezers are chosen as the optimal values
recommended in [13]:

• Color depth reduction: the image color depth is decreased to 5 bits.
• Median smoothing: the filter size is set to 2× 2.
• Non-local means: the search window size is set to 11× 11, the patch size is set to 3× 3,

and the filter strength is set to 4.
• The threshold is set to 1.2128.

The image is declared by the FS detector as adversarial if scorejoint(x) ≥ 1.2128 and is
declared clean otherwise.

For ShuffleDetectC,Rth ,t, consistently with the outcomes of Section 9, we set t = 100,
Rth = 0.51 for all CNNs in the experiments (note that the size s × s of the patches is kept to
56× 56 for the images considered here).

Table 17 compares the detection rates of ShuffleDetect and FS for the 9480 adversarial
images referred to. For the 2975 adversarial images for the targeted scenario, both detectors
demonstrate high success rates. Even if FS achieves DR over 92%, it is outperformed by
ShuffleDetect, which achieves 100% in all cases. For the 6505 adversarial images for the
untargeted scenario, the success rates of both detectors experience a decline. FS achieves
slightly better results than ShuffleDetect for DeepFool and CW Inf, and significantly better
results for PGD Inf, BIM, PGD, and L2; it is outperformed by ShuffleDetect, slightly for
FGSM, and highly significant for EA. Regarding the overall performance (see the last row
of Table 17), ShuffleDetect achieves a higher success rate than FS on average (both scenarios
and all CNNs considered).

Table 17. Performance comparison of ShuffleDetect and FS regarding detection rates.

Scenario Attacks Detectors C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 AVG

Targeted

EA
ShuffleDetect 100 100 100 100 100 100 100 100 100 100 100.0

FS 89.0 100.0 90.9 94.0 91.1 90.6 89.9 91.9 93.8 95.9 92.7

BIM
ShuffleDetect 100 100 100 100 100 100 100 100 100 100 100.0

FS 100.0 94.7 98.2 100.0 97.8 98.2 97.3 98.0 96.6 97.4 97.8

PGD Inf
ShuffleDetect 100 100 100 100 100 100 100 100 100 100 100.0

FS 98.0 94.7 98.2 100.0 97.8 98.2 97.3 98.0 96.6 97.4 97.6

PGD L2
ShuffleDetect 100 100 100 100 100 100 100 100 100 100 100.0

FS 100.0 100.0 100.0 100.0 97.8 100.0 100.0 100.0 100.0 100.0 99.8

Untargeted

EA
ShuffleDetect 88.5 90.7 93.9 96.9 96.9 95.9 96.9 97.9 93.9 93.9 94.5

FS 53.1 43.3 45.5 39.8 40 33.3 33 35.7 47.5 35.4 40.6

FGSM
ShuffleDetect 80.7 89.0 92.5 86.2 87.2 85.7 92.5 85.8 86.5 87.3

FS 81.9 86.6 86.4 85 76.7 83.1 77.5 88 85.4 83.4

BIM
ShuffleDetect 66.6 72.5 86.4 93.7 86.0 83.6 88.4 92.6 84.2 84.0 83.8

FS 96.8 90.1 94.8 96.9 98 90.8 96.8 94.7 94.7 93.6 94.7

PGD Inf
ShuffleDetect 66.6 72.5 86.4 93.7 86.0 83.6 88.4 92.6 84.2 84.0 83.8

FS 96.8 90.1 94.8 96.9 98 90.8 96.8 94.7 94.7 93.6 94.7
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Table 17. Cont.

Scenario Attacks Detectors C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 AVG

Untargeted

PGD L2
ShuffleDetect 68.8 61.5 80.4 91.9 83.3 77.7 86.7 88.6 78.1 73.6 79.1

FS 97.8 90.1 94.8 97 97 90.9 94.9 93.8 95.8 91.6 94.4

CW Inf
ShuffleDetect 79.7 86.3 93.8 93.9 91.8 90.0 93.8 96.9 88.1 89.3 90.4

FS 93.6 92.6 92.9 91.9 92 89 96.9 91.9 95.7 91.5 92.8

DeepFool
ShuffleDetect 94.6 93.8 95.6 96.9 97.8 96.0 97.8 97.9 94.7 93.6 95.9

FS 98.9 96.9 97.8 96.9 95 95 97.9 96.9 99 100 97.4

Overall
ShuffleDetect 86.5 87.1 93.2 96.3 93.5 92.2 94.3 96.3 91.7 91.4 92.2

FS 92.4 88.6 90.4 90.9 89.9 86.7 89.4 88.5 91.1 89.3 89.7

11. Conclusions

In this paper, we presented ShuffleDetect as a new unsupervised method for the
detection of image adversarials against trained CNNs. We provided a complete design
and recommendations for the selection of the values of its parameters. Given a CNN
and an image potentially resized to fit the CNN’s input size, the steps that essentially
compose this new detection method are fairly simple. During the initiation phase, the
dominant category in which the CNN sorts the input image is required, the image is split
into non-overlapping patches (of fixed sizes, depending on the CNN’s own input size), and
a fixed set of appropriate permutations is selected at random. Then a loop is performed
according to the successive permutations, where the patches are shuffled with the running
permutation, and the dominant category in which the CNN sorts the shuffled image is
compared with the outcome for the unshuffled image, leading to a Boolean value. Finally,
one assesses the proportion of permutations for which the CNN classifies the shuffled
image into a different category than the unshuffled input image. ShuffleDetect declares
the image as adversarial if this proportion exceeds a threshold value Rth and declares the
image clean otherwise.

Our extensive experiments with 10 diverse and state-of-the-art CNNs, trained on
ImageNet with images usually resized to 224×224, with 8 attacks (one ’black-box’ and seven
’white-box’), and with 9500 clean and adversarial images for the targeted or untargeted
scenario led us to recommend a size of 56 × 56 for the altogether 16 patches, and the
“democratic” value Rth = 0.51. Although running ShuffleDetect with 100 permutations is
perfectly feasible and could be considered a safe option, a smaller number of permutations,
varying between 12 and 68 according to the considered CNN, may also lead to a satisfactory
detection rate. Additionally, if the defender has more information about the type of attack
expected, the number of permutations can be fine-tuned accordingly. This said, and since
this type of knowledge occurs rarely, we recommend taking at least 100 permutations.

Apart from the time needed for the creation of a fixed set of permutations, namely
0.064 s to obtain 100 permutations, which can be performed once for all (at least in our
implementation), the intrinsic performance of ShuffleDetect on our computers shows an
inference time latency of ≃0.0784 s per image per permutation. The algorithm can be
easily parallelized so that the required time for a complete run of the algorithm can be
significantly less than the ≃7.982 s/image when this task is not distributed. Out of this time-
consuming process, the classification process of an image by the CNN is ≃98.02%; therefore,
the shuffling process itself requires only ≃1.98%. The overhead is very limited since its
main part, the “permanent storage”, is required essentially only for the 100 permutations
(the storage per permutation is a sequence of groups of distinct integers between 1 and
16 in our case), and the dominating category of the unshuffled image. Among the main
indicators of a detector, the most relevant ones are the false positive rate and the detection
rate. With Rth = 0.51 and 100 permutations, as well as the average overall considered
CNNs and images, ShuffleDetect achieves an average FPR of 32.7%, an average DR of 100%
for the adversarial images obtained by targeted attacks, and 87.79% of those obtained by
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untargeted attacks. Our study also provides the scores of the other relevant indicators, i.e.,
TP, FP, FN, precision, recall, and F1.

While performing a thorough comparison with other detectors requires overcoming
the difficult challenges outlined in Section 3, in order to make sound comparisons under
the same conditions, we performed this task for one detector, namely FS, and showed that,
on average, ShuffleDetect achieves better detection rates than FS.

Independent of the outcome of any comparison process with other detectors, our Shuf-
fleDetect method could be used as a first line of defense before applying more sophisticated,
time-consuming, and overhead-consuming detection methods than ShuffleDetect.

As a potential area for future research, it would be worthwhile to assess the effec-
tiveness of ShuffleDetect using CNNs trained on Cifar10 and MNIST datasets. This could
result in determining the optimal patch size as a ratio to the image size. Additionally, it
would be beneficial to explore the optimal patch size for images containing very small or
very large objects.
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Appendix A

abacus

acorn

baseball

broom

brown bear

canoe

hippopotamus

llama

maraca

mountain bike

Figure A1. The 100 ancestor images Ap
q used in the experiments. Ap

q pictured in the qth row and qth
column (1 ≤ p, q ≤ 10) is randomly chosen from the ImageNet validation set of the ancestor category
caq specified on the left of the qth row.
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Table A1. The original sizes (h ×w) of the 100 ancestor images Ap
q before resizing with the bilinear

interpolation function.

Ancestor ImagesAp
q and Their Original Size (h ×w)

caq q
p 1 2 3 4 5 6 7 8 9 10

abacus 1 (206, 250) (960, 1280) (262, 275) (598, 300) (377, 500) (501, 344) (375, 500) (448, 500) (500, 500) (150, 200)

acorn 2 (374, 500) (500, 469) (375, 500) (500, 375) (500, 500) (500, 500) (375, 500) (374, 500) (461, 500) (333, 500)

baseball 3 (398, 543) (240, 239) (180, 240) (333, 500) (262, 350) (310, 310) (404, 500) (344, 500) (375, 500) (285, 380)

broom 4 (113, 160) (150, 150) (333, 500) (500, 333) (497, 750) (336, 500) (188, 250) (375, 500) (334, 500) (419, 640)

brown bear 5 (500, 333) (286, 490) (360, 480) (298, 298) (413, 550) (366, 500) (400, 400) (348, 500) (346, 500) (640, 480)

canoe 6 (500, 332) (450, 600) (500, 375) (375, 500) (406, 613) (600, 400) (1067, 1600) (333, 500) (1536, 2048) (375, 500)

hippopotamus 7 (375, 500) (1200, 1600) (333, 500) (450, 291) (525, 525) (375, 500) (500, 457) (424, 475) (500, 449) (339, 500)

llama 8 (500, 333) (618, 468) (500, 447) (253, 380) (500, 333) (333, 500) (375, 500) (375, 500) (290, 345) (375, 500)

maraca 9 (375, 500) (375, 500) (470, 627) (151, 220) (250, 510) (375, 500) (99, 104) (375, 500) (375, 500) (500, 375)

mountain bike 10 (375, 500) (500, 375) (375, 500) (333, 500) (500, 375) (300, 402) (375, 500) (446, 500) (375, 500) (500, 333)

Appendix B

Table A2. For a 224× 224 image, grid of its 16 patches of size 56× 56, represented as Pi,j (left grid),
and as P1,⋯, P16 (right grid) as used by the permutations σk.

Left Grid Right Grid

P1,1 P1,2 P1,3 P1,4 P1 P2 P3 P4

P2,1 P2,2 P2,3 P2,4 P5 P6 P7 P8

P3,1 P3,2 P3,3 P3,4 P9 P10 P11 P12

P4,1 P4,2 P4,3 P4,4 P13 P14 P15 P16

Table A3. For t up to 100 rounds, the list of random permutations σr for 1 ≤ r ≤ 100. Each σr is
represented as the product of cycles operating on 16 patches of a 224× 224 image.

t = 100

Round r Permutation σr Round r Permutation σr

1 (1,13,4,6)(2,14,10)(3,11,12,5,9)(7,16,15,8) 51 (1,9,10,8,13,6,2,15,5,14,4,7,11)(3,16)

2 (1,8,9,2,6,11,15,12)(3,4,5,10,7)(14,16) 52 (1,11,15,4,10,2,3,5,12,9,13,8,16,7)(6,14)

3 (1,2,10,12)(3,11,16,15)(4,6,13,7,14,9,5) 53 (1,12,3,7,2,5,6,15,16,14,4,10)(8,13)(9,11)

4 (1,12,7,6,9,5,13,16)(2,4,14,10)(3,11,15,8) 54 (1,2,13,12,7)(3,6,4,8)(9,10)(11,15)

5 (3,5,14,16,7,4,12,6,13,11)(8,15,9,10) 55 (1,6,3)(2,12,14,4,15,7)(5,9)(8,13,10,11,16)

6 (1,7,4,9,2,5)(3,14)(6,16,8,13,10,15,12,11) 56 (1,8,3,4,13,10,9,16,5,2,7,11,12)(6,15)

7 (1,7,15,5,10,4,2,13,14,12,6,9)(3,11,16,8) 57 (1,5,12,9,15,4,7,11,2,10,6,16,8,3,14)

8 (1,2,5)(3,11,16,10,12,9,7,6,15,4,13,8) 58 (1,12)(2,6,13,10,7,8)(3,15,5,16,11,9)(4,14)

9 (1,7,15,8,13,5,9,11)(2,12)(3,16,14,4)(6,10) 59 (2,11,13,6)(3,12,10,7,16,4)(5,8)(9,15,14)

10 (1,16,8,15,4,5,6)(3,14,13)(7,12)(9,10,11) 60 (1,13,15,8,4,14,5,9,12,7,10,11,16,3,6,2)

11 (1,8,10,13,9,6,2)(3,12,5,15,14,4,7)(11,16) 61 (1,2,14,6,10,7)(4,5,12,9,8,16,11)

12 (1,4,14,16,5,6,11,13,15,9)(2,12,10,3,8) 62 (1,11)(2,7,4,5,10,12,14,9)(3,6,8,13,15,16)

13 (1,5,14,13,10)(2,6,7,4,8)(3,15,11,9,16,12) 63 (1,9,14,15,11,5,8,10,2,4,3,12,16,13,6,7)

14 (1,16,9,4,3,2,5,7,6,11,12,10,8,15,14,13) 64 (2,11,12,10,5)(3,16,14,13,4,8,6,15)(7,9)

15 (1,16,5,13,8,6)(2,15,14,10,11,12,9,3,7,4) 65 (1,5,12,3,2,6,11,13,16,14)(7,10,15)

16 (1,14,12,2,13,7,10,8,3,15,11,6,16,4) 66 (1,15,7,11,12,2)(3,10,4,14,5,8,6,16,9,13)

17 (1,2,5,13)(4,11,8,10,16,14,15)(6,7)(9,12) 67 (1,4)(2,6,15,11,12,16)(3,5,14)(7,8)(9,10)

18 (1,12,13,16,3,8,10,2,11,14,7,4,15,6) 68 (1,13,6,14,2,10,5,15,11,9,4,12,8,3,7,16)

19 (1,8,4,16,3,13,6,7,15)(2,12)(5,14,11)(9,10) 69 (1,9,15,6,8,10,11,2,12,16,4,13,14,7)(3,5)

20 (1,14,15,5)(2,4,12,13)(3,8,16,11)(6,7)(9,10) 70 (1,2,6,8,3)(4,12)(5,7,13,10,15)(9,11,14,16)

21 (1,2,6)(3,8,14,10,13,12)(5,9,16,15) 71 (2,10,16,6,13,3,14,12)(4,5,8,15,7,9,11)
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Table A3. Cont.

t = 100

Round r Permutation σr Round r Permutation σr

22 (1,3,11,14,2,10)(4,12,6,7,15,5,16,9)(8,13) 72 (1,8,13,7)(2,10,15,6,14,9,3,16,5,11)

23 (1,4,11,9,14,7,2,5,3,8,6)(10,15) 73 (1,5,16,12,6,2,8,11,4,10,9,13,14)(7,15)

24 (1,12,8,7)(2,4,5,14,6,9,3,13,16)(10,15,11) 74 (1,6,16,13,11,5,14,4,3,9,15,2,8,10,7)

25 (1,14,6,4,10,16,5,13,12,2,8,15,9,3,7,11) 75 (1,12,9,6,15,4,5,14,2,3)(7,11,16)(8,13)

26 (1,15,5)(2,13,4,9,16,8,11,12,3,6,10,14,7) 76 (1,11,15,16,9)(2,12,5,3,8,13,6)(7,10,14)

27 (1,10,8,12,14,7,2)(3,13,11,5,6)(4,15) 77 (2,8,15,10,16,9,12,7,4)(3,5,11,14)(6,13)

28 (1,8,11,7,16,5,6,12,4,14)(2,15,3,10,9) 78 (1,15,11,8,16,5,2,12,3,13,6,10,14)(4,9)

29 (1,5,3,12,15,11)(2,14,10,6,8,9,7,13,16) 79 (1,16,13,5,3,10,6,4,15,2,11)(7,14,9)

30 (1,10,8,15)(3,9,7,4,12)(5,11,6) 80 (2,10,13,11,15,6,5,8,3,16,4,7,9,14)

31 (1,3,10,6,9,7,16,2,8)(4,5,14)(12,13) 81 (1,5,15,2,16,10,9,14,11,4,12,6,3)

32 (1,2,11,16,10,15)(3,14,6,5,9)(4,7,13,12) 82 (1,13,5,10,2,15,11,4,16,7,12,9,14,3,8,6)

33 (1,16,14,13,10,7,12,3,6,11,9,5)(2,4) 83 (1,14,8,9,15,3,5,2,7,10,4,12,6,11,16)

34 (1,6,14)(2,10,3,15,9,12,11,4,16,13,8,7) 84 (1,15,8,9,4,3,16,6,7,14,5,12,2,10,13,11)

35 (1,2)(3,15,16,13,12,4,5,6,7,9,10,11)(8,14) 85 (1,9,3,13)(4,11,15,12)(5,16,6,10,7,8,14)

36 (3,12,8,6,7,10,16,5,15,13)(4,9) 86 (1,9,15,8,13,14,6,11,7)(2,10,12,3,16,5,4)

37 (1,3,10,4,15,8,16,12,13,7,14,9,2) 87 (1,3,9,7,6,4,5)(10,12,14,16,11)(13,15)

38 (1,4,16)(2,9,5,13,10,14,3,11,8,7)(12,15) 88 (1,9,8,12,14,5,10,6,15,4,3)(2,11,16,13)

39 (1,4,5,2,11,10,12,9,14,15,3,16,13)(7,8) 89 (1,13,2,9,16)(3,14,11,8,7,15,6)(5,12,10)

40 (1,9,8,15,5,10,11,12,4,14,2,3,13,16,6,7) 90 (1,8,16,2,6,3,10,14,7,13,4,9,12,5,11)

41 (1,8,9,11,16,4)(2,13,14,15,7,12)(3,10,5) 91 (1,5,16,6,10,3,11,15,9,12,14,8,7,2,4)

42 (1,9,4,15,14,5)(2,11,12,3,6,10,13)(7,8,16) 92 (1,10,16,11,4,8,5,12,13,3,14,9)(2,7,15)

43 (2,8,14,9,7,16,12,10,13,6,15,3,11,4,5) 93 (1,4,2,13,6,9,14,3,10,8,16,11,15,7)

44 (1,11,12,14,2,13,8,9,3,10,6)(5,15,16) 94 (1,16,15,3,9,2,6,7,11,4)(5,8,14,12)(10,13)

45 (1,3,16,4)(2,5,6,15,7,11)(8,9,10)(13,14) 95 (3,10,13,15,12,9,14,16,7,5,4,6,8,11)

46 (1,6,12,10,8,15,5)(2,4,16,3,13)(7,14,9,11) 96 (1,6,15,4,5,3,16,13,9,10,12,2,8,7)

47 (1,7,14,3,4,16,8,13)(2,9)(5,12,6,11)(10,15) 97 (1,14,2,7,3,13,8,16,5,11,15,4,6,10,9,12)

48 (1,8,14,6,11,13,3,10,12,16,2,15,5,7,4) 98 (1,13,3,16)(2,11,6,14,5)(4,9,10,7,12,8,15)

49 (1,8,12,10,11,6,9,15)(3,13,4,7)(5,16,14) 99 (1,6,13,5,12,15,2)(3,14,8)(7,11)(9,16,10)

50 (1,5,16,2,11,4,13,15,12,3,8,7,14,6) 100 (1,12,11,8,2,3)(4,14,16,7,10,6)(5,13,15)

Table A4. The duration, in s, of each of the main steps of Algorithm 1 for each CNN.

Per Permutation

C Steps: 8–12
Shuffling Predicting

Shuff% Pred%
Step: 8 Steps: 9–10

C1 0.0955 0.0014 0.0941 1.483 98.511

C2 0.1176 0.0014 0.1162 1.228 98.767

C3 0.0578 0.0016 0.0563 2.727 97.264

C4 0.0933 0.0016 0.0917 1.664 98.330

C5 0.1262 0.0016 0.1246 1.233 98.763

C6 0.0660 0.0016 0.0644 2.449 97.542

C7 0.0844 0.0017 0.0828 1.975 98.018

C8 0.1017 0.0017 0.1000 1.678 98.316

C9 0.0213 0.0015 0.0198 6.930 93.047

C10 0.0196 0.0015 0.0182 7.563 92.411

AVG 0.0784 0.0015 0.077 1.978 98.015
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Appendix C

(a) C1 (b) C2

(c) C3 (d) C4

(e) C5 (f) C6

(g) C7 (h) C8

(i) C9 (j) C10

Figure A2. Shuffling test results of 100 clean (ancestor) images on C = C for 1 ≤ k ≤ 10 over 100
permutations.
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Figure A3. ShuffleDetect results for adversarial images generated by the EA-targeted attack on C = C
for 1 ≤ k ≤ 10 over 100 permutations.
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Figure A4. ShuffleDetect results for adversarial images generated by the BIM-targeted attack on
C = C for 1 ≤ k ≤ 10 over 100 permutations.
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Figure A5. ShuffleDetect results for adversarial images generated by the PGD Inf-targeted attack on
C = C for 1 ≤ k ≤ 10 over 100 permutations.
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Figure A6. ShuffleDetect results for adversarial images generated by the PGD L2-targeted attack on
C = C for 1 ≤ k ≤ 10 over 100 permutations.
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Figure A7. ShuffleDetect results for adversarial images generated by the EA-untargeted attack on
C = C for 1 ≤ k ≤ 10 over 100 permutations.
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Figure A8. ShuffleDetect results for adversarial images generated by the FGSM-untargeted attack
on C = C for 2 ≤ k ≤ 10 over 100 permutations.
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Figure A9. ShuffleDetect results for adversarial images generated by the BIM-untargeted attack on
C = C for 1 ≤ k ≤ 10 over 100 permutations.
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Figure A10. ShuffleDetect results for adversarial images generated by the PGD Inf-untargeted attack
on C = C for 1 ≤ k ≤ 10 over 100 permutations.
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Figure A11. ShuffleDetect results for adversarial images generated by the PGD L2-untargeted attack
on C = C for 1 ≤ k ≤ 10 over 100 permutations.
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Figure A12. ShuffleDetect results for adversarial images generated by the CW Inf-untargeted attack
on C = C for 1 ≤ k ≤ 10 over 100 permutations.
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Figure A13. ShuffleDetect results for adversarial images generated by the Deep Fool-untargeted
attack on C = C for 1 ≤ k ≤ 10 over 100 permutations.
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