
Citation: Deng, Q.; Zeng, F. Vehicular

Edge-Computing Framework for

Making Use of Parking and Charging

Electric Vehicles. Appl. Sci. 2023, 13,

4065. https://doi.org/10.3390/

app13064065

Academic Editor: Christos Bouras

Received: 31 January 2023

Revised: 10 March 2023

Accepted: 20 March 2023

Published: 22 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Vehicular Edge-Computing Framework for Making Use of
Parking and Charging Electric Vehicles
Qi Deng and Feng Zeng *

School of Computer Science and Engineering, Central South University, Changsha 410083, China
* Correspondence: fengzeng@csu.edu.cn

Abstract: In big cities, there are more and more parking lots and charging piles for electric vehicles,
and the resources of parking and charging vehicles can be aggregated to provide strong computing
power for vehicular edge computing (VEC). In this paper, we propose a VEC framework that uses
charging vehicles in parking lots to assist edge servers in processing computational tasks, and an edge
crowdsourcing platform (ECP) is designed to manage and integrate the idle computation resources
of electric vehicles in parking lots to provide computation services for requesting vehicles. Based
on game theory, we first model the interactions among the edge server, the ECP and the requesting
vehicles as a Stackelberg game, and theoretically prove the existence of a Nash equilibrium for this
Stackelberg game. Then, a genetic algorithm-based game-strategy solving algorithm is proposed to
find the optimal strategy for the edge server and ECP. The simulation results demonstrate that the
performance of our proposed solution is better than other traditional solutions. Compared with the
solution without ECP, our solution can increase the utilities of the edge server and the requesting
vehicle by 13.3% and 10.99%, respectively.

Keywords: vehicular edge computing; task offloading; game theory; edge crowdsourcing; parking
vehicle

1. Introduction

With the rapid development of information technology, advanced vehicular appli-
cations such as autonomous driving, intelligent cockpit, virtual reality, and so on, are
emerging. These computation-intensive vehicular applications require a large number of
computing resources, and low-response latency should be ensured. Due to the limited
computing resources in vehicles, the vehicle side may be impossible to provide high-quality
computing services for these applications. Moreover, although the cloud center has a
large number of computing resources, it is far away from the vehicles and the network
transmission of huge data would bring high response latency. Deploying the servers at the
edge of the vehicles can shorten the communication distance and also provide powerful
computing capability for these vehicular applications. Consequently, vehicular edge com-
puting (VEC) [1] has emerged, with communication base stations and servers deployed
on the sides of the road, which form a vehicular edge network to provide low latency and
highly reliable computing services for vehicles.

With the support of VEC, the vehicles can offload computation tasks to the edge
servers and then obtain efficient computing services. Generally speaking, the quality of
service is affected by the number of deployed edge servers. With the vehicular intelligence
applications widely used, the limited resources of edge servers will not be able to meet
the increasing demand for computation services [2]. Therefore, it becomes a challenge to
expand the VEC resources and optimize the allocation of computing resources. To address
the problem of insufficient edge resources in VEC, existing research works dealt with
this problem from the following two aspects. Firstly, more lightweight edge servers are
deployed. For example, Zhang et al. [3] proposed a method to deploy standby servers in
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roadside units (RSUs) to alleviate the shortage of VEC resources. However, this approach
requires much cost for deploying the servers, and with the continuous increasing of service
demand, the shortage of standby resources will occur once again. Meanwhile, it also results
in a surplus of resources during off-peak periods. Secondly, it taps into the underutilized
resources of nearby vehicles. This solution does not require the deployment of additional
edge servers and uses the large number of idle computing resources provided by nearby
vehicles to assist the edge servers in computation offloading.

In recent years, we have found that electric vehicles are not only the traditional vehicles,
but are also mobile supercomputers loaded with powerful CPUs, large data-storage units,
and advanced communication technology. However, these in-vehicle resources will often
be idle and not fully utilized. Therefore, aggregating the idle resources in vehicles for VEC
would be one of the ways to effectively extend VEC computing resources. In the literature,
Li et al. [4] made use of parking vehicles to participate in task processing. It is impractical
for traditional fuel vehicles to provide computation resources in the parking state, which
is costly and unsustainable. However, nowadays, the commercial operation of electric
vehicles has built a large number of special parking lots for electric vehicles in various
areas of the cities, and many charging piles are deployed in the parking lots for vehicle
charging. The charging piles can obtain the remaining power and related information of the
vehicles, and the infrastructure deployed in these parking lots provides great convenience
for parking vehicles to participate in VEC services. Compared with VEC servers, these
parking vehicles have cheaper computing resources. Therefore, with the parking vehicles’
computing resources used in VEC, vehicle users can not only have more adequate edge
computing resources, but also obtain relatively cheaper computing services. However,
how to effectively integrate the idle resources of parking vehicles for edge computing is a
problem to be solved and which will be studied in this paper.

In previous studies, parking vehicles are mainly used in edge computing for content
delivery [5], which may face resource limits for all the participants. As vehicular intelligence
applications become more and more popular, the limited edge server resources will not be
able to meet the growing demand for computing services. Deploying more lightweight
edge servers requires significant costs and results in wasted resources during off-peak
hours. Moreover, it is impractical, costly, and unsustainable for traditional fuel vehicles to
engage in computing tasks while parked. Electric vehicles are well-resourced, inexpensive,
and continuously rechargeable, making them the best choice to assist edge servers.

In general, the electric vehicle commercialization services have a charging management
system, which manages the charging piles and vehicles, and collects various information
about charging vehicles in the parking lots. Therefore, the management system can aggre-
gate a large number of parking vehicles to participate in VEC. In this paper, we propose a
framework in which the vehicles assist the VEC servers to complete the offloaded tasks.
The framework establishes an edge crowdsourcing platform (ECP) near the parking lots,
and the ECP integrates the functions of the charging management system, which enables
the ECP to provide charging management services for the vehicles in the parking lots and
to act as a crowdsourcing service platform to assign computing tasks to charging vehicles.
The main contributions of this paper are as follows.

(1) We propose a VEC framework that uses electric vehicles in parking lots to assist edge
servers in processing computational tasks. An edge crowdsourcing platform (ECP) is
built to manage and integrate the idle computational resources of electric vehicles in
parking lots, so that it can provide computational services for requesting vehicles.

(2) To maximize the utilities of all participants in VEC, based on the Stackelberg game, we
analyze the interactions among the requesting vehicles, the edge server, and the ECP,
and theoretically prove the existence of a Nash equilibrium for this Stackelberg game.
Then, a game strategy-solving algorithm based on a genetic algorithm is proposed to
find the optimal strategies for the edge server and the ECP.

The rest of this paper is structured as follows. In Section 2, we discuss and analyze the
latest related research works. Section 3 presents the system model and definitions. Section 4
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analyzes the interaction between the VEC server and the ECP based on Stackelberg game.
Section 5 shows the simulation experimental results. In the last section, a summary and
outlook of our work are given.

2. Related Work

Vehicular edge computing can provide efficient computing services for vehicular
applications. However, the edge resources are limited, and we should consider the optimal
utilities of the computing resources, which has been a hot research topic and extensively
studied by many scholars.

Considering the interests of both the service requester and provider, Du et al. [6]
presented a dual-end optimization problem that tried to balance the interests of the user
side and the server side. On the user side, it is dedicated to optimizing the offloading
strategy and the frequency of the local central processor. On the server side, the main focus
is on optimizing resource scheduling and service provisioning. Considering vehicular
edge computing assisted by solar RSUs, Ku et al. [7] proposed a heuristic algorithm based
on dynamic programming, which can jointly perform task partitioning and offloading in
real-time, as well as accomplish adaptive decisions at the system and application levels,
thus reducing end-to-end latency. However, in the above research works, it is supposed
that the edge computing resources are sufficient, which is not the truth in actual situations.
Nazar et al. [8] proposed a machine learning-based, region-/context-aware equipped
content pre-caching strategy that addresses the problem of pre-caching of early decisions
and predicted results.

Some scholars have used optimization methods to find the optimal strategy for com-
putation offloading. Dai et al. [9] proposed a particle swarm optimization-based approach
to minimize the energy and resource consumption in computation offloading with the
delay constraint. Li et al. [10] considered the long-term scheduling policy optimization, and
modeled the problem as a specific Markov decision process (MDP) based on the scheduling
queue. Then, a deep reinforcement learning (DRL)-based algorithm was proposed to find
the solution. Liu et al. [11] developed an efficient task = scheduling algorithm, and the
basic idea is to prioritize multiple applications and tasks to ensure the completion time
constraints of the applications and the processing dependency requirements of the tasks.
Luo et al. [12] further modeled the resource scheduling as a deep reinforcement learning
problem that is solved by an enhanced deep Q-network (DQN) [13] algorithm with an
independent target Q-network to achieve optimal resource utilization for the whole system.

Some scholars have considered the balance of energy consumption and latency in
computation offloading. Ning et al. [14] proposed an online learning model for latency
and energy consumption to minimize the offloading cost. Jang et al. [15] considered the
changes in the communication environment due to vehicle movement and jointly optimized
multiple vehicle offloading and bit scheduling to reduce the total vehicle energy overhead.
Zhou et al. [16] proposed a value-based iterative reinforcement learning (RL) approach to
determine a joint strategy for computation offloading and resource allocation, a double deep
Q network (DDQN) based approach was developed to minimize the energy consumption
of the whole system. Kumar et al. [17] summarized the methods related to reducing the
energy consumption in wireless sensor networks, and lower energy consumption in sensor
networks can save the computational cost in the VEC framework to a great extent, which
makes it possible to apply the framework in reality.

In order to improve the performance of VEC, some scholars have designed incentive
mechanisms to encourage vehicles to participate in edge computing and contribute their
idle resources. Shi et al. [18] proposed a distributed vehicle-vehicle offloading architecture
that maps task scheduling into a sequential decision problem considering the channel state
and the limited resources. In addition, a dynamic pricing scheme was proposed to guide
vehicles to contribute the idle computing resources. Considering the importance of service
caching in VEC, Zeng et al. [19,20] proposed a vehicular edge computing framework based
on software defined networks, which introduced the reputation to measure the contribution
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of each vehicle for VEC. Li et al. [21] designed a VEC architecture using idle resources from
parked vehicles. They proposed a three-stage offloading incentive mechanism based on
the Starkelberg model and obtained the optimal policy for each participant by solving the
three-stage optimal policy using backward induction. The above research work does not
mention the organization and management of parked vehicles, and some actual factors are
not taken into account. For comparison purposes, we summarize the characteristics of the
aforementioned works in Table 1.

Table 1. Summary of related works.

Literature Problems and Solutions Results

Du [6] A dual-end optimization method is proposed to balance the benefits
of the user side and server side. Reduce costs.

Ku [7]

A heuristic algorithm based on dynamic programming is proposed,
which can jointly perform task partitioning and offloading in real
time, as well as accomplish adaptive decisions at the system and
application levels.

Reduce end-to-end latency.

Nazar [8]
A machine learning-based, region-/context-aware equipped content
pre-caching strategy is proposed that addresses the problem of
pre-caching of early decisions and predicted results.

Improved pre-caching in VANET to avoid
network congestion.

Dai [9]
A particle swarm optimization-based approach is proposed to
minimize the energy and resource consumption of computational
offloading under delay constraints.

Reduce average task completion time and
improve resource utilization.

Li [10] A Deep Reinforcement Learning (DRL) based algorithm is proposed
to solve the scheduling policy optimization problem.

Enable tasks with varying degrees of urgency
to be completed within time constraints.

Liu [11]
A task scheduling algorithm is proposed to rank tasks in order of
priority to meet the time constraints and processing dependency
requirements of the tasks.

Reduce the average completion time of mul-
tiple tasks.

Luo [12]
The problem of resource scheduling is addressed by the Deep
Q-Network (DQN) algorithm enhanced in
deep reinforcement learning.

Achieve optimal utilization of resources.

Ning [14] Limited cellular spectrum and energy supplies restricted. Minimize the offloading cost.

Jang [15]
Address the issue of optimal energy-efficient offloading strategies
when the communication environment changes due to
vehicles movement.

Reduce total vehicles energy consumption.

Zhou [16]
A value-based iterative reinforcement learning (RL) approach,
named Q-learning, is proposed to determine a joint strategy for
computational offloading and resource allocation.

Minimize the energy consumption of the
whole system.

Kumar [17]
Methods related to the reduction of energy consumption in WSNs
(a group of sensor nodes capable of sensing various environmental
parameters) are summarized.

If applied to the VEC framework, resource
consumption can be reduced.

Shi [18]
The sequential decision problem of task assignment is solved by
reinforcement learning; a dynamic pricing scheme is proposed to
guide vehicles to contribute idle computational resources.

Improve task assignment performance.

Zeng [19]
A software defined network based vehicular edge computing
framework is proposed that introduces reputation values to measure
the contribution of each vehicle to the VEC.

Reduce delay, increase edge server profits.

Li [21]
A three-stage offloading incentive mechanism based on the
Starkelberg model is proposed to obtain the optimal strategy for
each participant.

Enhance the utility of tripartite participants.

Different from the existing works, in this paper, we consider the actual scenario of
commercialization of new emerging electric vehicle services and try to maximize the utiliza-
tion of the idle resources of parked vehicles. With the rapid development and popularity of
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new energy or electric vehicles, more and more parking and charging sites have been built
in cities, especially in the big cities in China. According to the urban development plan
of Beijing, there will be 700,000 electric vehicle charging piles in the city by 2025, and the
average service radius of electric vehicle public charging facilities in plain areas will be less
than 3 km. In the parking and charging lots, the charging piles can collect the information
of remaining electric power in each charging vehicle, and control the charging power for
the vehicle. Meanwhile, the service providers have developed a management software
system to manage and schedule the vehicles for optimal charging. Due to the sufficient
parking and charging vehicles in a city, it becomes possible to aggregate the idle computing
resources of these parking electric vehicles using crowdsourcing technology, and these
parking vehicles can make full use of the idle resources to provide computing services for
vehicular applications. Therefore, in this paper, we will establish an edge crowdsourcing
platform (ECP) in the parking lot, and the ECP integrates the charging management and
crowdsourcing functions. With the ECP, we can design an effective incentive mechanism
to encourage parking vehicles to participate in VEC. As a result, the VEC services can be
provided via collaboration among the edge servers, the ECP, and the parking vehicles.
However, considering the selfishness of service providers, a reasonable incentive mecha-
nism is needed to maximize their respective interests while providing efficient computing
services. In the following, we will analyze the three-party cooperation mechanism based
on the Stackelberg game theory and find the optimal strategies for the three parties.

3. System Model and Definitions
3.1. System Model

Considering the full use of resources in vehicles, we propose a VEC framework based
on software defined network (SDN) [22], which is shown in Figure 1. The framework
includes requesting vehicles, roadside units (RSUs), VEC servers, parking vehicles, and the
edge crowdsourcing platform (ECP).

(1) Requesting vehicle: requesting vehicles are those vehicles that need to offload
some of their computing tasks to the edge nodes. The requesting vehicles offload some
computing tasks to the edge servers and the ECP via RSUs, while they should pay the
service providers for the computation offloading.

(2) VEC server: VEC servers are the edge servers deployed on both sides of the road
and communicate with requesting vehicles via RSUs. When the requesting vehicles offload
the computation task to the VEC server, the VEC server will allocate the resources to
complete the task and return the computation results to the requesting vehicles. Providing
computation services for requesting vehicles, the VEC servers can obtain the payment from
the requesting vehicles.

(3) Edge crowdsourcing platform (ECP): ECP aims to gather parking electric vehicles
and use the idle resources of parking vehicles for VEC. The ECP can provide charging
management services for the vehicles in the parking lots, meanwhile act as a crowdsourcing
platform to assign computing tasks to parking vehicles. Since the number of parking
vehicles is large at any time in a city, the ECP can integrate the efficient computing resources
for VEC, which ensures that the ECP can continuously and steadily provide computing
services for requesting vehicles. As the service provider, the ECP can obtain the reward
from the requesting vehicles. Obviously, the computation task is finally undertaken by the
parking vehicles elected by the ECP, and the ECP should pay the task undertaking vehicles
the corresponding rewards.

(4) Parking vehicles: in this paper, the parking vehicles are those charging electric
vehicles in parking lots. In the actual situation, since the charging vehicles have idle
computing resources and they will keep static for some time, those vehicles can provide
cost-effective computation services for other vehicles. Parking vehicles can join the ECP
voluntarily and can use their idle resources to process the tasks assigned by the ECP during
the charging process, and finally receive the corresponding rewards.
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(5) Software-defined network (SDN): It is an implementation of network virtualiza-
tion, separating the control plane of network devices from the data plane, controlling the
behavior of SDN devices through the standardized interface protocol of OpenFlow, and
making decision analysis according to user requirements. Based on SDN technology, the
SDN controller can collect information of the requests from vehicles and the status of edge
servers and the ECP, then make the optimal schedule of the global computing resources
including the edge servers and the ECP. The proposed algorithm can be run in the SDN
controller to find the strategies for the requesting vehicles, edge servers, and the ECP, then
they can cooperate to achieve their maximized utilities.

Figure 1. The SDN-based VEC framework.

As is shown in Figure 1, some RSUs are deployed on both sides of the road, and each
RSU is integrated with an edge server, and all servers, the ECP and SDN controller, are
connected in a backbone network. The vehicles can access the edge servers and the ECP
via RSUs or charging piles. It is supposed that there are n requesting vehicles within the
communication range of RSUs, and the requesting vehicles are denoted as Ri(i ∈ [1, n]).
A computation task from the requesting vehicle can be denoted as Ai = {Qi, qiv, qie}(i ∈
[1, n]), where Qi denotes the total task size which may be the data volume to be processed,
the qiv denotes the task size offloaded to the VEC server, and qie denotes the task size
offloaded to the ECP. If the ECP is allocated a task, the ECP will post the task on the
platform to recruit m parking vehicles for crowdsourcing, and each one requires a fee
denoted as Pj(j ∈ [1, m]). Then, the m parking vehicles will collaborate to process the task.
We assume that each parking vehicle is assigned a workload denoted as qij.

As shown in Figure 2, the computation offloading includes the following steps:
Step 1: The vehicles request the edge network for computation task offloading.
Step 2: The SDN controller executes the algorithm to determine the best strategies for

the edge server and the ECP, and responds to the requesting vehicle.
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Step 3: According to the responded solution, the requesting vehicle offloads the
subtasks to the edge server and the ECP via RSU.

Step 4: The edge server processes the offloaded subtask and receives the reward. With
the crowdsourcing platform, the ECP assigns the sub-tasks to the selected parking vehicles
in an efficient manner, and the ECP pays the corresponding rewards to the task-undertaking
vehicles after receiving the payoffs from the requesting vehicle.

Step 5: The SDN controller finds the location of the requesting vehicle and sends back
the computation results to the requesting vehicle via its closest RSU.

Figure 2. Task offloading steps in parking vehicles assisted edge computing.

3.2. Delay and Energy Consumption Model

The total delay of task offloading can be divided into two parts, which are task data
transmission time and task data processing time. The time of task data transfer from the
requesting vehicles (Ri) to the edge server is denoted as Tt

iv = qiv
rv

, and the time of task
data transmission to the ECP is denoted as Tt

ie = qie
re

, where rv and re denotes the data
transmission rate from the requesting vehicle to the edge server and the ECP, respectively.
The time of the ECP to assign the computation subtasks to the parking vehicles (Pj) is
denoted as Tt

ij = qie
d , where d is the data transmission rate between the ECP and the

parking vehicle.
For any computation task, the processing time is related to the volume of task data.

Then, the task processing time of the edge server can be expressed as Tc
iv = αqiv

cv
, where α is

the number of CPU cycles for unit data processing, and Cv is the data volume processed
by the edge server in every unit time. Correspondingly, the task processing time of the
parking vehicles in the ECP can be expressed as Tc

ij =
αqie
cje

, where Cje denotes the computing
capacity of the j parking vehicle. Since the data volume of the result is small, the return time
of the computation result is ignored in this paper. Therefore, the delay for the requesting
vehicle offloading task to the edge server and the ECP can be expressed as Tiv and Tij:

Tiv = Tt
iv + Tc

iv =
qiv
rv

+
αqiv
cv

, (1)

Tij = Tt
ie + Tc

ij + Tt
ij =

qie
re

+
αqie
cje

+
qie
d

. (2)

As far as the energy consumption is concerned, the energy consumption of ECP
is mainly for assigning the computation subtasks to the parking vehicles, which can be
defined as:
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Ed
ie = σ

qie
d

, (3)

where σ denotes the task assignment energy factor of the ECP.
The energy consumption for data transmission includes the transmission consumption

from the requesting vehicle to the edge server and the ECP, respectively, which are defined
as Et

iv and Et
ie:

Et
iv = ρTt

iv = ρ
qiv
rv

, (4)

Et
ie = ρTt

ie = ρ
qie
re

, (5)

where ρ is the energy consumption coefficient of data transmission for the requesting vehicles.
After receiving the task data, the edge server and the ECP perform task execution and

return the results to the requesting vehicles. Since the energy consumption of data reception
is much smaller than the energy consumption of data transmission, the data volume of the
result is small. Therefore, in this paper, we do not consider the energy consumption of data
reception and the energy consumption of returning the results. Consequently, the energy
consumption of the edge servers and the parking vehicles can be expressed as

Ec
iv = φTc

iv = φ
αqiv
cv

, (6)

Ec
ij = φTc

ij = φ
αqij

Cje
, (7)

where φ denotes the energy consumption factor for task processing.

3.3. Utility Function for Requesting Vehicle

Generally speaking, with the payment for the computation offloading service, the
requesting vehicle expects to obtain high service satisfaction. Consequently, the utility
function of the requesting vehicle can be defined as the service satisfaction minus the
payment and its data transmission energy consumption. We assume that piv and pie denote
the service prices given by the edge server and the ECP, respectively. Then, the utility
function of the requesting vehicle can be defined as URi :

URi = DRi − pivqiv − pieqie −
(
Et

iv + Et
ie
)
, (8)

where Dreq is the satisfaction function of the requesting vehicle, which is determined by the
allocated computation resources and the task processing delay obtained by the requesting
vehicle, denoted as:

DRi = ω
[
(1− µTc

iv)qiv +
(

1− µTc
ij

)
qie

]
= ω

[(
1− µαqiv

Cv

)
qiv +

(
1− µα(Qi − qiv)

Cje

)
(Qi − qiv)

]

= ω

[
Qi −

µαQ2
i

Cje
+

2µαQiqiv
Cje

−
(

µα

Cv
+

µα

Cje

)
qiv

2

]
,

(9)

where µ is the delay factor of the edge nodes. The shorter the delay, the higher the
satisfaction. The ω denotes the satisfaction coefficient of the requesting vehicles. Therefore,
the utility function of the requesting vehicle is expressed as:

URi = ω

[
Qi −

µαQ2
i

Cje
+

2µαQiqiv
Cje

−
(

µα

Cv
+

µα

Cje

)
q2

iv

]
− pivqiv − pie(Qi − qiv)− ρ

(
qiv
rv

+
Qi − qiv

re

)
. (10)
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3.4. Utility Function for Edge Server

As the service provider, the edge servers receive the payment from the requesting
vehicle at the cost of computing energy consumption. Consequently, the utility function of
an edge server can be defined as the received reward from providing computing services
minus its computing energy consumption, which is expressed as:

UVEC =
n

∑
i=1

(pivqiv − Ec
iv) =

n

∑
i=1

(
pivqiv − φ

αqiv
Cv

)
. (11)

3.5. Utility Function for ECP

As the crowdsourcing platform, the ECP receives the offloaded task from the re-
questing vehicle, and the offloaded task can be divided into some subtasks which will
be distributed to some parking vehicles for processing. When the task is completed and
the results are returned to the requesting vehicle, the ECP will receive the reward from
the requesting vehicle, and part of the reward should be transferred to the participating
parking vehicles. Consequently, the utility function of the ECP is defined as the received
reward minus the reward transferred to the parking vehicles, which can be expressed as:

UECP =
n

∑
i=1

(
pieqie − σ

qie
d
− pnewqie

)
, (12)

where pnew represents the price of task processing for parking vehicles.

3.6. Price Function for Parking Vehicle

With the support of the crowdsourcing platform, the parking vehicles will cooperate
to complete the task offloaded to the ECP. The utility function of the parking vehicle is
defined as the received reward minus its energy consumption for task processing, which is
denoted as:

UPj =
n

∑
i=1

(
pnewqij − φ

αqij

cje

)
. (13)

The meanings of the above parameters are shown in Table 2.

Table 2. Main notation used in this paper.

Parameters Meaning

Qi Total task quantity
qiv Amount of tasks offloaded to VEC severs
qie Amount of tasks offloaded to ECP
qij Amount of tasks offloaded to parking vehicle Pj
rv Rate of task transmission from the requesting vehicles to the VEC servers
re Rate of task transmission from the requesting vehicles to the ECP
d Task transfer rate of ECP
Cv Computing capability of VEC servers
Cje Computing capability of parking vehicles
piv Price per unit resource for VEC servers
pie Price per unit resource for ECP
pnew Price per unit resource for parking vehicles
α Number of CPU cycles required to process a one-byte task
σ Energy consumption factor for task assignment of ECP
ρ Transmission energy factor for requesting vehicles
ϕ Energy consumption factor of edge nodes
µ Time processing factor of edge nodes
ω Satisfaction factor of requesting vehicle
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4. Problem Description and Optimal Solution
4.1. Problem Description

There are four types of participants in VEC including the requesting vehicle, the
edge server, the ECP, and the parking vehicles, and they all expect to maximize their
interests. The interest of a participant has the impact on the others’ interests, and there
is a competition–cooperation relationship among them, which can be abstracted as the
following three problems.

Problem 1. Maximizing the Utility of Requesting Vehicles

max
qiv ,piv ,pie

URi (q
∗
iv, p∗iv, p∗ie)

s.t. Qi − q∗iv ≥ 0
(14)

In (14), the q∗iv denotes the optimal amount of tasks offloaded to the edge server, and
the p∗iv and p∗ie are the optimal prices of the edge server and ECP, respectively. The constraint
indicates that the optimal task volume offload to the edge server cannot be greater than the
total volume of the offloaded tasks.

Problem 2. Maximizing the Utility of the Edge Servers

max
qiv ,piv

UVEC(q∗iv, p∗iv)

s.t. piv >
ϕα

cv

(15)

In (15), the constraint indicates that the reward received by the edge server should be
greater than the cost of task processing.

Problem 3. Maximizing the Utility of ECP

max
qie ,pie

UECP(q∗ie, p∗ie)

s. t. C1 : q∗ie = Qi − q∗iv

C2 : p∗ie >
σ

d
+ pnew

(16)

In (16), the first constraint indicates that the sum of the tasks that the requesting
vehicles offloaded to the ECP and the edge servers are equal to the total task volume, and
the second constraint indicates that the reward received by the ECP is greater than the sum
of its energy consumption and the payment to the parking vehicles.

4.2. Task Offloading Analysis Based on Starkelberg Game

As mentioned above, there is a competition–cooperation relationship between the
participants in VEC, and each participant wants to maximize its interest. We can model
the interactions among the participants as a Starkelberg game, which is a two-stage full
information dynamic game with sequential timing. The participants in the game are
divided into two groups, the leaders and the followers. The leaders are the participants
who make decisions first, and the remaining participants make decisions based on the
leaders’ decisions which are called followers. The main idea of the Starkelberg game is that
each side chooses its strategy based on the possible strategies of the other side to ensure that
it maximizes the benefit of the other side’s strategy, thus achieving a Nash equilibrium [23].

As shown in Figure 2, the framework proposed in this paper is a three-party game
model based on the Starkelberg game. The participants are the requesting vehicle, the
edge server, and the ECP. The edge server and the ECP, as the leaders of the game, make
the price decision first, and the requesting vehicle, as the follower, makes the offloading
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decision later. Since the edge server has higher processing power than the parking vehicle,
the requesting vehicle will offload the task to the edge server first. At the same time, the
requesting vehicle can also offload tasks to the ECP to get relatively cheaper services. Once
the ECP receives the task offload request, the ECP will divide the task into some sub-tasks
and assign these sub-tasks to the parking vehicle for processing. In addition, there is a
non-cooperative game between the edge server and the ECP. For example, when the VEC
server offers a higher price, the requesting vehicle is more likely to offload more tasks to
the ECP, even if the ECP has a lower computation rate. Likewise, when the ECP offers a
higher price, the requesting vehicle is more likely to obtain compute services from the VEC
server. Thus, the pricing strategies of the edge server and the ECP can influence each other.
In this three-party game, each party is a rational, selfish individual who wants to achieve
maximum utility. From the above, we can know that this game has obvious leaders and
followers, and it is suitable to use Starkelberg game to analyze their behavior interaction.
In the following, based on the inverse induction method, we will prove that there is a
unique Nash equilibrium of the game, and find the optimal strategies for the participants
in the game.

Definition 1. It is supposed that the best strategy for requesting vehicles is (q∗iv, q∗ie) which means
the q∗iv and q∗ie task data amount are offloaded to the edge server and the ECP, respectively. Moreover,
p∗iv and p∗ie are the best prices given by the edge server and the ECP, respectively. Then, for any
combination of piv, pie, qiv and qie, if the inequality (17) holds, the (p∗iv,p∗ie,q

∗
iv) is the solution of

Stankelberg game equilibrium.
URi (q

∗
iv, p∗iv, p∗ie) ≥ URi (qiv, piv, pie)

UVEC(q∗iv, p∗iv) ≥ UVEC(qiv, piv)

UECP(q∗ie, p∗ie) ≥ UECP(qie, pie)

(17)

In this two-stage game, we use the inverse induction method to analyze the interactions between
participants, and the second stage is analyzed first.

4.2.1. Second Stage Starkelberg Game

We first analyze the utility of the requesting vehicle, and we have the first and second
derivatives of (10):

∂DRi

∂qiv
= ω

[
2µαQi

Cje
− 2qiv

(
µα

Cv
+

µα

Cje

)]
− piv + pie − γ

(
ρ

rv
− ρ

re

)
, (18)

∂2DRi

∂qiv
= −2ω

(
µα

Cv
+

µα

cje

)
< 0. (19)

As is shown in (19), the second derivative of the utility function of the requesting
vehicle is constantly less than zero, thus the utility function of the requesting vehicle is
strictly concave, and the function has a maximum value. Therefore, it can be proved that
the requesting vehicle can provide the best task offloading strategy regardless of the price
strategies given by the edge server and the ECP.

Let the first derivative of the utility function of the requesting vehicles be equal to zero,
so we set (18) to be zero, then we can find the optimal offloading strategy of the requesting
vehicle. Therefore, we can obtain:

q∗iv =
Qicv

cje + cv
−

cvcje[rvre(piv − pie) + ρ(rv − re)]

2ωµα
(
cje + cv

) . (20)
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If the optimal amount of tasks offloaded to the edge server is less than the total amount
of tasks, the rest amount of the tasks should be offloaded to the ECP, so that we have:

q∗iv =
Qicv

cje + cv
−

cvcje[rvre(piv − pie) + ρ(rv − re)]

2ωµα
(
cje + cv

)
q∗ie = Qi − q∗iv

Qi > q∗iv

. (21)

Otherwise, the optimal offloading strategy for the requesting vehicle is expressed as:
q∗iv = Qi

q∗ie = 0

Qi ≤ q∗iv

. (22)

4.2.2. First Stage Starkelberg Game

With the offloading strategy given by the requesting vehicle, the utility function of the
edge server (Equation (11)) can be changed into (23):

UVEC =
n

∑
i=1

[(
QiCv

Cje + Cv
−

CvCje[rvre(piv − pie)]

2ωµα
(
Cje + Cv

) − ρ(rv − re)

2ωµα
(
Cje + Cv

))(piv −
ϕα

Cv

)]
. (23)

Then, we can have the first and second derivatives of (23), expressed as (24) and (25),
respectively.

∂UVEC
∂piv

=
n

∑
i=1

[(
QiCv

Cje + Cv
−

CvCje[rvre(piv − pie)]

2ωµα
(
Cje + Cv

) − ρ(rv − re)

2ωµα
(
Cje + Cv

))− CvCjervre

2ωµα
(
Cje + Cv

)(piv −
ϕα

Cv

)]
. (24)

∂2UVEC
∂piv

2 = −
Cvcjervre

ωµα
(
Cje + Cv

) < 0. (25)

The above (25) illustrates that the second derivative of the utility function of the VEC
server is constantly less than zero, which means that the utility function is strictly concave
and has a maximum value. Therefore, the edge server can have the optimal price strategy.
Let (24) to be zero, and we have the optimal price strategy of the edge server as (26):

p∗iv =
n

∑
i=1

(
2αµωQicv + ϕαrvreCje − ρ(rv − re)CjeCv

2Cvcjervre
+

p∗ie
2

)
. (26)

According to (12), (21) and (22), if Qi ≤ q∗iv, the utility of ECP is zero. Otherwise, the
utility function of ECP is expressed as (27): UECP =

n

∑
i=1

[(
Qi −

(
QiCv

Cje + Cv
−

CvCjervre(piv − pie)

2ωµα
(
Cje + Cv

) − ρ(rv − re)

2ωµα
(
Cje + Cv

)))(pie −
α(ϕ + 1)

Cje
− σ

d

)]
Qi > q∗iv

. (27)

Then, we have the first and second derivatives of (27), expressed as (28) and (29),
respectively.

∂UECP
∂pie

=
n

∑
i=1

[
Qi −

QiCv

Cje + Cv
+

CvCjervre(piv − pie)

2ωµα
(
Cje + Cv

) +
ρ(rv − re)

2ωµα
(
Cje + Cv

) − CvCjervre

2ωµα
(
Cje + Cv

)(pie −
α(ϕ + 1)

Cje
− σ

d

)]
, (28)

∂2UECP
∂pie

2 = −
CvCjervre

ωµα
(
Cje + Cv

) < 0. (29)
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The second derivative (29) is constantly less than zero, which means that the util-
ity function is strictly concave, and the function has a maximum value. Let its first
derivative (28) to be zero, we have the optimal price strategy for ECP as (30): p∗ie =

n

∑
i=1

(
ωµαQi
Cvrvre

+
ρ(rv − re)

2rvre
+

α(ϕ + 1)
2Cje

+
σ

2d
+

p∗iv
2

)
Qi > q∗iv

. (30)

From the above analysis, it is proved that there are optimal strategies for the edge
server, the ECP, and the requesting vehicle, and there is a Nash equilibrium in this Stackel-
berg game.

In order to find the optimal solution, a game strategy algorithm (GSA) based on a
genetic algorithm is proposed to solve the Stackelberg equilibrium problem, and the optimal
strategies can be obtained by iterative crossover, mutation, selection, and reproduction in
the genetic algorithm. The proposed algorithm is shown in Algorithm 1.

Algorithm 1 GSA (Game Strategy Algorithm)

Input: A∗i =
{

Qi, q∗iv′q
∗
ie
}
(i ∈ [1, n]), population size N, cross probability cp, mutation

probability mp, generation gap gap, maximum genetic generation Maxgen
Output: p∗iv′ , p∗ie′UVEC, UECP

1: iteration = 0
2: UVEC = ∑n

i=1

(
pivqiv − ϕ

αqiv
Cv

)
3: UECP = ∑n

i=1
(

pieqie − σ
qie
d − pnew

)
4: for iteration <Maxgen do
5: fit = fitness(UVEC)
6: offspring = select(parent, fitness, gap)
7: offspring = intersect (offspring, cp)
8: offspring = variation (offspring, mp)
9: parent = replace (offspring,UVEC)

10: iteration = iteration + 1
11: end for
12: for iteration <Maxgen do
13: fit = fitness(UECP)
14: offspring = select (parent, fitness, gap)
15: offspring = intersect (offspring, cp)
16: offspring = variation (offspring, mp)
17: parent = replace (offspring,UECP)
18: iteration = iteration + 1
19: end for
20: return p∗iv, p∗ie, UVEC, UECP

Theorem 1. The time complexity of GSA is O(Maxgen ·n2).

Proof of Theorem 1. As shown in Algorithm 1, we know that both ∂2UVEC
∂piv

2 and ∂2UECP
∂pie

2 are
less than zero, UVEC is a concave function about piv, UECP is a concave function about
pie, and the optimal solutions exist for both the functions UVEC and UECP. Therefore, we
can use the genetic algorithm to quickly get the optimal strategies for the edge server and
the ECP. The core of the genetic algorithm is the dual iteration with time complexity not
exceeding n2, and its complexity is determined by the fitness function, in addition, we
set the iteration threshold Maxgen. Consequently, the time complexity of the algorithm is
O(Maxgen ·n2).
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5. Simulations
5.1. Simulation Parameters

In this section, we will use Matlab to evaluate the performance of the model. The total
task quantity of the requesting vehicle is 5 Mbits, and the rates of task transmission from
the requesting vehicle to the VEC server and the ECP are set to 0.8 Mbps and 0.6 Mbps,
respectively. The rate of task transmission from the ECP to the parking vehicles is 0.6 Mbps.
The computational capability of the VEC server is set to 3, 3.5, 44, 4.5, and 5. The per
resource price of the VEC server is set to 0.6, and the per resource price of the ECP is set
to 0.2–0.5. The number of CPU cycles required to process one byte of computation task is
set to 0.002. The satisfaction factor of the requesting vehicle is 1.9, the transmission energy
factor of the requesting vehicle is 0.8, the time processing factor of the edge nodes is 1.2,
and both the task allocation energy factor of the ECP and the computation energy factor of
the edge nodes are 1. The main parameters used in the simulation are shown in Table 3.

Table 3. The simulation parameters.

Parameter Value Parameter Value Parameter Value

Qi 3 Mbits piv 0.6 ϕ 1
rv 0.8 Mbps pie (0.2, 0.5) ρ 0.8
re 0.6 Mbps α 0.002 µ 1.2
Cv [3, 5] MHz σ 1 d 0.6 Mbps
Cje [2, 3] MHz ω 1.9

5.2. Simulation Results

Figure 3 shows the relationship between task offloading strategy and the processing
capability and the prices of service. As we can find in Figure 3, with the increasing of the
processing capability of the edge servers, the amount of the tasks offloaded to the edge
servers increases accordingly. Moreover, the higher the price of ECP, the higher the number
of tasks offloaded to the edge servers.

Figure 3. Impact of the processing capability and service price on the performance.

Figure 4 demonstrates that, with the incrase of the computing capability of the edge
servers, the utility of the requesting vehicle will increase also. When the price of the ECP
increases, the utility of the requesting vehicle will decrease. Thus, the simulation results
show that the utility of the requesting vehicle increases as the processing capability of the
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edge server or ECP rises, and decreases as the service price rises. Moreover, when the
processing capability of the edge server increases or the price of the ECP increases, the
requesting vehicles are more inclined to obtain resources from the edge servers.

Figure 4. Impact of the processing capability and service price on the utility of requesting vehicle.

Then, we compare the proposed model in this paper with two other traditional
edge server-based schemes. Our solution is denoted as “VEC+ECP”, and the other two
are denoted as “VEC” and “VEC+ECP+Random”. The “VEC” solution means that the
requesting vehicles only request computation service from the edge servers and the parking
vehicles do not participate in the task offloading. The “VEC+ECP+Random” solution means
that no gaming is performed and the tasks are randomly offloaded to the edge servers and
the ECP.

Figure 5 shows the comparison of the utilities of the three schemes for the requesting
vehicles when the ECP price changes. We can find that the requesting vehicle has the
highest utility in the VEC+ECP solution. When the ECP price is relatively low, both the
VEC+ECP and the VEC+ECP+Random have a higher utility of the requesting vehicle than
the VEC solution. Conversely, when the price is high, the performance difference between
these three solutions becomes smaller and the requesting vehicles may be discouraged
from obtaining computation services from the ECP due to the high price.

Figure 6 shows the utility of the requesting vehicle with the increasing processing
capability of the edge server in the three solutions. From Figure 6, we can find that our
solution has the best performance. Compared with the VEC solution, our solution has the
utility of the requesting vehicle increased by 10.99%. When the processing capability of the
edge server is relatively high, the requesting vehicles prefer to obtain computation services
from the edge servers. For example, when Cv is greater than 3.5, the utility in the VEC
solution is higher than that in the VEC+ECP+Random solution. In addition, the utility
of the requesting vehicle in this scheme becomes higher as the computational capability
increases. This is because the VEC servers and ECPs need to compete with each other and
must reduce their prices to attract more requesting vehicles.
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Figure 5. Performance comparison for the utility of requesting vehicle.

Figure 6. Impact of Cv on the utility of requesting vehicle.

Figure 7 shows the process of the GSA algorithm to find the best strategy via iterative
optimization. From the figure, it can be seen that the numbers of iterations for the three
solutions are 15, 23, and 36, which indicates that the proposed algorithm has better conver-
gence and can find the best strategy quickly. Moreover, the utility of the edge server in the
VEC+ECP is higher than that in the VEC+ECP+Random and the VEC, having 13.3% higher
utility than that in VEC solution, which means that the edge server will have higher utility
with the assistance of parking vehicles.
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Figure 7. GSA algorithm performance.

Figure 8 plots the utilities of the edge server, the ECP, and the requesting vehicle under
different Cv. In the non-cooperative game, the ECP and the edge server will reduce their
prices due to the competition, which eventually leads to lower utilities. Especially, the
competition is more intense when the processing capabilities of the edge server and the ECP
increases. As a result, the utilities of both the edge server and the ECP decrease. Relative to
the VEC servers and ECPs, the utility of the requested vehicles gradually increases because
the higher Cv leads to a lower price of the edge nodes.

Figure 8. The Utilities of the edge server, ECP, and requesting vehicle.

Based on the above simulation results, we can conclude that the performance of the
proposed solution is better than other traditional solutions. With the GA-based algorithm
and game theory, all three participants can obtain the optimal strategies.
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6. Conclusions

In this paper, we have proposed a VEC framework that uses electric vehicles in
parking lots to assist edge servers in processing computational tasks. We also build an edge
crowdsourcing platform (ECP) that aims to manage and integrate the idle computational
resources of electric vehicles in parking lots to provide computational services to requesting
vehicles in response to the problems of insufficient computational resources of edge servers
and the unsuitability of fuel vehicles for practical applications. In addition, based on the
Stackelberg game, we have analyzed the interactions among requesting vehicles, the edge
server, and the ECP, and theoretically proved the existence of a Nash equilibrium for this
Stackelberg game. Then, a game strategy-solving algorithm based on a genetic algorithm
is proposed to find the optimal strategy for the edge server and the ECP. Simulation
experiments have shown that the solution proposed in this paper leads to a higher utility
for the three participants and faster convergence of the algorithm. However, in this paper,
we do not discuss how to efficiently and rationally allocate the computational tasks on the
ECP, which can be our future work.
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