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Abstract: The permanent magnet synchronous motor (PMSM) has been used in electric propulsion
and other fields. However, it is prone to the stator winding inter-turn short-circuit, and if no effective
measures are taken, the ship’s power system will be paralyzed. To realize intelligent diagnosis of
inter-turn short circuits, this paper proposes an intelligent fault diagnosis method based on improved
variational mode decomposition (VMD), multi-scale principal component analysis (PCA) feature
extraction, and improved Bi-LSTM. Firstly, the stator current simulation dataset is obtained by using
the mathematic model of the inter-turn short-circuit of PMSM, and the parameters of VMD are
optimized by the grey wolf algorithm. Then, the data is coarse-grained to obtain multi-scale features,
and the main features are selected as the sample data for fault classification by PCA. Subsequently, the
Bi-LSTM neural network is used for training and analyzing the data of the sample set and the test set.
Finally, the learning rate and the number of hidden-layer nodes of the Bi-LSTM are optimized by the
whale algorithm to increase the diagnosis accuracy. Experimental results show that the accuracy of
the proposed method for inter-turn short-circuited fault diagnosis is as high as 100%, which confirms
the effectiveness of the method.

Keywords: fault diagnosis; permanent magnet synchronous motor; interturn short-circuited; varia-
tional mode decomposition; multi-scale; bidirectional long short-term memory neural network

1. Introduction

Ship electric propulsion technology has developed quickly in recent decades. Com-
pared with traditional propeller propulsion, it has the advantages of high reliability, flexible
operation, low pollution, low vibration and noise, and high cabin utilization. It is widely
used in high-performance ships such as icebreakers, cruise ships, ferries, and engineering
ships [1]. With the development of the hardware and software related to electric propulsion
technology, there will be a higher proportion of ship electric propulsion technology in
ship propulsion. The propulsion motor is a vital part of the ship’s electric propulsion
system [2]. In the future, the demand for single-unit capacity of electric propulsion ships
will increase, and the DC propulsion motor will no longer meet the requirements due to the
limited power. In this case, the permanent magnet synchronous motor (PMSM) becomes
the ideal choice for ship propulsion motors [3]. The PMSM is widely used because of its
excellent performance. However, in practical applications, various faults will occur due to
poor working conditions, poor heat dissipation conditions, high environmental humidity,
and frequent start and stop [4]. If the fault is not detected in time and no corresponding
measures are taken, it may lead to irreversible accidents, causing serious casualties and
economic losses. Therefore, fault diagnosis of PMSM has practical engineering significance.

The fault diagnosis of PMSM mainly includes four processes: data preprocessing,
feature extraction, feature selection, and fault classification. To solve the problem of low
diagnostic accuracy of dynamic eccentricity fault of PMSM, Xue et al. [5] proposed a
dynamic eccentricity fault diagnosis method of PMSM. The fast Fourier transform is used
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to analyze the stator current signal to obtain the dynamic eccentric state characteristic
frequency of the stator current signal and extract the amplitude. Finally, the support
vector machine with parameter optimization by a genetic algorithm is used to identify
the extracted features. Most of the existing research on mechanical faults of PMSM can
only detect a single fault type, and there are few studies on the application of variable
speed conditions. Zhao et al. [6] proposed a mechanical fault detection method for PMSM
based on improved detrended fluctuation analysis (DFA) and linear discriminant analysis
(LDA). The Vold-Kalman is used to track and extract the fault feature components at the
fault feature frequency, and the fault feature components are reconstructed. The improved
DFA is used to extract the feature of the reconstructed signal. Finally, LDA is conducted
to classify the extracted fault features. Aiming at the problem that open-circuit faults in
inverters and stators are difficult to be detected, resulting in overstressing healthy switches,
large torque ripples, and mechanical vibrations, Huang et al. [7] proposed a multi-break
fault diagnosis method for three-phase PMSM based on symmetrical components and DC
components. To evaluate the asymmetry and discriminate fault types, the magnitude ratio
of the positive sequence to the negative sequence of phase currents is adopted as a fault
detection index. At last, the DC components of the phase currents in different reference
frames are utilized to locate faults.

In recent years, with the rapid development of deep learning, its powerful feature
extraction ability and end-to-end characteristics make it possible to directly extract fault
features from the original signal for fault diagnosis tasks, avoiding the influence of artificial
experience on feature extraction and effectively overcoming the disadvantages of traditional
diagnosis methods [8]. Aiming at the problems of difficulty in capturing inverter faults and
poor fault diagnosis accuracy in PMSM, Feng et al. [9] proposed a fusion stacked denoising
autoencoder and feedforward neural network (SDA-FFNN) model. Through normalization,
six frequency-domain features are integrated into a high-dimensional feature data set, and
then the proposed method based on SDA-FFNN is used to complete fault diagnosis. To
address the issue that motor-bearing fault diagnosis requires a complex feature extraction
process and suffers from a low fault diagnosis recognition rate under various working
conditions, Tang et al. [8] proposed a fault diagnosis method based on attention and a
multi-scale convolutional neural network. In this method, convolution kernels of different
sizes are used to extract multi-scale features of fault signals so that the model can obtain
richer and complementary fault feature representations. However, multi-scale feature
extraction will lead to unstable time-frequency domain feature results due to mutations
at breakpoints. To solve the problem that the frequency-domain characteristics of the
stator current change with the switching of motor operating conditions, which leads to the
difficulty of diagnosis under multiple operating conditions, Chen et al. [10] proposed a fault
diagnosis method with a convolutional neural network (CNN)-based on a phase tracker.
The CNN-based phase tracker is used to convert the original signal from the time domain
to the angle domain. After the angle-domain resampling, the fundamental frequency of the
stator current signal under any working condition will be adjusted to the same frequency so
that the fixed frequency-domain fault characteristics can be used for motor fault diagnosis.
It is mentioned in this paper that CNN is usually used as a feature extraction model for
time series in motor fault diagnosis [11,12].

The stator winding inter-turn short circuit fault is the most common fault of PMSM.
If the fault is not detected in time and no measures are taken, the operation with a fault
will increase the motor current, which will produce more heat, increase the temperature
of the motor, and further destroy the insulation material and permanent magnet material,
resulting in a more serious short circuit and loss of excitation [4]. A lot of research has been
conducted on the stator winding inter-turn short circuit fault. Mao et al. [13] proposed
an initial inter-turn short circuit fault detection method for PMSM based on VMD and
logarithmic spectrum analysis. The zero-sequence voltage is taken as the fault feature, and
the noise and the related harmonic components in the zero-sequence voltage component are
removed by VMD to highlight the fault component. However, in practical applications, it is
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difficult to select the decomposition layer and penalty factor of VMD, and it is challenging
to obtain the optimal solution of the two parameters. Aiming at the problems of small fault
data, unbalanced data distribution, and low data quality of inter-turn short circuit fault
data in industrial production environments, Wang et al. [14] proposed an inter-turn short
circuit fault diagnosis algorithm based on the stacked sparse autoencoder network. The
negative sequence current and electromagnetic torque are used to construct the inter-turn
short circuit fault diagnosis data set, and the stacked sparse autoencoder is employed to
extract the hidden abstract features in the fault data. Finally, the SoftMax classifier is used
to classify the feature signals. Zhang et al. [4] presented a permanent magnet synchronous
motor fault diagnosis method based on mixup-LSTM. The fault features in the stator current
signal are extracted by wavelet packet decomposition as the sample set, and the sample
expansion is realized by mixup. Finally, the LSTM neural network is exploited to realize
fault diagnosis (classification). As a variant of the RNN neural network, LSTM can solve
the problem of gradient disappearance of the traditional RNN. Although wavelet packet
decomposition has good analysis ability, it cannot suppress errors, and more accurate
diagnosis results may not be obtained in the subsequent diagnosis process. Moreover, the
number of layers and nodes of the hidden layer depends too much on artificial experience,
and the optimal solution cannot be obtained.

Given the above problems, this paper proposes a fault diagnosis model of PMSM
inter-turn short circuits based on multi-scale space. The original data is denoised by VMD.
The maximum product of correlation and kurtosis is taken as the objective function, and
the grey wolf (GWO) algorithm [15] is used to optimize the modal decomposition layer
and penalty factor of VMD. The decomposition signal is reconstructed by kurtosis, and
the noise in the signal is filtered out. The PCA [16] is adopted to select the main features
to remove redundant features and reduce dimensionality. The improved coarse-grained
multi-scale feature extraction is employed to reduce the instability of the time-frequency
domain feature results caused by the mutation at the breakpoint. Moreover, by exploiting
the advantages of the whale algorithm (WOA) [17] in optimization, the number of hidden-
layer nodes and the learning rate of the Bi-LSTM network are optimized, which effectively
reduces the influence of the model parameters on the diagnostic accuracy and reduces the
diagnostic error. In practical engineering applications, a new fault diagnosis method is
proposed to make fault diagnosis more intelligent. The diagnostic process of this method is
shown in Figure 1.
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2. Theoretical Background
2.1. Mathematical Model of PMSM under Interturn Short-Circuit Fault

The equivalent diagram of PMSM under the inter-turn short-circuit fault is shown in
Figure 2. It is assumed that the inter-turn short-circuit fault occurs on the a-phase stator
winding of the PMSM. In the figure, a short circuit is added to the a-phase winding of the
motor. The short-circuit resistance R f divides the a-phase winding into two parts: a1 and
a2, where a1 represents the normal part, a2 represents the fault part, and the current i f is
the short-circuit current flowing through the resistance R f .
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The short-circuit turn ratio is defined as:

u =
n
N

(1)

where n indicates the number of short-circuit turns for the phase stator winding, and N
indicates the total number of turns of a phase stator winding.
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In the case of an inter-turn short-circuit fault, the voltage equation of PMSM can be
expressed as:

Vs f = Rs f is f + Ls f
dis f

dt
+ es f + V0 (2)

Vs f is defined as:

Vs f =


Ra1 + Ra2 0 0 −Ra2

0 Rb 0 0
0 0 Rc 0

Ra2 0 0 −u(Ra1 + Ra2)− R f

 (3)

where Vs f denotes the resistance matrix; R f denotes the fault resistance, Ra1, Ra2, Rb, and Rc

denote the resistance of stator windings a1, a2, b, and c, respectively; is f =
[
ia ib ic id

]T

denotes the current matrix; ia, ib, and ic denote the stator winding currents of phases a, b,
and c, respectively; i f denotes the short-circuit current.

The inductance matrix can be expressed as:

Ls f =


La1 + La2 + 2Ma1a2 Ma1b + Ma2b Ma1c + Ma2c −La2 −Ma1a2

Ma1b + Ma2b Lb Mbc −Ma2b
Ma1c+Ma2c Mbc Lc −Ma2c
La2 + Ma1a2 Ma2b Ma2c −La2

 (4)

where La1, La2, Lb, and Lc denote the self-inductance of stator windings a1, a2, b, and c,
respectively; Mj,k indicates the mutual induction between stator windings j and k (j ∈
{a1, a2, b, c} and k ∈ {a1, a2, b, c}).

The counter electromotive force matrix of the three-phase stator winding and short-
circuit winding can be expressed as:

es f =


ea
eb
ec
ed

 =
d
dt


λPM,a
λPM,b
λPM,c
λλPM, f

 (5)


λPM,a = λPM,1cos(θ) + ∑ν=2k+1 λPM,vcos(vθ − θv)

λPM,b = λPM,1cos(θ − 2Π
3 ) + ∑ν=2k+1 λPM,vcos(vθ − θv

2Π
3 )

λPM,b = λPM,1cos(θ + 2Π
3 ) + ∑ν=2k+1 λPM,vcos(vθ − θv + v 2Π

3 )
λPM,b = uλPM,a

(6)

where k ∈ Z, λPM,1 denotes the fundamental amplitude of the flux linkage; λPM,v denotes
the vth harmonic amplitude of the flux linkage; λPM, f denotes the flux linkage of the
short-circuit winding; θ denotes the rotor electrical angle; θv denotes the angle between the
fundamental and the vth harmonic of the flux linkage; V0 =

[
V0 V0 V0 0

]T denotes the
zero-sequence voltage.

The three-phase winding resistance, self-inductance, and mutual inductance of the
normal PMSM are equal. The relationship between the short-circuit turn ratio and the resis-
tance, inductance, and back electromotive force in the stator winding can be expressed as:

Ra1 = (1− u)Ra
Ra2 = uRa

La1 = (1− u)2La
La2 = u2La

(7)
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Ma1a2 = u(1− u)La
Ma2b = (1− u)Mab
Ma2c = (1− u)Mac

Ma2b = uMab
Ma2c = uMac

(8)

{
λPM, f = uλPm,a

e f = uea
(9)

When the PMSM suffers from an inter-turn short-circuit fault, its electromagnetic
torque can be expressed as:

Te =
eaia + ebib + ecic − e f i f

ωr
(10)

where wr denotes the mechanical angular velocity of the rotor of the PMSM, we denotes the
electrical angular velocity of the rotor, and np denotes the pole pairs of the PMSM.

2.2. Variational Mode Decomposition

VMD is an adaptable signal processing method based on Wiener filtering with VMD,
the input signal f(t) is finally resolved into multiple modal component signals uk; the
unilateral spectrum of each mode uk is obtained by the Hilbert transform, and each mode
modulates its corresponding spectrum to the corresponding baseband by adding an expo-
nential term. A confined variational problem is defined as follows:

min

{
∑
k

∥∥∥∥∂t[(δ(t) +
j

Πt
)·uk(t)]e−jwkt

∥∥∥∥2

2

}
(11)

s·t·∑
k

uk = f (12)

By using the quadratic punishment factor and the Lagrange multiplier operator λ(t),
the confined variational problem is transformed into an unconfined variational problem.
Then, it is solved by the alternating direction algorithm of multipliers and converted to the
frequency domain by Fourier isometric transformation. Finally, the updated expressions of
un+1

k and wn+1
k are obtained:

ûn+1
k (w) =

f̂ (w)−∑i 6=k ûi(w) + ( λ̂(w)
2 )

1 + 2α(w− wk)
2 (13)

wn+1
k =

∫ ∞
0 w|ûi(w)+|2dw∫ ∞

0 |ûk(w)|2dw
(14)

2.3. Constructing Multi-Scale Features

The features extracted by traditional methods cannot efficiently render the state fea-
tures of the signal, which affects the diagnostic accuracy. Considering the non-stationarity
of the signal, the features at a single scale may overlap in the feature space, and it is
difficult to fully reveal the signal characteristics. By referring to the multi-scale concept
and considering the characteristics of the signal at multiple scales to ensure the overall
integrity and local details of the signal, this paper proposes a multi-scale feature index
that can reveal the performance of the signal in multi-scale space. Meanwhile, based on
the traditional time-domain index, combined with the advantages of multi-scale space on
feature space overlap and signal cross-scale complexity, this paper constructs a multi-scale
index as the basis for fault classification. Firstly, the time-domain signal is coarse-grained,
which makes it difficult to obtain its distribution at different scales. For the time-domain
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sequence x = {x1, x2, · · · , xn}, a signal segmentation of length τ is performed, where the
jth signal segment can be expressed as:{

xp,(j−1)τ+1, xp,(j−1)τ+2, · · · , xp,jτ , · · ·
}
(1 ≤ j ≤ n

τ
) (15)

The corresponding coarse-grained sequence y(τ) can be expressed as:y(τ) =
{

y(τ)1 , y(τ)2 , · · · , y(τ)j , · · ·
}

yτ
j = 1

τ ∑
jτ
i=(j−1)τ+1 xi

, 1 ≤ j ≤ n
τ

(16)

where τ is the scale factor. By extracting the time domain features of the coarse-grained
sequence y(τ) of different scales, the required multi-scale features can be obtained. Since the
multi-scale sequence y(1) is the original time-domain sequence x when τ = 1, the calculated
result is the traditional time-domain feature.

2.4. Principal Component Analysis

The principle of PCA is re-linearly combining the high-dimensional variable indexes
in the original fault data to construct a new variable index with a lower dimension. These
low-dimensional variable indicators are orthogonal and unrelated to each other. Based
on this, the coordinate projection of the data sample on the vector is determined by the
difference in the independent variables between the samples. The differences reflected by
other vectors are reduced in turn, and these vectors are called main components.

The steps of PCA feature extraction are as follows:
Step 1: Given an input signal matrix X =

{
xij : xij ∈ Rn×m}, where each row xi ∈

R1×m, i = 1, · · · , n of the matrix indicates an index and each column xj ∈ Rn×1, j =
1, · · · , m of the matrix represents a sample. The average value of the sample xj can be
represented as:

−
x j =

1
m ∑m

j=1 xj (17)

Step 2: Let Co be the covariance matrix. The eigenvalues λi, i = 1, · · · , n and eigenvec-
tors di, i = 1, · · · , n of the covariance matrix Co are calculated.

Step 3: The eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn are arranged in decreasing order, and
the eigenvectors corresponding to the eigenvalues are di, i = 1, · · · , n. The accumulative
contribution rate ς of the first r principal components can be expressed as:

ς = ∑r
i=1 λi/ ∑n

i=1 λi (18)

Step 4: If ς ≥ 0.80, construct a matrix E ∈ Rn×r composed of the corresponding feature
vectors. Then, the new sample matrix X′ can use E = (d1, d2, · · · , dr) to map the original
bearing vibration signal matrix to a new space

X′ = ETX (19)

where X′ ∈ Rr×m.

2.5. Long Short-Term Memory Neural Network

The neurons of the LSTM model have a cell state and three gate mechanisms. As
shown in Figure 3, the LSTM model has three gates: the forgetting gate, the updating gate,
and the output gate, through which the cell state is protected and controlled.
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Forgetting door: The sigmoid function determines which information message is
discarded, and it can be expressed as:

f (t) = σ
(

W f [a(t− 1), x(t)] + b f

)
(20)

where f (t) is the quantity outgoing to each cell in state c(t− 1); a(t− 1) is the outgoing at
time t− 1; x(t) is the intromission at time t; σ is a sigmoid function, σ(x) = (1 + e−x)

−1;
W f is the weight of each variable, and b f is the bias term.

Update door: Update storage information message. First, the sigmoid function cal-
culates the result u(t) to determine which information message to update. Then, a new
candidate value vector ĉ(t) is generated according to the Tanh function and added to the
cell state. By multiplying the old cell state with the forgetting gate f (t), part of the old
information message is forgotten, u(t) ∗ ĉ(t) is added, and the current cell state is updated.
It can be expressed as:

u(t) = σ(Wu[a(t− 1), x(t)] + bu) (21)

ĉ(t) = tanh(Wc[a(t− 1), x(t)] + bc) (22)

c(t) = u(t)� ĉ(t) + f (t)� c(t− 1) (23)

where u(t) ∈ [0, 1]; tanh outputs a value between −1 and 1; c(t− 1) is the cell status value
at time t− 1; ĉ(t) indicates the information message to be extracted from the intromission
information at time t, and c(t) indicates the updated cell status value.

Output gate: Output information message based on the cell status. The sigmoid
function determines the quantity of output information. The tanh function processes c(t) to
obtain a value between −1 and 1. o(t) and c(t) are multiplied to obtain the output value at
time t, which can be expressed as:

o(t) = σ(Wo[a(t− 1), x(t)] + bo) (24)

a(t) = o(t)� tanh(c(t)) (25)

Structurally, compared with the one-way LSTM network, the Bi-LSTM network adopts
a two-way loop structure of forward and backward propagation. Viewing the problem
from the flow of time, Bi-LSTM adds the data flow from the future into the past based on
the one-way flow of LSTM data from the past into the future, and the hidden layer for the
past and the hidden layers for the future are independent of each other, so LSTM can better
explore the time series feature of data.

The structure of the Bi-LSTM network is shown in Figure 4.
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Forward propagation has two steps: (1) move from left to right and calculate from the
original time step to the ultimate time step; move from right to left and calculate from the
last time step to the ultimate time step. At time step t, the forward layer and the backward
layer in the Bi-LSTM use the same input Xt, and they jointly generate the output and state.
However, the two LSTM network layers do not share the bias vector parameters and weight
matrix. The formula can be expressed as:

h1
t = f

(
W1 · Xt + U1 · ht−1

)
(26)

h2
t = f

(
W2 · Xt + U2 · ht+1

)
(27)

Yt = so f t max
(

V1h1
t + V2h2

t

)
(28)

where f is the hidden-layer activation function; W1 and W2 are weight matrix parameters
from the intromission layer to the hidden layer; U1 and U2 are weight parameters from
the hidden layer to the hidden layer, V1 and V2 are weight parameters from the hidden
layer to the outgoing layer. The weight matrix and bias vector parameters of Bi-LSTM are
adjusted by backpropagation according to the error function output by Yt theory.

3. The Proposed Method
3.1. Model Optimization of Variational Mode Decomposition

The decomposition order of VMD is determined by the K value. A too-large K value
will cause signal decomposition fault, while a too-small K value will lead to incomplete
signal decomposition or signal frequency aliasing. The punishment factor α is a key
parameter for converting the confined variational problem into an unconfined problem,
and it mainly affects the bandwidth of the IMF component obtained by VMD decomposition
and the convergence rate of the algorithm. The punishment factor is inversely proportional
to the bandwidth of the IMF component. This paper uses the GWO algorithm to optimize
K and α.

The GWO algorithm is advanced by observing the grey wolf population’s preying
strategy in nature. In the grey wolf group, the grey wolf is classified into four classes from
high to low according to the fitness value, which are α wolf, β wolf, δ wolf, and ω wolf.
Among them, the α wolf is the optimum result, the β wolf and δ wolf are the second and
third optimum results, and the ω wolf is the candidate result. The use of the grey wolf
pack predation mechanism to solve the target solution space involves three steps: tracking,
encircling, and attacking prey, and they are mapped to the solution to the mathematical
model problem, i.e., the fitness from good to bad corresponds to the α wolf, β wolf, and
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δ wolf in the wolf population, and the other fitness individuals correspond to the ω wolf.
The specific algorithm applied to the mathematical model can be represented as:

D =
∣∣∣C ∗ Xp − X(t)

∣∣∣ (29)

X(t+1) = Xp(t)− A ∗ D (30)

where D indicates the relative location between the grey wolf and the target; t is the current
number of iterations; C and A are coefficients, Xp is the location of the target, and X(t) is
the location of the current gray wolf. The values of coefficients C and A are determined by:

C = 2r1 (31)

A = 2ar2 − a (32)

a = 2− 2 ∗ t
Tmax

(33)

where r1 and r2 are random numbers, the value of a linearly reduces from 2 to 0 with the
number of iterations t, and Tmax is the maximum number of iterations.

After the gray wolf population completes the positioning and tracking of the prey
location, it needs to complete the enclosure of the prey and map it to the mathematical
model. The location of ω can be updated by calculating the locations of α, β, and δ. The
update formula is represented as: 

Dα = |C1·Xα − X|
Dβ =

∣∣C2·Xβ − X
∣∣

Dδ = |C3·Xδ − X|
(34)

where Dα, Dβ, and Dδ denote the distance between α, β, and δ and the current iterated grey
wolf individual; Xα, Xβ, and Xδ indicate the current location of α, β, and δ, respectively;
C1, C2, and C3 are the corresponding coefficients; X denotes the location of the gray wolf
individual in the current iteration.

When the prey stops moving, the wolf completes the hunt by attacking. The location
of a grey wolf individual can be determined by:

X1 = Xα − A1·Dα

X2 = Xβ − A2·Dβ

X3 = Xδ − A3·Dδ

(35)

X(t+1) =
X1 + X2 + X3

3
(36)

where X1, X2, and X3 indicate the step length and direction of ω wolves forward to α, β,
and δ, respectively; X(t+1) indicates the final location of ω wolves after the iteration.

The maximum value of the product of Pearson correlation p and kurtosis value Kv is
taken as the optimized objective function value. The specific formula is presented below:

Kv =
∑N

i=1 (|Xi| −
−
X)

4

∂4 (37)

fmax = P·Kv (38)

3.2. Multi-Scale Feature Optimization Based on Improved Coarse-Graining

To improve the capability of traditional multi-scale arrangement features, this paper
starts with the coarse-grained step and establishes an improved multi-scale feature. Taking
scale 3 as an example (as shown in Figure 5), different from the original algorithm, under
the same time scale τ, our method can obtain τ sets of time series after coarse-grained
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processing to solve the mutation problem at the ‘breakpoint’, while there is only one set of
time series in the classical algorithm. The mathematical process can be expressed as:

1. The given signal is processed by the improved coarse-grained process to obtain τ sets
of time series:  Z(τ)

i =
{

y(τ)i,1 , y(τ)i,2 , · · ·
}

y(τ)i,j =
∑τ−1

f=0 x f+i+τ(j−1)
τ

, i = 1, 2, · · · , τ (39)

2. For each set of new coarse-grained time series Z(τ)
i |(i = 1, 2, · · · , τ) , its characteristic

value in time and frequency domains are obtained, and then the average value of τ
time series eigenvalues is calculated to obtain the eigenvalues under the time scale τ.
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3.3. Parameter Optimization of Long Short-Term Memory Neural Network

In the process of model training, the optimal set of hyperparameters can be selected to
improve the model diagnosis accuracy and performance. The hyperparameters include
the number of hidden layers, the learning rate, and the number of hidden layer neurons in
the Bi-LSTM prediction model. The hyper-parameter selection of the Bi-LSTM prediction
model depends on manual training and is adjusted multiple times according to experience.
However, the training of the Bi-LSTM prediction model requires a certain amount of
time, which will inevitably decline the work efficiency. Moreover, the hyper-parameter
combination of the prediction model selected by this method is not optimal, which will
affect the accuracy and effectiveness of the prediction model. To address this issue, the
whale algorithm is employed to optimize the hidden layer neural network and learning
rate of the Bi-LSTM fault model to enhance the generalization capability and estimation
accuracy of the model.

The whale algorithm is a mathematical model developed by based imitating the behav-
iors of humpback whales to surround, dabble, and search for prey. It has the advantages
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of less parameter adjustment, simple operation, and a strong ability to jump out of local
optima.

The first stage is:
D = |C·X∗(t)− X(t)| (40)

X(t + 1) = X∗(t)− A·D (41)

where D denotes the distance vector between the current optimal solution and the search
body; t denotes the current iteration times; X∗ denotes the location vector of the current
optimal solution; X denotes the location vector of the search volume.

The second stage is:

X(t + 1) = D′·ebl ·cos(2Πl) + X∗(t) (42)

where D′ = |X∗(t)− X(t)| denotes the distance vector between the searching individual
and the target prey; b denotes the constant coefficient of logarithmic spiral shape; l denotes
a random number in the interval [−1, 1].

The third stage is:
D = |C·Xrand − X(t)| (43)

X(t + 1) = Xrand − A·D (44)

where Xrand denotes the location of a random search body in the current population.
The flowchart of using the whale algorithm to optimize the hyperparameters of the

Bi-LSTM diagnostic model is shown in Figure 6.
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4. Experiments and Results

Firstly, the experimental data are obtained by the Simulink simulation program in
MATLAB, and the collected data are sorted out. Secondly, the effectiveness of the improved
method is verified by ablation experiments and comparative analysis.
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4.1. Data Acquisition

Through the Simulink in MATLAB, it is simulated that the inter-turn short-circuit fault
occurs in the a-phase stator winding after the PMSM runs normally for 0.5 s. The simulation
model is shown in Figure 7. The stator current waveform is shown in Figure 8. Figure 8a
presents the stator current simulation diagram of the permanent magnet synchronous
motor from start-up to normal operation to the occurrence of inter-turn short circuit fault.
Figure 8b presents the local amplification diagram of 0.4 s before the period in Figure 8a.
Figure 8c is the local amplification diagram of 1 s after the period in Figure 8a. It can be
seen from Figure 8b that under normal circumstances, the three-phase current is a periodic
waveform. In this paper, phase a stator current is selected as the fault feature to detect the
occurrence of a fault.
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Under normal circumstances, there is no short-circuit current in the PMSM, so its value
is zero; after an inter-turn short-circuit fault occurs, a short-circuit loop is generated, thereby
generating a short-circuited current. The above simulation results show that the stator
current of the PMSM changes significantly after the inter-turn short-circuit fault occurs.

4.2. Ablation Experiments
4.2.1. The Effectiveness of the VMD Algorithm Based on GWO Optimization

This paper proposes a VMD decomposition method based on GWO optimization
to remove noise in the signal. By comparing the results of inter-turn short circuit fault
diagnosis using the improved VMD decomposition method with those using the traditional
VMD decomposition method, the effectiveness of the improved algorithm is verified. It
should be noted that the feature extraction part adopts the unimproved multi-scale feature
extraction method, and the fault diagnosis part adopts the unimproved Bi-LSTM neural
network model.

Since no failure occurs in the first 0.5 s of the dataset, it was deleted. Then, 300 sets of
data are collected for each of the five faults, with 2000 data in each group. The sample data
of the training dataset and the test dataset are obtained by dividing each fault sample by a
ratio of 5:1. For the VMD decomposition method based on GWO optimization, the initial
population of the GWO algorithm is set to 20, and the maximum number of iterations
is 10. The decomposition number and punishment factors are selected in the ranges of
[2, 12] and [1000, 3000]. Finally, the optimized IMF decomposition number K = 6, and the
punishment factor α = 1564.
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The training set is tested by the trained model, and then the results are compared with
the original results. Finally, the ratio of the predicted correct value to the total number is
calculated to obtain the correct rate of the training set, as shown in Figure 9. Figure 9a
presents the result of using the unimproved VMD decomposition method, and Figure 9b
presents the result of using the improved VMD decomposition method. It can be seen from
the figure, the accuracy of the model before VMD improvement becomes stable after 1200
iterations, and the accuracy of the model after VMD improvement becomes stable after
1000 iterations.
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Figure 10 shows the confusion matrix of the fault classification model on the test set
in the experiment. Figure 10a presents the confusion matrix of using the unimproved
VMD decomposition method, and Figure 10b presents the confusion matrix of using the
improved VMD decomposition method. It can be seen from Figure 10 that for fault category
2, both the unimproved and improved models can make a correct diagnosis. For fault
category 1, both the unimproved and the improved VMD make three diagnostic errors. For
fault category 3, both the unimproved and improved VMD make one diagnostic error. For
fault category 4, the unimproved VMD makes four diagnostic errors, while the improved
VMD makes three diagnostic errors. For fault category 5, the unimproved VMD makes
nine diagnostic errors, while when the improved VMD makes six diagnostic errors. The
final fault identification accuracy of the two methods is 93.2% and 94.8% respectively.
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The t-SNE method is used to obtain the 2D scatter plot, which can demonstrate the
fault classification effect more intuitively, as shown in Figure 11. Figure 11a presents
the 2D scatter plot using the unimproved VMD decomposition method, and Figure 11b
presents the 2D scatter plot using the improved VMD decomposition method. The results
in Figure 11 indicate that the distance between and within the VMD classes before and after
the improvement is not very different, and the effect is not good.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 22 
 

(a) (b)  
Figure 10. The confusion matrix. (a) The confusion matrix in the training process by the unimproved 
VMD. (b) The confusion matrix in the training process by the improved VMD. 

 (a) (b)

2D scatter plot 2D scatter plot

 
Figure 11. The 2D scatter plot. (a) The 2D scatter plot in the training process by the unimproved 
VMD. (b) The 2D scatter plot in the training process by the improved VMD. 

4.2.2. The Effectiveness of the Improved Coarse-Grained Multi-Scale Feature Extraction 
Method 

In this paper, an improved coarse-grained multi-scale feature extraction method is 
proposed. The reconstructed signal is processed by improved coarse-grained processing 
at different scales. The effectiveness of the improved algorithm is verified by comparing 
the results of inter-turn short circuit fault diagnosis using the improved multi-scale fea-
ture extraction method with those of using the traditional multi-scale feature extraction 
method. It should be noted that the data preprocessing part adopts the improved VMD 
decomposition method, and the fault diagnosis part adopts the unimproved Bi-LSTM 
neural network model. 

After the decomposed signal is obtained by the improved VMD decomposition 
method, the decomposed signal is reconstructed. The decomposed signal is reconstructed 
by kurtosis value, and the decomposed components with more impact information can be 
screened out. Table 1 shows the kurtosis values of six signals decomposed by VMD from 
three samples for each of the five faults. In reference [18], the decomposition signal with a 
kurtosis value greater than 3 is superimposed and reconstructed. The reconstructed signal 
is subjected to different scales of improved coarse-grained processing to obtain its distri-
bution at different scales of 1–10. For each new set of coarse-grained time series, its time-
frequency domain eigenvalues are obtained, and then the average value of the eigenvalues 
of τ time series is calculated. The 19 time-frequency domain eigenvalues under the time 

Figure 11. The 2D scatter plot. (a) The 2D scatter plot in the training process by the unimproved
VMD. (b) The 2D scatter plot in the training process by the improved VMD.

4.2.2. The Effectiveness of the Improved Coarse-Grained Multi-Scale Feature
Extraction Method

In this paper, an improved coarse-grained multi-scale feature extraction method is
proposed. The reconstructed signal is processed by improved coarse-grained processing
at different scales. The effectiveness of the improved algorithm is verified by comparing
the results of inter-turn short circuit fault diagnosis using the improved multi-scale feature
extraction method with those of using the traditional multi-scale feature extraction method.
It should be noted that the data preprocessing part adopts the improved VMD decomposi-
tion method, and the fault diagnosis part adopts the unimproved Bi-LSTM neural network
model.

After the decomposed signal is obtained by the improved VMD decomposition
method, the decomposed signal is reconstructed. The decomposed signal is reconstructed
by kurtosis value, and the decomposed components with more impact information can
be screened out. Table 1 shows the kurtosis values of six signals decomposed by VMD
from three samples for each of the five faults. In reference [18], the decomposition signal
with a kurtosis value greater than 3 is superimposed and reconstructed. The reconstructed
signal is subjected to different scales of improved coarse-grained processing to obtain its
distribution at different scales of 1–10. For each new set of coarse-grained time series,
its time-frequency domain eigenvalues are obtained, and then the average value of the
eigenvalues of τ time series is calculated. The 19 time-frequency domain eigenvalues under
the time scale τ can be obtained. There are 14 time domains, which are the maximum value,
minimum value, average value, peak-peak value, average value of absolute value, variance,
standard deviation, kurtosis, skewness, root mean square, waveform factor, peak factor,
pulse factor, and margin factor. There are five frequency domains, which are the center of
gravity frequency, mean square frequency, root mean square frequency, frequency variance,
and frequency standard deviation. Each scale has 19 features, and there are 190 features in
10 scales. The PCA was used to extract the main features and normalize them by the Map
minmax function.

Figures 12–14 show the training set accuracy, confusion matrix, and 2D scatter plot
obtained by using the improved multi-scale feature extraction method for inter-turn short
circuit fault diagnosis.
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Table 1. The kurtosis values of five faults after VMD.

Failure Mode Sample Label Kurtosis Value after VMD

1
S1 6.24 1.52 25.71 1.53 23.65 8.96
S2 3.18 3.38 1.52 12.87 1.51 23.94
S3 3.42 3.08 1.52 12.38 1.52 16.32

2
S4 3.05 3.40 1.52 12.13 1.51 29.16
S5 2.89 1.52 22.57 1.54 24.08 13.42
S6 2.98 1.53 20.10 1.54 20.91 16.10

3
S7 3.03 3.39 1.53 11.95 1.52 31.91
S8 3.44 2.98 1.53 11.97 1.52 38.54
S9 3.46 2.81 1.53 11.44 1.52 30.73

4
S10 3.57 1.53 19.02 1.55 15.55 21.01
S11 3.18 1.53 17.95 1.55 16.87 19.15
S12 3.02 3.36 1.53 12.25 1.52 21.24

5
S13 5.20 1.52 52.68 9.03 1.54 21.00
S14 6.42 1.53 48.69 9.23 1.54 20.98
S15 2.38 1.53 54.71 9.05 1.54 21.98
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Comparing Figure 12 with Figure 11b, it can be seen that the accuracy of the unim-
proved ordinary time-frequency domain feature extraction model tends to be stable after
1000 iterations, and the accuracy of the improved multi-scale time-frequency domain fea-
ture extraction model tends to be stable after 800 iterations. Comparing Figure 13 with
Figure 12b, it can be seen that for fault category 2, the model can make a correct diag-
nosis. For fault category 1, the model based on ordinary time-frequency domain feature
extraction makes three diagnostic errors, and the model based on improved multi-scale
feature extraction makes two diagnostic errors. For fault category 3, the model based on
ordinary time-frequency domain feature extraction makes one diagnostic error, and there is
no error after using the improved multi-scale feature extraction. For fault category 4, both
methods make three diagnostic errors. For fault category 5, the model based on ordinary
time-frequency domain feature extraction makes six diagnostic errors, and the model based
on multi-scale feature extraction makes four diagnostic errors. The final fault identification
accuracy of the two methods is 94.8% and 96.4%, respectively. By comparing Figure 14 with
Figure 13b, it can be seen that the improved multi-scale time-frequency domain feature
extraction model has a larger inter-class distance and smaller intra-class distance, which
does not achieve the desired effect.

4.2.3. The Effectiveness of the Fault Diagnosis Model Based on the Improved Bi-LSTM
Neural Network

In this paper, a Bi-LSTM neural network model based on WOA optimization is pro-
posed to realize the fault diagnosis of inter-turn short circuits. By comparing the fault
diagnosis results of the improved Bi-LSTM neural network with those of the unimproved Bi-
LSTM neural network, the effectiveness of the improved algorithm is verified. It should be
noted that the data preprocessing part adopts the improved VMD decomposition method,
and the feature extraction part adopts the improved multi-scale feature extraction method.

The number of hidden-layer nodes and learning rate in the Bi-LSTM prediction model
are hyperparameters. During model training, the diagnosis accuracy and performance of
the model can be improved by selecting the best set of hyperparameters through hyperpa-
rameter optimization. The WOA optimization algorithm is used to optimize the number of
hidden layer nodes and the learning rate of the Bi-LSTM network to reduce the diagnostic
error. The LSTM network has one hidden layer and one fully connected layer. The selection
ranges of the number of hidden-layer nodes and the learning rate parameter are [100, 300]
and [0.001, 1], respectively. The population and iteration times of the whale algorithm are
10 and 50, respectively.
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Figures 15–17 show the accuracy of the training set, the confusion matrix, and the 2D
scatter plot obtained by using the improved Bi-LSTM neural network for inter-turn short
circuit fault diagnosis.
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Comparing Figures 12–14, it can be seen that the improved VMD decomposition
method, the improved multi-scale feature extraction method, and the improved Bi-LSTM
fault diagnosis model have been greatly improved in all aspects. It can be seen from
the whole training iteration process that the accuracy of the model tends to be stable
after 300 iterations. The accuracy of fault identification is as high as 100%, the distance
between classes becomes larger, the distance within classes becomes smaller, and it has
high accuracy and robustness. The proposed fault diagnosis model based on multi-scale
space can effectively classify PMSM inter-turn short circuit faults of different degrees.

5. Conclusions and Future Works

In this paper, the inter-turn short circuit fault simulation program of PMSM is designed,
and the stator current data is collected by the Simulink simulation program. Then, the
inter-turn short circuit fault diagnosis model of the permanent magnet synchronous motor
based on multi-scale space is proposed. The experimental results indicate that the proposed
method achieves a good diagnosis effect for different degrees of inter-turn short circuit
fault of the permanent magnet synchronous motor, and the fault diagnosis accuracy is as
high as 100%. The conclusions of this paper are as follows.

1. The GWO algorithm is used to adaptively select the k value and α value in VMD
decomposition, and the maximum value of the product of Pearson correlation p and
kurtosis value Kv is taken as the optimized objective function value, to realize the
extraction of weak signals in inter-turn short circuit faults.

2. The improved coarse-grained multi-scale feature extraction improves the performance
of traditional multi-scale arrangement features.

3. The WOA is adopted to optimize the number of hidden-layer nodes and the learning
rate of the Bi-LSTM network, which improves the diagnostic accuracy and solves the
problem of the hyper-parameter configuration of the deep learning model.

4. In practical engineering applications, a new fault diagnosis method is proposed to
make fault diagnosis more intelligent.

This paper only studies the stator winding inter-turn short circuit fault of PMSM. In
the future, we will conduct more extensive experimental research on other fault types of
PMSM, expand the data set, and apply this fault diagnosis method to actual industrial
production.
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