
Citation: Chen, Z.; Ren, X.

An Efficient Boosting-Based Windows

Malware Family Classification System

Using Multi-Features Fusion. Appl. Sci.

2023, 13, 4060. https://doi.org/

10.3390/app13064060

Academic Editor: Luis Javier

García Villalba

Received: 10 March 2023

Revised: 20 March 2023

Accepted: 21 March 2023

Published: 22 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

An Efficient Boosting-Based Windows Malware Family
Classification System Using Multi-Features Fusion
Zhiguo Chen 1,2,* and Xuanyu Ren 1,2

1 Engineering Research Center of Digital Forensics, Nanjing University of Information Science and Technology,
Ministry of Education, Nanjing 210044, China; renxuanyu@nuist.edu.cn

2 School of Computer and Software, Nanjing University of Information Science and Technology,
Nanjing 210044, China

* Correspondence: chenzhiguo@nuist.edu.cn

Abstract: In previous years, cybercriminals have utilized various strategies to evade identification,
including obfuscation, confusion, and polymorphism technology, resulting in an exponential increase
in the amount of malware that poses a serious threat to computer security. The use of techniques
such as code reuse, automation, etc., also makes it more arduous to identify variant software in
malware families. To effectively detect the families to which malware belongs, this paper proposed
and discussed a new malware fusion feature set and classification system based on the BIG2015
dataset. We used a forward feature stepwise selection technique to combine plausible binary and
assembly malware features to produce new and efficient fused features. A number of machine-
learning techniques, including extreme gradient boosting (XGBoost), random forest, support vector
machine (SVM), K-nearest neighbors (KNN), and adaptive boosting (AdaBoost), are used to confirm
the effectiveness of the fusion feature set and malware classification system. The experimental
findings demonstrate that the XGBoost algorithm’s classification accuracy on the fusion feature set
suggested in this paper can reach 99.87%. In addition, we applied tree-boosting-based LightGBM
and CatBoost algorithms to the domain of malware classification for the first time. On our fusion
feature set, the corresponding classification accuracy can reach 99.84% and 99.76%, respectively, and
the F1-scores can achieve 99.66% and 99.28%, respectively.

Keywords: computer security; machine learning; malware classification; feature fusion

1. Introduction

Malware is software or code that is downloaded and executed on computers or other
electronic devices without explicitly prompting or receiving permission to infringe the
proper rights and interests of clients. Starting in August 2020, the Lemon Duck [1] crypto
mining botnet spread at an unbelievable rate. It used multiple storm breaches, such as SMB
storm, RDP storm, and SQL server storm, as well as other vulnerabilities, including the
USBLnk vulnerability and the Eternal Blue vulnerability, for propagation. The research
of S. Greengard [2] shows that most malware variants contain very small mutations, with
less than 2% code variation among them. It shows that the majority of malware samples
from the same family have some characteristics. Thus, computer security depends on being
able to classify malware variations swiftly and effectively in the face of an infinite influx
of them.

There are two main approaches for malicious code analysis: dynamic analysis and
static analysis. By watching the program’s execution in a controlled environment, dynamic
analysis can determine the program’s actual behavior when it is in use (e.g., virtual machine,
emulator, or the sandbox). During the monitoring process, the operations completed by
the program (such as file access, API calls [3–6], communication through networks, etc.)
are recorded as reports, and researchers can effectively classify malware by analyzing

Appl. Sci. 2023, 13, 4060. https://doi.org/10.3390/app13064060 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13064060
https://doi.org/10.3390/app13064060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9541-1894
https://doi.org/10.3390/app13064060
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13064060?type=check_update&version=2

Appl. Sci. 2023, 13, 4060 2 of 19

the characteristics in the reports [7–11]. Alshamrani [12] proposed a machine learning-
based malicious program classification system using a dynamic analysis approach. This
system efficiently detects PDF malicious files by examining the dynamic execution of
a given sample. A novel framework for identifying malicious programs was proposed by
Wang et al. [13]. The framework mainly converts the dynamic execution sequence of the
original API into a graph of function calls, which preserves majority of the original data
and shrinks the input sequence size. The experimental outcomes demonstrate that the
framework’s F1-score and detection accuracy can reach 97.5% and 97.8%, respectively.
Catak et al. [14] analyzed 7107 malicious software applications, including Trojans, worms,
and viruses from various families. In a safe sandbox environment, they recorded the
Windows operating system’s API calls. Then, converted the sequential analysis results
into a format that can be used in different classification algorithms. In general, dynamic
analysis’s main benefit is to try to discover all the actual behaviors of the program, detect
malware according to the program’s behavior, and not be affected by encryption and
obfuscation technology. Thus, it could increase the accuracy of malware classification and
identify unknown and variant malware. Nevertheless, because it is difficult to acquire the
behavioral features of every execution route and because it uses many resources and much
time, this method can only be used to examine the behavior of a single execution path [15].
In addition, recent malware often employs counter-analysis defense mechanisms that can
hide malicious behavior in simulated environments [16] and lack of code coverage.

Static analysis finds malicious patterns by decomposing code and exploring the control
flow of executable files. Static analysis can achieve full code coverage and typically analyze
malware bytecode, assembly code, pixel features, file structure, control flow graphs, syntax
library calls, etc. For instance, Du et al. [17] used recursive feature elimination (RFE) and
principal component analysis (PCA) algorithms for static feature extraction, thus propos-
ing an intelligent machine-learning algorithm based on KNN and density for detecting
ransomware pre-attacks. The suggested technique can effectively increase the accuracy of
malware detection, according to experimental data. Gu et al. [18] to extract static features,
a convolutional neural network was utilized, deeply analyzed the development status
and existing problems of information communication and network security, and adopted
a process that uses reinforcement learning to ensure high network security. The experi-
ment’s findings demonstrate that this system performs superior to existing algorithms in
this field. Ahmadi et al. [19] were the earliest to employ the BIG2015 dataset for malware
classification, extracting malware binary and disassembly files’ static features and combin-
ing multidimensional features to classify nine malware families with a 99.77% classification
accuracy. Anderson et al. [20] proposed a supervised static detection model for Windows
malware. On a sizable and labeled dataset (EMBER), the model is tested and trained based
on the tree structured LightGBM classification algorithm. The experimental results show
that using the initialized LightGBM classifier performs better than the unsupervised deep
learning classification model on the same feature set. At the same time, the EMBER dataset,
as the first standard dataset in the field of detection of malware, is beneficial to the research
of malware detection in the field of machine learning.

Although static analysis can achieve full path coverage without polluting the system,
low detection rates and a high percentage of false positives are issues, and most malware
classification systems use many different types of features, resulting in high system memory
overhead and low detection efficiency. Given this, we proposed an efficient boosting-
based Windows malware family classification system using multi-features fusion. This
system performed feature fusion based on limited feature categories to reduce the time
and memory overhead and improve the classification accuracy. Meanwhile, this system
adopted an effective approach for classifying malware using tree boosting-based machine-
learning algorithms, including XGBoost v1.5.1, LightGBM v3.3.5, and CatBoost v3.3.5. The
classification accuracy of the XGBoost algorithm especially can be as high as 99.87%, and
the logarithmic loss can be reduced to 0.007.

The following constitutes the paper’s original contribution:

Appl. Sci. 2023, 13, 4060 3 of 19

(i) Combined plausible binary and assembly malware features using a forward feature
stepwise selection method to produce the most efficient fused features. Experimen-
tal findings demonstrate that the XGBoost classifier’s classification accuracy using
the proposed fused features is 99.87%, which is higher than most existing malware
classification models.

(ii) Using a limited number of 5530 features makes the system much faster with high
accuracy and easier to use for large-scale malware classification tasks.

(iii) The LightGBM and CatBoost-based models were applied for the first time to process
malware classification tasks. Both models obtained over 99.7% accuracy.

Here is the remainder of the essay: An overview of the connected works is given
in Section 2. The specifics of the suggested methodology are presented in Section 3.
The experimental findings are covered in Section 4, and this paper’s conclusions and
recommendations are provided in Section 5.

2. Related Work
2.1. Portable Executable (PE)

The PE file format describes the executable formats of the Microsoft Windows oper-
ating system, including executables, Dynamic Link Libraries (DLLs), and FON font files.
A Windows binary file consists of a PE header, code, data, and resource sections. The PE
header includes a common object file format (COFF) file header, an optional header, and
a section table. Each section has one or more subsections. The COFF header is 24 bytes long
and contains crucial details about the file, such as the type of system it is compatible with,
its nature (DLL, EXE, OBJ), how many sections and symbols it contains, etc. The linker
version, code size, initialized data, uninitialized data, entry point location, code base, etc.
are all included in the optional header. Many tables and table sizes, including location and
size export tables, import tables, resource tables, exception tables, debug information tables,
certificate information tables, and relocation tables, are included in the optional header’s
data directory. Finally, each section table is 40 bytes long and includes details such as the
name, virtual size, address, position, raw data size, number of relocations, number of line
numbers, attributes, etc. A binary file can be more than one section, and the section names
include .text, .rdata, .data, .idata, .rsro, .rsrc, etc.

2.2. Gradient Boosting Decision Tree (GBDT)

GBDT is an ensemble algorithm based on decision tree implementation, which is
crucial for data analysis and prediction. It has many efficient implementations, such as
XGBoost, LightGBM, and CatBoost, which use an ensemble strategy to ensemble a more
efficient strong classifier from several weak classifiers. Moreover, the algorithm based
on the tree structure is more interpretable than other algorithms, which is beneficial for
malware analysts to analyze and study malware. These three algorithms are described in
detail below.

The gradient boosting framework, which uses the machine-learning algorithm XG-
Boost, is extremely expandable, adaptable, and versatile. It proposed by this algorithm
efficiently implements the GBDT algorithm and makes many improvements in algorithm
and engineering, which was proposed by Tianqi Chen in March 2014. It overcomes the
limitations of previous gradient lifting algorithms and improves the training speed and
accuracy of the model’s predictions. Therefore, XGBoost has been applied in various
machine-learning competitions, including the Microsoft Malware Challenge, with excellent
results. In contrast to existing gradient enhancement algorithms, XGBoost uses a novel
regularization strategy to reduce overfitting. When tweaking a model, it is quicker and
more reliable. The regularization technique introduces an extra term to the loss function, as
Equations (1) and (2) show:

L(f) = ∑n
i=1 L(

Λ
yi, yi)+∑M

m=1 Ω(δm) (1)

Appl. Sci. 2023, 13, 4060 4 of 19

Ω(δ) = α|δ|+0 .5β||w||2 (2)

where |δ| is the number of branches, w is the value of each leaf, and Ω is the regularization
function. Compared to the previous gradient enhancement algorithm, XGBoost employs a
new gain function as Equations (3)–(7) show:

Gj = ∑
i∈Ij

gi (3)

Hj = ∑
i∈Ij

hi (4)

Gain =
1
2

[
G2

L
HL+β

+
G2

R
HR+β

− (G R+GL)
2

HR+HL+β
]− α (5)

gi = ∂Λ
yiL (

Λ
yi, yi

)
(6)

hi = ∂2
Λ
y

iL (
Λ
yi, yi

)
(7)

G is the cumulative sum of first-order partial derivatives, H is the cumulative sum of
second-order partial derivatives, and Gain is the score in the absence of the new child [21].

Due to the high interpretability and robustness of the GBDT algorithm, Microsoft
released the first stable version of LightGBM in January 2017 [22]. In XGBoost, the tree is
grown by level, called level-wise tree growth. Branching and pruning occur at all nodes at
the same level, as shown in Figure 1a. The level-wise indiscriminate treatment of leaves
at the same level creates a great deal of pointless overhead. There is no need to hunt for
and split many leaves because they have poor splitting gains. By contrast, in addition to
the histogram algorithm, Figure 1b illustrates how LightGBM divides after identifying the
leaf with the highest splitting gain out of all the current leaves. Therefore, contrasted with
level-wise, leaf-wise can reduce the memory overhead of the system with the same number
of splits. In addition, LightGBM uses the gradient-based one-side sampling (GOSS) method
to delete most small gradient samples according to the data gradient.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 20

L f L(y
Λ

i
,y

i
)+ Ω δm

M

m=1

n

i=1
 (1)

Ω(δ)=α|δ|+0.5β||w||
2
 (2)

where |δ| is the number of branches, w is the value of each leaf, and Ω is the regulariza-
tion function. Compared to the previous gradient enhancement algorithm, XGBoost em-

ploys a new gain function as Equations (3)–(7) show:

Gj = g
i

i∈Ij

 (3)

Hj = hi
i∈Ij

 (4)

Gain =
1

2
[

GL
2

HL+β
+

GR
2

HR+β
-
(GR+GL)

2

HR+HL+β
]−α (5)

g
i
= ∂

y
Λ

i

L (y
Λ

i
,y

i
) (6)

hi= ∂
y
Λ
2

i

L (y
Λ

i
,y

i
) (7)

G is the cumulative sum of first-order partial derivatives, H is the cumulative sum of

second-order partial derivatives, and Gain is the score in the absence of the new child [21].

Due to the high interpretability and robustness of the GBDT algorithm, Microsoft

released the first stable version of LightGBM in January 2017 [22]. In XGBoost, the tree is

grown by level, called level-wise tree growth. Branching and pruning occur at all nodes

at the same level, as shown in Figure 1a. The level-wise indiscriminate treatment of leaves

at the same level creates a great deal of pointless overhead. There is no need to hunt for

and split many leaves because they have poor splitting gains. By contrast, in addition to

the histogram algorithm, Figure 1b illustrates how LightGBM divides after identifying the

leaf with the highest splitting gain out of all the current leaves. Therefore, contrasted with

level-wise, leaf-wise can reduce the memory overhead of the system with the same num-

ber of splits. In addition, LightGBM uses the gradient-based one-side sampling (GOSS)

method to delete most small gradient samples according to the data gradient.

Figure 1. (a) XGBoost level-wise tree growth; (b) LightGBM leaf-wise tree growth.

As one of the mainstream algorithms of GBDT, CatBoost is also a parallel implemen-

tation under the GBDT framework. The Russian company Yandex open-sourced it in 2018.

Compared with the traditional machine-learning algorithms, there are two differences: (i)

classified features can be processed without feature engineering before training the model;

(ii) it lessens model overfitting and improves model prediction effect. CatBoost handles

category features differently from LightGBM and converts category features into numeric

types as follows:

(Ⅰ) Dividing the training samples into random subsets.

Figure 1. (a) XGBoost level-wise tree growth; (b) LightGBM leaf-wise tree growth.

As one of the mainstream algorithms of GBDT, CatBoost is also a parallel implementa-
tion under the GBDT framework. The Russian company Yandex open-sourced it in 2018.
Compared with the traditional machine-learning algorithms, there are two differences:
(i) classified features can be processed without feature engineering before training the
model; (ii) it lessens model overfitting and improves model prediction effect. CatBoost
handles category features differently from LightGBM and converts category features into
numeric types as follows:

(I) Dividing the training samples into random subsets.
(II) Converting label values into integers.
(III) Iterating through each sample in turn and converting the category features to the data

type according to the following formula.

valueNew =
countlnClass + prior

totalCount + 1
(8)

Appl. Sci. 2023, 13, 4060 5 of 19

where valueNew: the converted value; countlnClass: the total number of samples that have
been visited to reach the current sample and have the same label value; totalCount: the
total number of samples traversed to the current sample; and prior: the smoothing factor
(specified by the starting parameter) [23].

2.3. Forward Selection Algorithm

The forward selection procedure is a method for choosing independent variables
in regression models that introduces potential independent variables to the regression
equation one at a time [24]. Initially, it fits the independent variable with the highest
correlation to the dependent variable y to the model, and the inclusion of this independent
variable in the model is determined by the significance test of the regression coefficient.
Secondly, repeat the above process among the independent variables not introduced into the
model. Finally, this process continues until none of the significance tests of the regression
coefficients of the unselected independent variables on y are significantly different from
zero after excluding the effect of the selected variables on y. The forward selection algorithm
uses the idea of the greedy algorithm, which is to reduce the error at each step until the
end of the final iteration.

2.4. Visualizing Malware as an Image

In the area of identifying malware, the classification of malware using image visual-
ization techniques is becoming increasingly popular. This approach mainly detects and
classifies malware by converting binary sequences into image representations. To visualize
a malware sample as an image, a vector of 8-bit unsigned numbers from the provided mal-
ware binary file is read and then transformed into a two-dimensional array [25]. This array
is visualized as a grayscale image in the range [0, 255] (0: black, 255: white). The height
and width of the image can be adjusted according to the file size, as shown in Figure 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 20

(ⅠⅠ) Converting label values into integers.
(ⅠⅠⅠ) Iterating through each sample in turn and converting the category features to the

data type according to the following formula.

valueNew=
countlnClass + prior

totalCount + 1
 (8)

where valueNew: the converted value; countlnClass: the total number of samples that

have been visited to reach the current sample and have the same label value; totalCount:

the total number of samples traversed to the current sample; and prior: the smoothing

factor (specified by the starting parameter) [23].

2.3. Forward Selection Algorithm

The forward selection procedure is a method for choosing independent variables in

regression models that introduces potential independent variables to the regression equa-

tion one at a time [24]. Initially, it fits the independent variable with the highest correlation

to the dependent variable y to the model, and the inclusion of this independent variable

in the model is determined by the significance test of the regression coefficient. Secondly,

repeat the above process among the independent variables not introduced into the model.

Finally, this process continues until none of the significance tests of the regression coeffi-

cients of the unselected independent variables on y are significantly different from zero

after excluding the effect of the selected variables on y. The forward selection algorithm

uses the idea of the greedy algorithm, which is to reduce the error at each step until the

end of the final iteration.

2.4. Visualizing Malware as an Image

In the area of identifying malware, the classification of malware using image visual-

ization techniques is becoming increasingly popular. This approach mainly detects and

classifies malware by converting binary sequences into image representations. To visual-

ize a malware sample as an image, a vector of 8-bit unsigned numbers from the provided

malware binary file is read and then transformed into a two-dimensional array [25]. This

array is visualized as a grayscale image in the range [0, 255] (0: black, 255: white). The

height and width of the image can be adjusted according to the file size, as shown in Figure

2.

Figure 2. Visualizing malware as an image.

Malware has increasingly been turned into visuals for detection and categorization.

A deep learning-based malware categorization method was proposed by Tekerek et al.

[26]. The system converts the binary sequences of suspect software into grayscale images.

The BIG2015 dataset’s classification precision on the CNN classifier is 99.86%. Dai et al.

[27] proposed a method to classify malware using hardware features by converting

memory dump files into grayscale images and extracting features using a histogram of

gradients (HOG). Gibert et al. [28] presented a file-independent deep-learning method for

malware classification. This is prompted by the visual resemblance of malware samples

from the same series. Using the grayscale graph, this technique extracted a number of

discriminative patterns to effectively group malware into the corresponding series.

Figure 2. Visualizing malware as an image.

Malware has increasingly been turned into visuals for detection and categorization.
A deep learning-based malware categorization method was proposed by Tekerek et al. [26].
The system converts the binary sequences of suspect software into grayscale images. The
BIG2015 dataset’s classification precision on the CNN classifier is 99.86%. Dai et al. [27]
proposed a method to classify malware using hardware features by converting memory
dump files into grayscale images and extracting features using a histogram of gradients
(HOG). Gibert et al. [28] presented a file-independent deep-learning method for malware
classification. This is prompted by the visual resemblance of malware samples from the
same series. Using the grayscale graph, this technique extracted a number of discriminative
patterns to effectively group malware into the corresponding series.

2.5. Malware Detection and Classification

Traditional signature scanning-based techniques cannot effectively detect malware
in real-time malware variants. To overcome these problems, many researchers have es-
tablished static malware detection models based on techniques for machine learning by
extracting static features, such as Windows PE file structure, opcodes, bytecodes, etc., before
software execution. The types of columns in Table 1 show whether the study has an applica-
tion for identifying or categorizing malware. If characteristics were taken from the PE body
or header, it is indicated in the features column. All abbreviations are explained below:

Appl. Sci. 2023, 13, 4060 6 of 19

BYT: byte code; OP: operation code; STC: structural feature; API: application programming
interface. Finally, the model column shows the classification models used by the author.

Table 1. Methods of static analysis for malware on Windows.

Year Authors Types
Det Class

Features
Header Body Models

2019 Sun et al. [29]
√

- OP Machine Learning
2020 Ijaz et al. [30]

√
STC STC Gradient Boosting

2021 Loi et al. [5]
√ √

BYT STC Automated Pipeline
2021 Hemalatha et al. [31]

√
BYT BYT DenseNet

2021 Sun et al. [32]
√

- OP RMVC
2022 Li et al. [33]

√
BYT BYT SAE

2022 Kumar et al. [34]
√

BYT BYT SVM
2022 Jadvani et al. [35]

√
STC - Random Forest

2022 Greengard et al. [2]
√

API - Machine Learning
2022 Johnson et al. [4]

√
- OP Ensemble Learning

2022 Rizvi et al. [3]
√

STC - FANN

In 2019, Sun et al. [29] advanced a static detection method to identify Windows
malicious programs based on opcode sequences. This method identifies Windows malware
of varying digits. Compared to previous systems, it reduces computational complexity and
can efficiently detect and classify malware variants. In 2020, Ijaz et al. [30] used APIs, byte
entropy, DLLs, and altered registry entries to statically extracted 92 features from binary
malware, obtaining 99.36% detection accuracy. In 2021, Loi et al. [5] proposed an automated
pipeline for detecting and classifying PE files. The pipeline first detects whether the sample
is malicious. In the case of malware, the pipeline further determines the group of samples.
Experimental findings indicate that the scheme achieves 96.9% classification accuracy on
the EMBER dataset.

An effective malware categorization method built on a deep learning algorithm was
proposed by Hemalatha et al. [31]. The suggested approach addresses the issue of unbal-
anced data by applying a weighted loss function in the neural network model’s classifi-
cation layer. With an accuracy of 98.23% on the MalImg dataset, 98.46% on the BIG2015
dataset, and 98.21% on the MaleVis dataset, the testing findings demonstrate that it may
greatly improve the malware classification performance. A technique (RMVC) based on
opcode sequences for categorizing malware was suggested by Sun et al. [32]. The system
first converts malicious programs into grayscale images, then uses recurrent neural net-
works (RNN) for feature extraction, and finally uses convolutional neural networks (CNN)
for image classification. The outcomes of the trial indicate that the RMVC model achieves
99.5% accuracy on a few samples. In 2022, using the assembly files and binary files of the
Kaggle dataset, Li et al. [33] extracted 184 opcode features and 16 probabilistic features.
They then fused all the features together using a double-byte feature encoding technique.
The CNN algorithm was employed in the experiment to classify the fused samples, and the
findings show that the suggested method has an accuracy rate of 98.68% and a logloss of
0.022. Kumar et al. [34] suggested a useful classification scheme based on malware texture
features, which does not need to execute malware and effectively avoids terminal infection.
The classification accuracy using a machine-learning classifier on the public MalImg dataset
was 98.34%.

Jadvani et al. [35] proposed a method to predict malicious executable files using PE
file header features. This method uses a limited number of features, which reduces the
system’s complexity while ensuring high accuracy. Using a dataset with features in PE
file format, the model was trained and tested with an average accuracy of roughly 99.5%.
A malware detection method based on neural networks and PE file API calls was proposed
by Greengard et al. [2]. The experimental results show that the average accuracy rate can
reach 97.9%. Johnson et al. [4] presented a static detection method incorporating machine
learning to classify ransomware using opcode sequences extracted from assembly files.

Appl. Sci. 2023, 13, 4060 7 of 19

The proposed integrated learning model has significantly enhanced performance when
testing a dataset consisting of real-time ransomware samples with 99.21%. A malware
detection system based on static analysis was proposed by Rizvi et al. [3]. The system
is trained on pseudo labels based on unsupervised learning. The experimental findings
demonstrate that the deep neural network’s accuracy is 98.09% on the 15,457 PE samples,
and the time efficiency and detection accuracy of the system are better than most traditional
static malware detection systems. At the same time, the system reduces the risk of malware
infection to the lowest.

Table 1 summarizes the comparison of feature types and models employed in machine
learning-based malware static detection or classification schemes. As can be seen from
Table 1, the static malware detection scheme has become more and more perfect, and it has
excellent detecting performance or efficiency and accuracy of classification. Researchers
mainly use software PE structure information, opcode sequences, bytecode sequences,
application program interfaces, and other static features to establish a malware system for
static detection and classification.

3. The Proposed System
3.1. Overview of the Proposed System

Figure 3 depicts the architecture of the proposed static malware categorization system.
This classification system utilizes the proposed fusion feature set and machine learning-
based algorithm to increase malware classification effectiveness. The system essentially
consists of four components: (1) Malware samples, (2) Feature extraction, (3) Feature fusion,
and (4) Classification model. Malware samples: This study investigates the categorization
of malware using the benchmark dataset (BIG2015) made available by the Microsoft Mal-
ware Challenge. It contains 10,868 malware, and each malware has two formats: binary
language format and assembly language format. Feature extraction: We extracted six
groups of representative features based on the BIG2015 dataset and stored them in the
feature database for future analysis. Feature fusion: A forward stepwise selection algorithm
is used to fuse the extracted features to achieve a balance between model classification accu-
racy and time efficiency. Classification model: Used tree boosting-based machine-learning
algorithm to build an effective malware classification system.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 20

Figure 3. Overview of our proposed architecture.

3.2. Malware Representation

Before detailing the features, we will describe two representations of the BIG2015

dataset’s malware samples: the binary form and the assembly language form obtained by

decompiling with the Interactive Disassembler (IDA Pro).

The beginning address of these machine codes in memory is indicated by the first

value of the hex view, as shown in Table 2, and each value (byte) comprises significant

components of the PE, such as instruction code or data. One of the most well-known re-

cursive traversal disassemblers, the IDA Pro tool automatically analyzes binary files’

source code by using cross-references between code segments, knowledge of API call pa-

rameters, and other data. IDA Pro interprets the byte sequence as an assembly view, as

shown in Table 2.

Table 2. Data overview.

Hex view

00401000 00 00 80 40 40 28 00 1C 02 42 00 C4 00 20

00401010 00 00 20 09 2A 02 00 70 00 03 5E 10 31 0A

00401020 40 00 02 01 00 90 21 00 32 40 00 1C 01 40

Assembly view

.text:00401000 56 push esi

.text:00401005 50 push eax

.text:00401005 50 assume es: nothing

3.3. Feature Extraction

The use of techniques such as obfuscation, confusion, and polymorphism further

complicate the malicious patterns of malware and its variants. Therefore, it is difficult to

effectively distinguish malware families with single feature information. To make use of

the complementary information that these two representations bring, we extracted fea-

tures from binary and assembly language files for accurate and quick categorization. The

experimental results demonstrate that combining these two types of features enhances the

classification system’s accuracy. The experimental details are introduced in Section 4. This

section will detail the features used in this paper.

Figure 3. Overview of our proposed architecture.

Appl. Sci. 2023, 13, 4060 8 of 19

3.2. Malware Representation

Before detailing the features, we will describe two representations of the BIG2015
dataset’s malware samples: the binary form and the assembly language form obtained by
decompiling with the Interactive Disassembler (IDA Pro).

The beginning address of these machine codes in memory is indicated by the first value
of the hex view, as shown in Table 2, and each value (byte) comprises significant components
of the PE, such as instruction code or data. One of the most well-known recursive traversal
disassemblers, the IDA Pro tool automatically analyzes binary files’ source code by using
cross-references between code segments, knowledge of API call parameters, and other data.
IDA Pro interprets the byte sequence as an assembly view, as shown in Table 2.

Table 2. Data overview.

Hex view

00401000 00 00 80 40 40 28 00 1C 02 42 00 C4 00 20
00401010 00 00 20 09 2A 02 00 70 00 03 5E 10 31 0A
00401020 40 00 02 01 00 90 21 00 32 40 00 1C 01 40

Assembly view

.text:00401000 56 push esi

.text:00401005 50 push eax

.text:00401005 50 assume es: nothing

3.3. Feature Extraction

The use of techniques such as obfuscation, confusion, and polymorphism further
complicate the malicious patterns of malware and its variants. Therefore, it is difficult
to effectively distinguish malware families with single feature information. To make use
of the complementary information that these two representations bring, we extracted
features from binary and assembly language files for accurate and quick categorization.
The experimental results demonstrate that combining these two types of features enhances
the classification system’s accuracy. The experimental details are introduced in Section 4.
This section will detail the features used in this paper.

3.3.1. Binary File

Byte_1_gram: The n-gram is a contiguous representation of n items of a given sequence,
widely used in language modeling, DNA sequence detection, etc. In the field of computer
security, malware samples can be efficiently represented as hexadecimal sequences using
n-gram analysis to learn important details about different virus types. Based on this, this
paper constructed 257-dimensional 1_gram frequency features from binary files.

Byte_2_gram: As a text analysis tool, byte_2_gram is widely used in text mining
and analysis in NLP. Numerous studies have shown that byte_2_gram features play
an important role in the field of malware classification with their low system overhead
and high classification accuracy. Therefore, this paper built a 2562-dimensional 2_gram
frequency featured after 1_gram and selected the best 360-dimensional byte_2_gram com-
bination from each binary file by cross-validation.

3.3.2. Assembly File

Asm_Pixel: Assembly files contain much software-related texture information. There-
fore, the image representation transformation of the assembly file can effectively utilize its
texture information to classify malware [26]. This paper converted all pixelated images to
a NumPy array and used cross-validation to find a feature set consisting of 2300 significant
pixel features from each malware image.

Asm_1_gram: Numerous studies have found that some features of assembly files, such
as segments, opcodes, keywords, and registers, are closely related to malicious activities
of malware, which can effectively distinguish malware families. The Microsoft Challenge

Appl. Sci. 2023, 13, 4060 9 of 19

provided 10,868 assembly language files totaling 150 GB. Due to the huge source data is
not conducive to feature extraction, this paper adopts parallel processing technology to
randomly divide all assembly files into five folders, and each folder simultaneously extracts
these four types of features. Details are as follows:

(a) Segments: The preset sections in PE (.text, .data, .bss, .rdata, .edata, .idata, .rsrc,
etc.). We selected 13 commonly used segments, and the experiments prove that these
segments benefit the classification results;

(b) Opcodes: The machine code, which represents the assembly instruction, is repre-
sented by the opcode as a helper. The full list of ×86 instruction sets is vast and
complex, so we chose a subset of 26 opcodes based on how frequently they are used
in malware samples. We measured how frequently these 26 opcodes were used in
each malware sample;

(c) Keywords: Extracted three keyword features: .dll, std::, and :dword;
(d) Registers: Extracted the features of registers edx, esi, eax, ebx, ecx, edi, ebp, esp, and

eip and experimentally demonstrated that the frequency of register usage is a helpful
feature for assigning malware samples to a family.

Opcodes_2_gram: The opcode is a command that defines the behavior of malware
that does not rely on any external resources or domain knowledge. Shankarapani et al. [36]
found that opcodes have higher accuracy by comparing malware classification performed
by assembly and application programming interface (API) call sequences. Hence, we
constructed 565-dimensional Opcodes_2_gram frequency features from assembly files.

Opcodes_3_gram: Malware has more sophisticated malicious patterns due to the use of
techniques such as code reuse and automation. More machine code accompanies common
operations of most malware. Therefore, if the value of n in the n-gram is small, more
complex malicious operation codes cannot be effectively discovered. Therefore, this paper
extracted 2000-dimensional Opcodes_3_gram frequency features after Opcodes_2_gram.

3.4. Feature Fusion

The most straightforward way to combine feature categories is to stack them in
a single feature vector and verify their effect by the same classifier. However, irrelevant and
redundant features in the stacking process not only increased the need for extra processing
complexity but also had the potential to decrease the model’s accuracy. Therefore, this
paper mainly considers the following feature fusion methods. One approach is the best
subset selection technique. This technique starts with a subset comprising only one feature.
Retain the subset with the highest objective function value (such as accuracy, loss function,
etc.) by assessing the performance of the trained classifier. For each subgroup with f
features, the procedure is repeated, with f growing by one at each step. The forward
stepwise selection method is one more method we consider. By gradually adding features
to the model one at a time, this technique starts with a feature-less model and gradually
expands its feature set. Comparing this feature selection method to the best subset selection
method, it is more computationally efficient. because the best subset selection method
considers only ∑

f
i=1(f − k) = f (f+1)

2 subsets, while the latter uses a greedy algorithm to
consider all 2 f possible models. The third approach we consider is early fusion. Multiple
layers of features are fused, and then the predictor is trained on the fused features. The
concat operation is used to connect the two features directly. If the dimensions of the
two input features x and y are p and q, the dimension of the output feature z is p + q. At the
same time, the parallel strategy is used to combine the two feature vectors into a complex
vector. For the input features x and y, z = x + iy, where i is an imaginary number unit.
The representative algorithms are Inside-Outside Net and HyperNet. The opposite of this
approach is late fusion. To enhance the detection performance, it integrates the findings of
multiple layers of detection; that is, the characteristics of different dimensions are tested
separately, and then the test results are integrated.

Considering the efficiency and practicability of modeling, this paper adopts the for-
ward stepwise selection algorithm for feature fusion. In each iteration, the feature category

Appl. Sci. 2023, 13, 4060 10 of 19

that yields the smallest logloss is added to our model. Stop the process until the value of
logloss does not reduce during the addition process.

3.5. Classification Model

Since various tree-based boosting algorithms have the advantages of strong inter-
pretability, high speed, and high precision, XGBoost, LightGBM, and CatBoost algorithms
have received great attention in the field of classification and detection. The XGBoost algo-
rithm, a parallel implementation of a gradient boosting tree classifier that produced better
performance than other algorithms in most cases, was mostly used by the top 10 teams in
the recent Kaggle contest. Furthermore, as a fast and efficient parallel algorithm, XGBoost
has fully adjustable parameters, which is the main motivation for using this algorithm. In
this paper, we also utilized random forest, SVM, KNN, AdaBoost, etc., classifiers to assess
the viability of the suggested fusion feature set and malware classification system. In the
experimental section, categorization models will be covered in more detail.

3.6. Measures for Evaluation

As shown in Formulas (9)–(13), we used the metrics accuracy, precision, recall, F1-score,
and logloss to evaluate the effectiveness of the classification system. Precision denotes
the quantity of malware instances accurately categorized as a percentage of all malware
incidents in the predicted family. Recall denotes the amount of malware instances correctly
classified, divided by the total number of malware instances in the actual malware family.
The F1-score takes both false positives and false negatives into account. Therefore, the
F1-score is a better measure to seek a balance between precision and recall. Accuracy is
an important parameter that determines the percentage of the correctly classified instance.
Logarithmic loss measures the performance of a classification model by comparing the gap
between the predictions and the real data.

Precision =
Tp

Tp+Fp
(9)

Recall =
Tp

Tp+Fn

(10)

F1= 2× Precision·Recall
Precision + Recall

(11)

Accuracy =
Tp+Tn

Tp+Tn+Fp+Fn
(12)

where Tp is a true positive, Tn is a true negative, Fp is a false positive, and Fn is a false negative.

logloss = − 1
N ∑N

i=1 ∑M
j=1 yij log

(
pij

)
(13)

where N is the number of observations, M is the number of category labels, log is the
natural logarithm, yij is 1 if observation i is in category j and 0 otherwise, and pij is the
predicted probability that observation i is in category j.

4. Experimental Results and Discussion
4.1. Data

Microsoft provided a set of known malware files in a competition held in 2015
(BIG2015) with nearly 0.5 terabytes of data associated with a total of 21,741 malware
samples, 10,868 of which were used for training and the remaining ones for testing. There
are nine separate families represented by it: Ramnit (R), Lollipop (L), Keli-hos ver3 (K3),
Vundo (V), Simda (S), Tracur (T), and Kelihos ver1 (K1), which stands for obfuscator. Table 3
displays ACY (O) and Gatak (G). Each file has a class label that ranges from 1 to 9, with
1 denoting the first malware family in the list above and 9 denoting the final. Two files

Appl. Sci. 2023, 13, 4060 11 of 19

make up each malware sample, one of which contains hexadecimal code and the other of
which contains disassembly code. To make sure the file was clean, Microsoft erased the PE
header. Each malware file has an id: a 20-character hash to identify the file uniquely, and
a class, an integer representing one of the nine family names to which the malware may
belong. Since the test set does not provide the corresponding label, we used the training set
to evaluate the efficiency of our proposed system.

Table 3. Malware families in the training dataset.

Class ID Family Name Train Samples Type

1 Ramnit 1541 Worm
2 Lollipop 2478 Adware
3 Kelihos_ver3 2942 Backdoor
4 Vundo 475 Trojan
5 Simda 42 Backdoor
6 Tracur 751 TrojanDownloader
7 Kelihos_ver1 398 Backdoor
8 Obfuscator.ACY 1228 Any kind of obfuscated malware
9 Gatak 1013 Backdoor

4.2. Feature Selection

The malware feature set is typically high-dimensional and sparse, which is not
conducive to malware classification. However, most classifiers perform better on low-
dimensional dense features. Therefore, this paper mainly uses the chi-square verification
algorithm to shrink the size of single-category features and selects the optimal number of
features by evaluating the performance of the XGBoost algorithm under cross-validation.

For the Byte_2_gram feature: In all combinations of 2-grams, the chi-square validation
at intervals of 50 and the XGBoost classification algorithm are selected to confirm the single-
category features that make it easiest to identify the malware family. The outcomes of the
trial indicate that the 350 features selected by chi-square verification eliminate extraneous
and pointless elements in the feature set and can tend to the optimal solution in terms
of classification performance. Therefore, to clarify the quantity of characteristics in the
feature range of 300~400, this paper further confirms that the first 360 features can obtain
the highest performance of the classifier through chi-square verification at intervals of 10,
which is the optimal solution for the single-category feature set of Byte_2_gram.

For the Asm_Pixel feature: Each assembly file image was converted to a NumPy
array. The dimension of selected features is reduced based on chi-square validation with
an interval of 100, and the XGBoost algorithm is employed to measure the effectiveness
of single-category features. The experimental results show that the 2300 features after
dimensionality reduction perform better on the classifier. To further determine the number
of features, we selected the feature range of 2200~2400 and verified performance based on
chi-square validation at intervals of 20. Finally, the first 2300 features were selected to form
the optimal feature set of Asm_Pixel.

For the Opcodes_2_gram feature: Like the selection method of the first two categories
of features, we conducted chi-square validation in the feature range of all Opcodes 2-gram
at intervals of 25 and validated the classification effect using the XGBoost classifier. The ex-
perimental findings demonstrate that the classifier’s classification effect for 625-dimensional
features tends to be the optimal solution. Therefore, to further obtain the number of features
with the highest classification accuracy, this paper adopted a feature range of 550 to 625
and continues testing at intervals of 5. Experiments confirm that the first 565 features are
the optimal solutions for Opcodes_2_gram single-category features.

For the feature Opcodes_3_gram: Although the vector space induced by the program
for Opcodes_2_gram only has 565 different features. A modest value of n will, however, fail
to detect complicated malicious blocks of operations, as the majority of typical operations
that might be utilized for malicious purposes require more than one or two machine opera-
tion codes. Consequently, we also extracted and utilized the Opcodes 3-gram sequences as

Appl. Sci. 2023, 13, 4060 12 of 19

features. Due to larger values of n in the n-gram leading to a sparser feature matrix, we
performed chi-square validation with intervals of 100 on over 60,000 Opcodes 3-gram. The
experimental results show that the 2000 features after dimensionality reduction through chi-
square verification remove irrelevant and redundant features in the feature set and achieve
high classification accuracy on the XGBoost classifier. To further clarify the number of
features, in the feature range of 1900~2100, we further confirmed that the first 2000 features
are the optimal solution for the single-category feature of Opcodes_3_gram using chi-square
verification with an interval of 20.

As shown in Table 4, chi-square validation streamlines the number of features while
reducing feature extraction time. Although the time difference is not large, the number of
features that are most conducive to classification is screened through chi-square verification,
which reduces system complexity and memory consumption and is conducive to improving
model training and classification efficiency.

Table 4. Chi-square verification for feature selection.

Feature Number Time
(Seconds)

Number
(Chi-Square)

Time
(Seconds)

Byte_2_gram 2000 1013.15 360 1011.78
Asm_Pixel 5000 966.77 2300 944.75

Opcodes_2_gram 625 0.67 565 0.56
Opcodes_3_gram 10,000 69.21 2000 68.89

Overall, this paper used chi-square validation and the XGBoost classification algorithm
to select single-category features that are most beneficial to distinguish malware families.
The chi-square verification is used to eliminate redundant and unnecessary characteristics
from the dataset, thereby reducing system overhead and improving classification efficiency.
The XGBoost classification algorithm is adopted to measure the effectiveness of the se-
lected features. Meanwhile, we also selected the t-SNE (t-Distributed Stochastic Neighbor
Embedding) visualization tool to appear the correlation degree of the selected features.
As shown in Figure 4, 9 types of malware families are clearly divided, which proves that
the correlation among the selected features is small; hence, it is beneficial to distinguish
malware families after feature fusion. The details of feature fusion will be introduced in the
next section.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 20

Table 4. Chi-square verification for feature selection.

Feature Number
Time

(Seconds)

Number

(Chi-Square)

Time

(Seconds)

Byte_2_gram 2000 1013.15 360 1011.78

Asm_Pixel 5000 966.77 2300 944.75

Opcodes_2_gram 625 0.67 565 0.56

Opcodes_3_gram 10,000 69.21 2000 68.89

Overall, this paper used chi-square validation and the XGBoost classification algo-

rithm to select single-category features that are most beneficial to distinguish malware

families. The chi-square verification is used to eliminate redundant and unnecessary char-

acteristics from the dataset, thereby reducing system overhead and improving classifica-

tion efficiency. The XGBoost classification algorithm is adopted to measure the effective-

ness of the selected features. Meanwhile, we also selected the t-SNE (t-Distributed Sto-

chastic Neighbor Embedding) visualization tool to appear the correlation degree of the

selected features. As shown in Figure 4, 9 types of malware families are clearly divided,

which proves that the correlation among the selected features is small; hence, it is benefi-

cial to distinguish malware families after feature fusion. The details of feature fusion will

be introduced in the next section.

Figure 4. Dataset t-SNE 2D visualization.

4.3. Experimental Results Analysis

In the above, we obtained six sets of categorical features through feature extraction

and selection. To verify the effectiveness of single-category features, this paper uses the

tree-boosting-based XGBoost classification algorithm to train and test them, as shown in

Table 4. Since the Microsoft Challenge does not provide labels for the test dataset, we used

five-fold cross-validation on the training set for testing.

As shown in Table 5, the classification accuracy of each proposed six-category feature

is over 99.7% and 98.7% on both the test set and the training set. It demonstrates that the

selected features can effectively distinguish the families to which the malware belongs. In

particular, the Asm_1_gram feature alone achieves the greatest classification accuracy of

99.45% and a low-level logarithmic loss of 0.0207. To significantly increase the suggested

system’s classification accuracy and decrease memory overhead, we adopted the forward

feature stepwise selection algorithm for effective feature fusion to make a trade-off be-

tween the number of features and the classification efficiency, as shown in Table 5.

Figure 4. Dataset t-SNE 2D visualization.

Appl. Sci. 2023, 13, 4060 13 of 19

4.3. Experimental Results Analysis

In the above, we obtained six sets of categorical features through feature extraction
and selection. To verify the effectiveness of single-category features, this paper uses the
tree-boosting-based XGBoost classification algorithm to train and test them, as shown in
Table 4. Since the Microsoft Challenge does not provide labels for the test dataset, we used
five-fold cross-validation on the training set for testing.

As shown in Table 5, the classification accuracy of each proposed six-category feature
is over 99.7% and 98.7% on both the test set and the training set. It demonstrates that the
selected features can effectively distinguish the families to which the malware belongs. In
particular, the Asm_1_gram feature alone achieves the greatest classification accuracy of
99.45% and a low-level logarithmic loss of 0.0207. To significantly increase the suggested
system’s classification accuracy and decrease memory overhead, we adopted the forward
feature stepwise selection algorithm for effective feature fusion to make a trade-off between
the number of features and the classification efficiency, as shown in Table 5.

Table 5. List of feature categories and their evaluation with XGBoost.

Category of Feature Numbers Train 5-CV

Accuracy Logloss Accuracy Logloss

Hex dump file

Byte_1_gram 257 1.0 0.0007 0.9873 0.0477
Byte_2_gram 360 1.0 0.0005 0.9940 0.0234

Disassembled file

Asm_Pixel 2300 0.9999 0.0010 0.9902 0.0399
Asm_1_gram 48 0.9982 0.0054 0.9945 0.0207

Opcodes_2_gram 565 0.9971 0.0082 0.9914 0.0335
Opcodes_3_gram 2000 0.9971 0.0083 0.9921 0.0307

As shown in Table 6, according to the Asm_1_gram category features with the lowest
logloss, we used a forward feature stepwise selection algorithm to add other category
features that make the model produce the lowest logloss to form a fusion feature set.
The experimental findings demonstrate that the classification accuracy of all fusion fea-
ture sets (C1~C5) based on the XGBoost classification algorithm is 100% on the training
data. The logloss values of C1~C5 under the test data continue to decrease, especially
C5 achieved a classification accuracy of 99.79% and a log loss of 0.009. It demonstrates
that the feature set fused by the forward selection algorithm can gradually improve clas-
sification accuracy. In particular, the C5 fusion feature set can help to build a reliable
malware classification scheme.

Table 6. Adding features categories gradually based on feature fusion.

Category of Feature Numbers Train 5-CV

Accuracy Logloss Accuracy Logloss

C1: Asm_1_gram + Asm_Pixel 2348 1.0 0.00042 0.9959 0.0163
C2: C1 + Byte_1_gram 2605 1.0 0.00036 0.9966 0.0129

C3: C2 + Opcodes_2_gram 3170 1.0 0.00035 0.9976 0.0097
C4: C3 + Opcodes_3_gram 5170 1.0 0.00035 0.9978 0.0092

C5: C4 + Byte_2_gram 5530 1.0 0.00035 0.9979 0.0090

The previous experiments show that the fusion feature set (C5) can achieve
99.79% classification accuracy on the original XGBoost classifier. The XGBoost algorithm
based on tree structure has the advantage of adjustable parameters. We used a grid search
algorithm to adjust the parameters of the XGBoost to obtain the optimal parameter com-
bination, which is most conducive to distinguishing malware families. The optimization

Appl. Sci. 2023, 13, 4060 14 of 19

results show in Table 7. After parameter adjustment, the XGBoost classification algorithm
has a 99.87% classification accuracy on the fusion feature set, an increase of 0.08%, and a log-
arithmic loss of 0.007, a decrease of 0.002. It further illustrates that the tree-boosting-based
malware classification system can effectively distinguish the malware families.

Table 7. XGBoost parameter optimization is used.

Category of Feature Numbers 5-CV

Accuracy Logloss

C5 (Parameter optimization) 5530 0.9987 0.007
C5 (No parameter optimization) 5530 0.9979 0.009

The categorization model’s log-normalized confusion matrix is illustrated in this
publication to assess the viability of the suggested system. As can be seen from Figure 5,
the true positive rate of the system for each type of malware family is above 97%, especially
for the R and K3 families, which can achieve 100%. Among them, the G family has a true
positive rate of 99.21%, which may have a similar malicious pattern to the O family. Overall,
the malware classification system proposed in this paper can effectively classify malware
and its variants.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 20

The categorization model’s log-normalized confusion matrix is illustrated in this

publication to assess the viability of the suggested system. As can be seen from Figure 5,

the true positive rate of the system for each type of malware family is above 97%, espe-

cially for the R and K3 families, which can achieve 100%. Among them, the G family has

a true positive rate of 99.21%, which may have a similar malicious pattern to the O family.

Overall, the malware classification system proposed in this paper can effectively classify

malware and its variants.

Figure 5. Confusion matrix of fused features based on XGBoost classifier.

4.4. Comparison and Discussion

In this section, to evaluate the efficacy of the combined feature set, we applied five

common machine-learning techniques. The accuracy, precision, recall, and F1-score of the

system suggested in this research are compared to those of the prior work.

Figure 6 shows that compared with the feature set used in the existing work, the fu-

sion feature set proposed in this paper performs better in classification methods for ma-

chine learning, such as KNN, SVM, random forest, AdaBoost, and XGBoost. The following

is a detailed analysis and comparison.

Figure 5. Confusion matrix of fused features based on XGBoost classifier.

4.4. Comparison and Discussion

In this section, to evaluate the efficacy of the combined feature set, we applied
five common machine-learning techniques. The accuracy, precision, recall, and F1-score of
the system suggested in this research are compared to those of the prior work.

Figure 6 shows that compared with the feature set used in the existing work, the fusion
feature set proposed in this paper performs better in classification methods for machine
learning, such as KNN, SVM, random forest, AdaBoost, and XGBoost. The following is
a detailed analysis and comparison.

Appl. Sci. 2023, 13, 4060 15 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 20

Figure 6. Our model is compared to recent research on the BIG2015 dataset [19,37–41].

Narayanan et al. [37] utilized PCA to reduce the dimension of gray image represen-

tation converted from malware and used KNN to classify malicious software. For the

BIG2015 dataset, the experimental findings demonstrate that the system has a classifica-

tion accuracy of 96.6%. In contrast, our fusion feature set not only includes image infor-

mation (Asm_Pixel), but also inconsistent opcodes, assembly codes, and other information

that are more beneficial to classify malware. It proves that the fusion feature set containing

multiple category features is more conducive to classifying malware families. Therefore,

under the same KNN classification algorithm, this paper has achieved a classification ac-

curacy of 99.23%.

Narayanan et al. [37] also used an SVM classifier to classify the BIG2015 dataset with

an accuracy of 94.6%. Farrokhmanesh et al. [38] proposed a new method to detect malware

using digital signal processing strategies. To create a machine-learning music classifica-

tion model from audio signals, Farrokhmanesh et al. [38] converted program bytes into

meaningful audio signals and used music information retrieval (MIR) methods. The

model’s classification accuracy on the BIG2015 dataset using the SVM classifier was

94.21%. However, the fused feature set proposed in this paper achieves 99.3% classifica-

tion accuracy on the SVM classifier, which is higher than the above two methods.

Hassen et al. [39] extracted a new control statement overlap-based feature to classify

the BIG2015 dataset using a random forest classifier with an accuracy of 99.11%. Kang et

al. [40] employed malware parameters, such as resource size, virtual size, number of sec-

tions, and image version, to classify the BIG2015 dataset using the random forest classifier

with an accuracy of 99.8%. Farrokhmanesh et al. [38] achieved 95.87% and 95.65% classi-

fication accuracy, respectively, on the BIG2015 dataset using random forest and AdaBoost.

By contrast, the random forest and AdaBoost classifier separately achieved 99.85% and

99.6% accuracy on the proposed fusion feature set. Wang et al. [41] and Ahmadi et al. [19]

applied the XGBoost classifier, which utilized features extracted from malware binaries

and assembly files, to classify malware into their families with 99.83% and 99.77% accu-

racy. The proposed system used the XGBoost classification algorithm to achieve a higher

accuracy of 99.87% on the fusion feature set.

In summary, using our fusion feature set can vastly improve the classification accu-

racy of the classifiers. Compared to the current malware classification models, the amount,

kind, and complexity of features and classification approaches are used. It is less complex

in terms of the feature number, category, and classification algorithm. Therefore, our

Figure 6. Our model is compared to recent research on the BIG2015 dataset [19,37–41].

Narayanan et al. [37] utilized PCA to reduce the dimension of gray image represen-
tation converted from malware and used KNN to classify malicious software. For the
BIG2015 dataset, the experimental findings demonstrate that the system has a classification
accuracy of 96.6%. In contrast, our fusion feature set not only includes image information
(Asm_Pixel), but also inconsistent opcodes, assembly codes, and other information that are
more beneficial to classify malware. It proves that the fusion feature set containing multiple
category features is more conducive to classifying malware families. Therefore, under
the same KNN classification algorithm, this paper has achieved a classification accuracy
of 99.23%.

Narayanan et al. [37] also used an SVM classifier to classify the BIG2015 dataset
with an accuracy of 94.6%. Farrokhmanesh et al. [38] proposed a new method to detect
malware using digital signal processing strategies. To create a machine-learning music
classification model from audio signals, Farrokhmanesh et al. [38] converted program bytes
into meaningful audio signals and used music information retrieval (MIR) methods. The
model’s classification accuracy on the BIG2015 dataset using the SVM classifier was 94.21%.
However, the fused feature set proposed in this paper achieves 99.3% classification accuracy
on the SVM classifier, which is higher than the above two methods.

Hassen et al. [39] extracted a new control statement overlap-based feature to clas-
sify the BIG2015 dataset using a random forest classifier with an accuracy of 99.11%.
Kang et al. [40] employed malware parameters, such as resource size, virtual size, num-
ber of sections, and image version, to classify the BIG2015 dataset using the random
forest classifier with an accuracy of 99.8%. Farrokhmanesh et al. [38] achieved 95.87%
and 95.65% classification accuracy, respectively, on the BIG2015 dataset using random
forest and AdaBoost. By contrast, the random forest and AdaBoost classifier separately
achieved 99.85% and 99.6% accuracy on the proposed fusion feature set. Wang et al. [41]
and Ahmadi et al. [19] applied the XGBoost classifier, which utilized features extracted from
malware binaries and assembly files, to classify malware into their families with 99.83%
and 99.77% accuracy. The proposed system used the XGBoost classification algorithm to
achieve a higher accuracy of 99.87% on the fusion feature set.

In summary, using our fusion feature set can vastly improve the classification accuracy
of the classifiers. Compared to the current malware classification models, the amount,
kind, and complexity of features and classification approaches are used. It is less complex
in terms of the feature number, category, and classification algorithm. Therefore, our
fusion feature set can be used to design a high-speed, high-accuracy, and efficient malware
classification system.

Appl. Sci. 2023, 13, 4060 16 of 19

Table 8 compares the proposed system’s accuracy, precision, recall, and F1 score to
that of the previous work. A malware classification technique based on opcode sequences
was proposed by Sun et al. [32]. The system converted malicious programs into grayscale
images, used RNN for feature extraction, employed CNN for image classification, and
achieved 99.5% accuracy on the BIG2015 dataset. Due to the high complexity of malware
itself, we considered not only opcode sequences but also bytecodes and features of image
texture. The suggested method constructed based on the XGBoost classification algorithm
achieves 99.87% accuracy on the BIG2015 dataset. Therefore, it is more suitable for complex
malware classification tasks.

Table 8. Comparison with other methods.

Approaches Accuracy (%) Precision (%) Recall (%) F1-Score (%)

RMVC [32] 99.50 - - -
MCFT and CNN [42] 98.63 98.56 96.00 97.22
RCNF [43] 99.56 - - 98.20
SERLA [44] 98.31 98.68 97.93 98.30
MDMC [45] 99.26 - - -
ML and VT [46] 97.73 - - -
HYDRA [47] 99.75 - - 99.51
XGBoost and RNN [48] 96.90 - - -
CNN and BILSTM [49] 98.20 - - 96.05
ACO-DT [50] 99.37
CatBoost 99.76 99.66 98.93 99.28
LightGBM 99.84 99.77 98.55 99.66
XGBoost 99.87 99.87 99.58 99.70

A deep learning-based malicious software classification system (MCFT-CNN) was
proposed by Sudhakra et al. [42] that does not require manual feature analysis or the
actual execution of malware. The system achieved 98.63% accuracy, 98.56% precision,
96% recall, and 97.22% F1-score on the BIG2015 dataset. We used a tree-boosting-based
machine-learning classification system, improved the classification accuracy by 1.24%, and
the model is interpretable, which is helpful for further research and analysis of malicious.
A novel methodology was suggested by Gibert et al. [47] to efficiently identify and catego-
rize malware by combining different types of features, including API sequences, bytecodes,
and file structures. On the BIG2015 dataset, CNN is 99.75% accurate, and the F1-score is
99.51%. Our proposed fusion feature set achieves greater F1-score and accuracy on the
lightweight classifier-XGBoost, separately increased by 0.12% and 0.19%.

Çayır et al. [43] proposed a lightweight network model based on static analysis. It
requires less feature analysis and lower system complexity, with an F1-score of 98.2%
on the BIG2015 dataset and an accuracy of 99.56%. Jian et al. [44] proposed a deep neu-
ral network-based visualization approach for classifying malware with 98.31% accuracy,
98.68% precision, 97.93% recall, and 98.3% F1-score on the BIG2015 dataset. A malware
classification system based on data mining and visualization of PE files was proposed
by Yuan et al. [45]. The system converts the malicious file binary into a gray image as
the deep convolution neural network’s input. We not only considered the image texture
features of malware but also fused features from other categories, which is more beneficial
for malicious family classification. We adopted the more interpretive XGBoost classification
algorithm, and the classification accuracy reached 99.87%.

A new cloud-based, three-component malware classification model with semi-supervised
migratory learning was proposed by Gao et al. [48]: training, prediction, and migration.
The experimental outcomes on the BIG2015 dataset demonstrate that semi-supervised
migration learning has a 96.9% accuracy rate. They used a hybrid classification model
composed of XGBoost and RNN, while we only used a separate XGBoost classifier, which
greatly reduces the model complexity and memory consumption while ensuring high
classification accuracy. Kattamuri et al. [50] proposed a new data set (SOMLAP) based

Appl. Sci. 2023, 13, 4060 17 of 19

on PE file header information for malware research and analysis. At the same time,
based on three feature selection algorithms (ACO, CSO, GWO), the features of the data
set are streamlined to improve the accuracy and time efficiency of the detection system.
Experiments have proved that the SOMLAP dataset makes up for the lack of benchmark
datasets in malware feature representation, contains more new features that are conducive
to detection, and effectively improves detection accuracy. Moreover, the combination of
ACO and decision tree screened out the 12 feature categories that are most conducive
to classification, achieving a classification accuracy of 99.37%. Inspired by this, we can
then perform feature dimensionality reduction on the fusion feature set to reduce time
consumption while ensuring accuracy.

In conclusion, the fusion feature set suggested in this paper produced highly accurate
classification results and F1-score on the tree boosting-based algorithms, including XGBoost,
LightGBM, and CatBoost. Among them, the XGBoost algorithm achieved the highest
accuracy of 99.87%, which is better than most current classification systems.

5. Conclusions

The explosive growth of malware types has made the classification of malware
a prominent topic. Existing malware classification schemes are mainly in accordance with
a variety of malware static features for classification, which may contain many irrelevant
and redundant features, resulting in high feature dimension, computational complexity,
time, and memory overhead. Meanwhile, most of the existing classification models are
not highly interpretable, which is not conducive to the analysis and research of malware.
Therefore, we proposed a tree boosting-based malware classification system with model
interpretability, high speed, and high accuracy to efficiently classify malware variants into
their actual families based on a fusion feature set consisting of a limited, finite number of
malware features.

This paper constructed a new fusion feature set based on the BIG2015 dataset by
exploiting the complementary information brought by malware content and structure. We
used a forward feature stepwise selection technique for effective feature fusion. Various
machine-learning algorithms, including random forest, SVM, KNN, and AdaBoost, are
used to confirm the effectiveness of the fusion feature set. The suggested system beats most
of the existing research works in terms of accuracy, precision, recall, and F1-score, according
to experimental data. We developed an effective malware classification system employing
tree-boosting-based machine-learning methods. Furthermore, we applied LightGBM and
CatBoost algorithms to the domain of malware classification for the first time, and both
achieved excellent results on the proposed fusion feature set. The malware classification
system should be suitable for large-scale real-time classification tasks. Future work will
continue to emphasize striking a balance between the challenges of time and accuracy.

Author Contributions: Conceptualization, Z.C.; methodology, Z.C.; software, X.R.; validation, X.R.;
formal analysis, X.R.; investigation, X.R.; resources, Z.C.; data curation, X.R.; writing—original draft
preparation, Z.C.; writing—review and editing, X.R.; visualization, X.R.; supervision, Z.C.; project
administration, Z.C.; funding acquisition, Z.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (grant
no. 62102190).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data are available from https://www.kaggle.com/competit-
ions/malware-classification/data, accessed on 8 April 2022.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.kaggle.com/competit-ions/malware-classification/data
https://www.kaggle.com/competit-ions/malware-classification/data

Appl. Sci. 2023, 13, 4060 18 of 19

References
1. Said, V.; Eelly, E.; Zag, E.; Murat, O. The Dangerous Combo: Fileless Malware and Cryptojacking. J. SoutheastCon 2022, 125–132.

[CrossRef]
2. Greengard, S. Cybersecurity gets smart. Commun. ACM 2016, 59, 29–31. [CrossRef]
3. Rizvi, S.K.J.; Aslam, W.; Shahzad, M.; Saleem, S.; Fraz, M. PROUD-MAL: Static analysis-based progressive framework for deep

unsupervised malware classification of windows portable executable. Complex Intell. Syst. 2022, 8, 673–685. [CrossRef]
4. Johnson, S.; Gowtham, R.; Nair, A.R. Ensemble Model Ransomware Classification: A Static Analysis-based Approach.

Inventive Comput. Inf. Technol. 2022, 336, 153–167.
5. Loi, N.; Borile, C.; Ucci, D. Towards an Automated Pipeline for Detecting and Classifying Malware through Machine Learning.

2021. Available online: https://arxiv.org/abs/2106.05625 (accessed on 5 December 2022).
6. Jeon, J.; Kim, J.; Jeon, S.; Lee, S.; Jeong, Y.S. Static Analysis for Malware Detection with Tensorflow and GPU. In Advances in

Computer Science and Ubiquitous Computing; Springer: Singapore, 2021; Volume 715, pp. 537–546.
7. Barbi, S.; Barbieri, F.; Marinelli, S.; Rimini, B.; Merchiori, S.; Larwa, B.; Bottarelli, M.; Montorsi, M. Phase change material-

sand mixtures for distributed latent heat thermal energy storage: Interaction and performance analysis. Renew. Energy 2021,
169, 1066–1076. [CrossRef]

8. Chanajitt, R.; Pfahringer, B.; Gomes, H.M.; Yogarajan, V. Multiclass Malware Classification Using Either Static Opcodes or Dynamic API
Calls. In Proceedings of the AI 2022: Advances in Artificial Intelligence, Perth, WA, Australia, 3 December 2022; pp. 427–441.

9. Jing, C.; Wu, Y.; Cui, C. Ensemble dynamic behavior detection method for adversarial malware. Future Gener. Comput. Syst. 2022,
30, 193–206. [CrossRef]

10. Li, C.; Lv, Q.; Li, N.; Wang, Y.; Sun, D. A novel deep framework for dynamic malware detection based on API sequence intrinsic
features. Comput. Secur. 2022, 116, 102686. [CrossRef]

11. Anderson, B.; Quist, D.; Neil, J.; Storlie, C.; Lane, T. Graph-based malware detection using dynamic analysis. J. Comput. Virol.
2020, 52, 247–258. [CrossRef]

12. Alshamrani, S.S. Design and Analysis of Machine Learning Based Technique for Malware Identification and Classification of
Portable Document Format Files. Secur. Commun. Netw. 2022, 2022, 7611741. [CrossRef]

13. Wang, W.; Ren, C.; Song, H.; Zhang, S.; Liu, P. FGL_Droid: An Efficient Android Malware Detection Method Based on Hybrid
Analysis. Secur. Commun. Netw. 2022, 2022, 8398591. [CrossRef]

14. Catak, F.O.; Yazı, A.F. A Benchmark API Call Dataset for Windows PE Malware Classification. 2019. Available online: https:
//arxiv.org/abs/1905.01999 (accessed on 11 December 2022).

15. Afianian, A.; Niksefat, S.; Sadeghiyan, B.; Baptiste, D. Malware dynamic analysis evasion techniques: A survey. ACM Comput.
Surv. (CSUR) 2020, 52, 1–28. [CrossRef]

16. Lebbie, M.; Prabhu, S.; Agrawal, A.K. Comparative Analysis of Dynamic Malware Analysis Tools. In Proceedings
of the International Conference on Paradigms of Communication, Computing and Data Sciences, Kurukshetra, India,
1 January 2022; pp. 359–368.

17. Du, J.; Raza, S.H.; Ahmad, M.; Alam, I.; Hanif, S.; Habib, M.A. Digital Forensics as Advanced Ransomware Pre-Attack Detection
Algorithm for Endpoint Data Protection. Secur. Commun. Netw. 2022, 2022, 1424638. [CrossRef]

18. Gu, Z.; Nazir, S.; Hong, C.; Khan, S. Convolution Neural Network-Based Higher Accurate Intrusion Identification System for the
Network Security and Communication. Secur. Commun. Netw. 2020, 2020, 8830903. [CrossRef]

19. Ahmadi, M.; Ulynaov, D.; Semenov, S.; Trofimov, M.; Giacinto, G. Novel Feature Extraction, Selection and Fusion for Effective
Malware Family Classification. In Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy,
New Orleans, LA, USA, 9–11 March 2016; pp. 183–194.

20. Anderson, H.S.; Roth, P. Ember: An Open Dataset for Training Static pe Malware Machine Learning Models. 2018.
Available online: https://arxiv.org/abs/1804.04637 (accessed on 12 December 2022).

21. Zhang, Y.; Haghani, A. A gradient boosting method to improve travel time prediction. Transp. Res. Part C Emerg. Technol. 2015,
58, 308–324. [CrossRef]

22. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree.
In Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3149–3157.

23. Dorogu, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient Boosting with Categorical Features Support. 2018. Available online:
https://arxiv.org/abs/1810.11363 (accessed on 16 December 2022).

24. Mao, K.Z. Orthogonal forward selection and backward elimination algorithms for feature subset selection. IEEE Trans. Syst.
Man Cybern. 2004, 34, 629–634. [CrossRef] [PubMed]

25. Nataraj, L.; Karthikeyan, S.; Jacob, G.; Manjunath, B.S. Malware images: Visualization and automatic classification. In Proceedings
of the 8th International Symposium on Visualization for Cyber Security, Pittsburgh, PA, USA, 20 July 2011; pp. 1–7.

26. Tekerek, A.; Yapici, M. A novel malware classification and augmentation model based on convolutional neural network.
Comput. Secur. 2022, 112, 102515. [CrossRef]

27. Dai, Y.; Li, H.; Qian, Y.; Lu, X. A malware classification method based on memory dump grayscale image. Digit. Investig. 2018,
27, 30–37. [CrossRef]

28. Gibert, D.; Mateu, C.; Planes, J.; Vicens, R. Using convolutional neural networks for classification of malware represented as
images. J. Comput. Virol. Hacking Tech. 2019, 15, 15–28. [CrossRef]

http://doi.org/10.48550/arXiv.2203.03175
http://doi.org/10.1145/2898969
http://doi.org/10.1007/s40747-021-00560-1
https://arxiv.org/abs/2106.05625
http://doi.org/10.1016/j.renene.2021.01.088
http://doi.org/10.1016/j.future.2021.12.013
http://doi.org/10.1016/j.cose.2022.102686
http://doi.org/10.1007/s11416-011-0152-x
http://doi.org/10.1155/2022/7611741
http://doi.org/10.1155/2022/8398591
https://arxiv.org/abs/1905.01999
https://arxiv.org/abs/1905.01999
http://doi.org/10.1145/3365001
http://doi.org/10.1155/2022/1424638
http://doi.org/10.1155/2020/8830903
https://arxiv.org/abs/1804.04637
http://doi.org/10.1016/j.trc.2015.02.019
https://arxiv.org/abs/1810.11363
http://doi.org/10.1109/TSMCB.2002.804363
http://www.ncbi.nlm.nih.gov/pubmed/15369099
http://doi.org/10.1016/j.cose.2021.102515
http://doi.org/10.1016/j.diin.2018.09.006
http://doi.org/10.1007/s11416-018-0323-0

Appl. Sci. 2023, 13, 4060 19 of 19

29. Sun, Z.; Rao, Z.; Chen, J.; Xu, R.; He, D.; Yang, H.; Liu, J. An Opcode Sequences Analysis Method For Unknown Malware
Detection. In Proceedings of the 2019 2nd International Conference on Geoinformatics and Data Analysis, Prague, Czech Republic,
15–17 March 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 15–19.

30. Ijaz, M.; Durad, M.H.; Ismail, M. Static and Dynamic Malware Analysis Using Machine Learning. In Proceedings of the 2019 16th
International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 8–12 January 2019; pp. 687–691.

31. Hemalatha, J.; Roseline, S.A.; Geetha, S.; Damasevicius, R. An Efficient DenseNet-Based Deep Learning Model for Malware
Detection. Entropy 2021, 23, 3. [CrossRef] [PubMed]

32. Sun, G.; Qian, Q. Deep Learning and Visualization for Identifying Malware Families. IEEE Trans. Dependable Secur. Comput. 2021,
18, 283–295. [CrossRef]

33. Li, L.; Ding, Y.; Li, B.; Qiao, M.; Ye, B. Malware classification based on double byte feature encoding. Alex. Eng. J. 2022, 61, 91–99.
[CrossRef]

34. Kumar, S.; Janet, B.; Neelakantan, S. Identification of malware families using stacking of textural features and machine learning.
Expert Syst. Appl. 2022, 208, 118073. [CrossRef]

35. Jadvani, N.; Agarwal, M.; Leelasankar, K. Malware Detection Based on Portable Executable File Features. In Proceedings
of the International Conference on Computing, Communication, Electrical and Biomedical Systems, Cham, Switzerland,
28 February 2022; pp. 377–384.

36. Shankarapani, M.K.; Ramamoorthy, S.; Movva, R.S.; Mukkamala, S. Malware detection using assembly and API call sequences.
J. Comput. Virol. 2011, 7, 107–119. [CrossRef]

37. Narayanan, B.N.; Djaneye-Boundjou, O.; Kebede, T.M. Performance analysis of machine learning and pattern recognition
algorithms for Malware classification. In Proceedings of the 2016 IEEE National Aerospace and Electronics Conference (NAECON)
and Ohio Innovation Summit (OIS), Dayton, OH, USA, 25–29 July 2016; pp. 338–342.

38. Farrokhmanesh, M.; Hamzeh, A. Music classification as a new approach for malware detection. J. Comput. Virol. Hacking Tech.
2019, 5, 77–96. [CrossRef]

39. Hassen, M.; Carvalho, M.M.; Chan, P.K. Malware classification using static analysis-based features. In Proceedings of the 2017
IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November 2017; pp. 1–7.

40. Kang, J.; Won, Y. Malware Classification Using Machine Learning. Adv. Comput. Sci. Ubiquitous Comput. 2019, 536, 279–284.
41. Wang, X.; Liu, J.; Chen, X. First Place Team: Say No to Overfitting. 2015. Available online: https://github.com/xiaozhouwang/

kaggle_Microsoft_Malware/blob/master/Saynotooverfitting.pdf (accessed on 21 December 2022).
42. Sudhakra; Kumar, S. MCFT-CNN: Malware classification with fine-tune convolution neural networks using traditional and

transfer learning in Internet of Things. Future Gener. Comput. Syst. 2021, 125, 334–351. [CrossRef]
43. Çayır, A.; Ünal, U.; Dağ, H. Random CapsNet forest model for imbalanced malware type classification task. Comput. Secur. 2021,

102, 102133. [CrossRef]
44. Jian, Y.; Kuang, H.; Ren, C.; Ma, Z.; Wang, H. A novel framework for image-based malware detection with a deep neural network.

Comput. Secur. 2021, 109, 102400. [CrossRef]
45. Yuan, B.; Wang, J.; Liu, D.; Guo, W.; Wu, P.; Bao, X. Byte-level malware classification based on markov images and deep earning.

Comput. Secur. 2020, 92, 101740. [CrossRef]
46. Liu, X.; Lin, Y.; Li, H.; Zhang, J. A novel method for malware detection on ML-based visualization technique. Comput. Secur. 2020,

89, 101682. [CrossRef]
47. Gibert, D.; Mateu, C.; Planes, J. HYDRA: A multimodal deep learning framework for malware classification. Comput. Secur. 2020,

95, 101873. [CrossRef]
48. Gao, X.W.; Hu, C.; Shan, C.; Liu, B.; Niu, Z.; Xie, H. Malware classification for the cloud via semi-supervised transfer learning.

J. Inf. Secur. Appl. 2020, 55, 102661. [CrossRef]
49. Le, Q.; Boydell, O.; Namee, B.M.; Scanlon, M. Deep learning at the shallow end: Malware classification for non-domain experts.

Digit. Investig. 2018, 26, S118–S126. [CrossRef]
50. Kattamuri, S.J.; Penmatsa, R.K.V.; Chakravarty, S.; Madabathula, V.S.P. Swarm Optimization and Machine Learning Applied to

PE Malware Detection towards Cyber Threat Intelligence. Electron 2023, 12, 342. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/e23030344
http://www.ncbi.nlm.nih.gov/pubmed/33804035
http://doi.org/10.1109/TDSC.2018.2884928
http://doi.org/10.1016/j.aej.2021.04.076
http://doi.org/10.1016/j.eswa.2022.118073
http://doi.org/10.1007/s11416-010-0141-5
http://doi.org/10.1007/s11416-018-0321-2
https://github.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/master/Saynotooverfitting.pdf
https://github.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/master/Saynotooverfitting.pdf
http://doi.org/10.1016/j.future.2021.06.029
http://doi.org/10.1016/j.cose.2020.102133
http://doi.org/10.1016/j.cose.2021.102400
http://doi.org/10.1016/j.cose.2020.101740
http://doi.org/10.1016/j.cose.2019.101682
http://doi.org/10.1016/j.cose.2020.101873
http://doi.org/10.1016/j.jisa.2020.102661
http://doi.org/10.1016/j.diin.2018.04.024
http://doi.org/10.3390/electronics12020342

	Introduction
	Related Work
	Portable Executable (PE)
	Gradient Boosting Decision Tree (GBDT)
	Forward Selection Algorithm
	Visualizing Malware as an Image
	Malware Detection and Classification

	The Proposed System
	Overview of the Proposed System
	Malware Representation
	Feature Extraction
	Binary File
	Assembly File

	Feature Fusion
	Classification Model
	Measures for Evaluation

	Experimental Results and Discussion
	Data
	Feature Selection
	Experimental Results Analysis
	Comparison and Discussion

	Conclusions
	References

