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Abstract: Transmission task static allocation (TTSA) is one of the most important issues in the
automatic management of radio and television stations. Different transmission tasks are allocated to
the most suitable transmission equipment to achieve the overall optimal transmission effect. This
study proposes a TTSA mathematical model suitable for solving multiple intelligent algorithms,
with the goal of achieving the highest comprehensive evaluation value, and conducts comparative
testing of multiple intelligent algorithms. An improved crossover operator is proposed to solve the
problem of chromosome conflicts. The operator is applied to improved genetic algorithm (IGA) and
hybrid intelligent algorithms. A discrete particle swarm optimization (DPSO) algorithm is proposed,
which redefines the particle position, particle movement direction, and particle movement speed for
the problem itself. A particle movement update strategy based on a probability selection model is
designed to ensure the search range of the DPSO, and random perturbation is designed to improve
the diversity of the population. Based on simulation, comparative experiments were conducted
on the proposed intelligent algorithms and the results of three aspects were compared: the success
rate, convergence speed, and accuracy of the algorithm. The DPSO has the greatest advantage in
solving TTSA.

Keywords: task allocation; improved genetic algorithm; discrete particle swarm optimization; hybrid
intelligent algorithm; probability selection model

1. Introduction

Task allocation is a general form of an assignment problem belonging to the combina-
torial optimization problem (COP) in mathematics [1]. In the field of radio and television
transmission, the problem involves the assignment of multiple transmission tasks to mul-
tiple pieces of transmission equipment at the same time. Because the equipment has
different effects when performing different tasks, the comprehensive implementation effect
of the static allocation of the whole task group depends on the task allocation arrangement
scheme. Transmission task static allocation (TTSA) is a typical NP-hard problem.

Typical COPs include the traveling salesman problem (TSP), vehicle routing problem
(VRP), and job shop scheduling problem (JSSP). There are two methods for solving a
COP: an approximation algorithm and an exact algorithm. The solution time of the exact
algorithm increases with the size of the problem, and an optimal solution cannot be
calculated within the effective timescale for large-scale problems. It is an effective way to
solve COPs by using an intelligence algorithm for the approximation algorithm, but for
specific problems, the adaptive improvement of the intelligence algorithm can obtain better
calculation results [2–4].

1.1. Related Works

Among many intelligence algorithms, the genetic algorithm (GA) has certain ad-
vantages in solving COPs because of its simple operation, fewer parameters, and high
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efficiency. In recent years, there have been many studies on solving COPs using GA for
specific problems [5–7].

Park et al. used the unified genetic algorithm to solve the flexible job shop scheduling
(FJSSP) problem. Through the improvement of the genetic algorithm (GA) by adapting
it to the specific operation of FJSSP, the algorithm performance was greatly improved [5].
Zhang et al. adopt GA based on multi-layer coding to solve the problem of parking apron
support vehicle operation scheduling optimization. The authors designed a mathematical
model of vehicle operation scheduling optimization adapted to GA, and improved the
algorithm efficiency through multi-level coding [6]. Escamilla-Serna et al. adopted a hybrid
intelligent algorithm to solve the FJSSP, established a hybrid intelligent algorithm based
on GA and the random restart climbing algorithm, and realized the search in the FJSSP
instance, thus obtaining the optimal solution [7]. In another study, an IGA was used to
solve the problem of moving edge computing. In this approach, the population uses matrix
coding, the selection operator uses a roulette wheel algorithm (the probability of being
selected is proportional to the fitness), the annealing operation is completed in the selection
operator replication phase, and a temperature parameter is introduced. As the temperature
decreases, the number of times that the individuals of the population jump out of the local
optimal average increases, and the crossover operator uses multi-row matrix hybridization
and the whole row is interchanged. Finally, the mutation operator and feasibility test are
completed [8]. Fan Ho-Ming et al. applied GA to solve the multi-center VRP. In the design
of the two-parent genetic operator, the fixed-length random segments of two parents are
used to connect, and the remaining positions are filled according to the sequence rules [9].
Belhadj et al. used GA to solve the problem of automatic repair sequencing. Because
each editing operation of this problem is relatively independent, it is possible to select the
random intersection point to divide the position and carry out the crossover replacement
operation for the two sequences [10]. Concerning the aspect of task assembly allocation
optimization, there are many cases that use GA to solve problems [11–13], all of which
adopt the method of conflict processing after direct crossing. Li Mei et al. adopted GA to
solve the unrelated parallel machine scheduling problem, built a mathematical model with
the minimum delay time as the optimization goal, applied a genetic tabu search algorithm
(GATS) to solve the problem, and compared the artificial bee colony algorithm (ABC) and
genetic simulated annealing algorithm (GASA) to identify problems of different scales [14].
Tian et al. proposed a hybrid algorithm combining fuzzy simulation and GA to solve the
facility location assignment (FLA) problem [15].

The above research shows that intelligence algorithms such as GA, SA, ABC, and TS
can be used to solve COPs, including task allocation, FJSSP, and FLA. In the process of
problem solving, intelligent algorithms are usually improved to adapt to specific problems,
or use hybrid computing to improve performance.

The particle swarm optimization (PSO) algorithm has certain advantages in solving
task allocation problems with its flexibility and global optimization ability [16,17]. Han
et al. studied integrated production planning and scheduling with a fuzzy start time
and processing time. They developed a fuzzy two-level decision technology based on
the PSO algorithm and heuristic method [18]. Jamrus et al. developed a hybrid method
combining the PSO algorithm and genetic operator to solve the fuzzy shop scheduling
problem with an uncertain processing time [19]. For the scheduling problem of complex
products in multi-shop production, Qiao et al. proposed the multi-level process network
diagram construction method and built a comprehensive mathematical model of multi-shop
production scheduling. An improved PSO algorithm was proposed to solve this problem.
By constructing the network subgraph, the invalid search path of the algorithm is avoided,
and the efficiency of the algorithm is improved. For scheduling problems with product time
constraints, a path search rescheduling strategy was proposed to ensure that the algorithm
can obtain an effective search path. Through the analysis of complex product scheduling
in the multi-shop environment, the effectiveness and practicability of the above methods
were verified [20]. Zhang Yan-Me et al. used PSO to solve the problem of arrangement
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optimization in the field of software testing. By mapping the class test sequence to a
one-dimensional space to form a particle position code, the speed and displacement of each
particle were calculated according to the fitness function, and then the PSO algorithm was
used to select the optimal position and fitness of the particles to obtain the optimal particle.
Finally, according to the mapping relationship, the optimal particle code was mapped to
the optimal class test sequence [21]. Zhou Ya-lan et al. proposed the use of the distribution
estimation discrete particle swarm optimization (DPSO) algorithm to solve the permutation
problem, and combined the PSO and the distribution estimation algorithm (EDA) to solve
the permutation optimization problem, breaking through the speed-displacement update
mode of the standard PSO algorithm. Based on the PSO idea, the specific update operation
was processed by the distribution estimation algorithm, so as to calculate the optimal
solution of the permutation COP [22]. Ma Ding et al. used the DPSO algorithm to solve the
multi-objective service path construction problem, and proposed a new particle location
initialization and update strategy, which effectively optimized the quality of the service path
compared with existing algorithms [23]. Li He et al. proposed the combination of DPSO
and non-dominated sorting GA based on elite strategy (multi-objective optimization),
introduced the idea of PSO, and completed the update and iteration based on genetic
operations at the bottom [24]. For the rectangular optimal layout problem (a permutation
coding COP), a hybrid PSO algorithm was proposed. The concept of commutator and
commutation order was introduced to solve the problem that the particle update is difficult
to describe when the standard PSO solves the COP, and to improve the convergence speed
of the processing algorithm in application problems [25]. In addition, research using cluster
search algorithms has included solving the disassembly line balancing problem (DLBP)
based on the discrete whale swarm algorithm [26], and solving human–robot collaborative
disassembly (HRCD) based on the discrete bees algorithm [27,28].

The above research shows that PSO can be used to solve discrete problems through
certain adaptive improvements, but there is no universal PSO solution for different specific
application problems. To address the problem that particle swarm operations are difficult
to describe, this paper first proposes a hybrid intelligent algorithm using improved genetic
crossover operators instead of particle movement operations; second, a probability selection
model for alternative vector computation and the definition of the movement direction
and target with the largest D-value are proposed, both of which are not mentioned in the
abovementioned literature.

1.2. Contributions

When using an intelligence algorithm to solve specific COPs, the applicability of
the algorithm is a difficult problem, and the calculation results from different intelligent
algorithms vary considerably. To solve the problem of TTSA, the following problems need
to be solved:

1. Establishing a mathematical model suitable for intelligent algorithm calculation;
2. Selecting an appropriate intelligent algorithm based on the characteristics of the

problem;
3. Making targeted improvements to the algorithm to improve its success rate and

efficiency.

Based on the research regarding the application of GA and PSO in COPs, this paper
studies the TTSA and identifies an intelligence algorithm that can obtain accurate results
within a certain range through the comparison of multiple algorithms.

The main contributions of this paper are as follows:

1. According to the characteristics of TTSA, a mathematical model suitable for the
application of intelligent algorithms is built, a matrix of evaluation values of the effect
is constructed, and the input data, output data, and fitness function of the algorithm
are defined;
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2. Based on GA, an improved crossover operator based on cyclic substitution grouping
is proposed to avoid the loss of excellent chromosome genes due to conflict processing
and to improve the execution efficiency of IGA;

3. Based on GA and PSO, two hybrid intelligent algorithms are proposed to provide
more intelligent algorithm ideas for solving TTSA;

4. A DPSO is proposed. Based on TTSA, the position and direction of the particles are
described again, the probability selection model is used to update the particle position,
and the random disturbance strategy is added to improve the particle inertia retention.

In Section 2, we build a mathematical model of TTSA suitable for intelligent algorithm
processing. In Section 3, based on GA and PSO, the four intelligent algorithms proposed are
described. In Section 4, the experimental results are presented, and the results are analyzed
and discussed. In Section 5, we present the conclusion and make recommendations for
future work.

2. Preliminaries
2.1. Model of TTSA

The problem of TTSA exists in the automatic control system of radio and television
transmission stations. The data acquisition of the transmission equipment is completed by
the computer. According to the analysis of the transmission effect data, the appropriate
transmission tasks are assigned to the transmission equipment with the best effect, and
then the automatic transmission is completed by the computer control [29–32]. The TTSA
problem is to solve the optimal allocation scheme between the task and the equipment
performing the task. The problem framework is shown in Figure 1.

Figure 1. Framework model for TTSA.

In Figure 1, the task queue is composed of N tasks, each with different frequencies. The
matrix of evaluation value is the basis for the evaluation of the transmission effect. It stores
the evaluation value of the transmission effect obtained when each piece of equipment
works in different transmission frequency ranges. The initial data are set according to the
data collected by polling the transmission effect during the test run of the transmission
station. Combined with the idea of supervised learning, the matrix of evaluation value
modifies the matrix according to the collected data after the daily transmission task to
ensure the practicability of the algorithm. Each transmission equipment item can only
complete one transmission task at a time. In order to ensure the integrity of the algorithm,
this paper sets the number of transmission tasks to be consistent with the number of
transmission equipment items.

2.1.1. Input Data

According to the functional characteristics of the transmission equipment, the trans-
mission frequency range of the equipment is described as [Frmin, Frmax]: the operating
frequency of each piece of equipment is divided into m frequency bands. According to the
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actual situation, it can be assumed that the transmitting effect of the equipment performing
tasks on the frequencies within the frequency band range is consistent. The mathematical
model of frequency band division is as follows:

FreqR = {Fr1, Fr2, . . . , Fri, . . . Frm−1}, Fri ∈ [Frmin, Frmax] (1)

where m is the number of frequency bands and Fri is the frequency boundary value between
the (i − 1)th and ith frequency bands.

For the medium- and short-wave transmitter performing the transmission task, the
transmission task command parameters include the working frequency, power level, and
working type. The values of the working type and other parameters are independent of
the optimal allocation of the task. In order to simplify the mathematical model, different
transmission tasks are only distinguished according to the transmission frequency. At the
same time, the transmission task set consists of n frequencies, and the transmission task
can be described as:

Task = {Freq1, Freq2, . . . , Freqi, . . . Freqn} Freqi ∈ [Frmin, Frmax] (2)

where n is the number of transmission tasks, and i is the ith task expressed by the fre-
quency value.

The working frequency of the task belongs to the working frequency band divided by
the model, and the calculation formula is as follows:

TaFri =


0, Freqi ∈ [Frmin, Fr1]
k, Freqi ∈ (Frk, Frk+1]
m, Freqi ∈ (Frm, Frmax]

(3)

Through the calculation of Formula (3), the set TaFR of the working frequency band
of the task is obtained, which can be described as follows:

TaFR = {TaFr1, TaFr2, . . . , TaFri, . . . TaFrn}, TaFri = 0, 1, . . . , m (4)

where n is the number of transmission tasks, and i is the segment code obtained by dividing
the ith task by frequency segment.

The implementation effect of the evaluation task on the equipment is obtained through
data quantitative calculation. The rated power of the transmitting equipment is recorded
as Rmax. When the equipment is set to transmit at full power, the monitoring data collected
by the receiving equipment are: forward power, recorded as R; reverse power, recorded
as r. The transmission effect evaluation in this paper is mainly based on the transmission
standing wave ratio (SWR), and the transmission effect calculation formula is as follows:

SWR =

√
R +
√

r√
R−
√

r
(5)

According to the characteristics of the transmitting equipment, the minimum value of
the transmitting SWR is not less than 1.0, and the closer it is to 1.0, the better the effect. The
formula is as follows:

Va =
1

SWR
(6)
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To sum up, ValueMatrix can be obtained through the transmission test run of each
piece of transmission equipment in each frequency band, which can be described as:

ValueMatrix =



Va11 Va12 · · ·
Va21 Va22 · · ·
· · · · · · · · ·

Va1i · · · Va1m
Va2i · · · Va2m
· · · · · · · · ·

Vai1 Vai2 · · ·
· · · · · · · · ·

Van1 Van2 · · ·

Vaij · · · Vaim
· · · · · · · · ·

Vanj · · · Vanm

 (7)

where n is the number of transmission tasks. In this paper, the number of transmission
equipment items n is the number of frequency bands divided, and m is the evaluation value
of the transmission effect of the ith transmission equipment working in the jth frequency
band when considering the optimal allocation of tasks in the same period.

2.1.2. Output Data

In practice, the operating frequency band of the transmission task that the transmission
equipment can complete has some constraints. This paper aims to solve the problem of
task optimization allocation. In the model, it is assumed that each transmission equipment
item can complete the transmission task of any one of the transmission frequency bands.
The transmission equipment can be described as Trj, including the following data:

Tri = 〈TaFr, TaskNo〉, i = 0, 1, . . . , n, TaFr = 0, 1, . . . , m, TaskNo = 0, 1, . . . , n (8)

The Tri.Ta f r is the working frequency band of the ith equipment task, and repre-
sents the transmission task code undertaken by the current transmission equipment. The
sequence of the results expressed by the complete output mathematical model of the
algorithm is as follows:

Result =
{

Tr1.TaskNo, Tr2.TaskNo, . . . , Trj.TaskNo, . . . Trn.TaskNo
}

(9)

where j is the task sequence code of the transmission task assigned to the jth transmission
equipment item.

2.1.3. Fitness Function

The objective function of the task optimization allocation of the above output results
is the maximum value of the transmission effect evaluation, which can be described as:

Max : Value(Result) =
∑n

i=1 Vai Tri .TaFr

n
(10)

According to the Result of the task allocation in the sequence, the evaluation value of
each equipment allocation task is calculated and averaged to obtain the evaluation value of
the entire result sequence. In the formula, i is the equipment sequence number, Tri.Ta f r is
the operating frequency band of the ith equipment transmission task, and Vai Tri .TaFr repre-
sents the comprehensive evaluation value of the ith equipment operating in the frequency
band Tri.TaFr in the comprehensive evaluation ValueMatrix of the transmission effect.

According to the above model framework and data model description, the data
structure parameters are as outlined in Table 1.

2.2. GA

The GA can be well applied to most COPs. The GA takes all individuals in the
population as the object, and uses randomization to search an encoded parameter space
efficiently. Among them, selection, crossover, and mutation constitute the basic genetic
operations of GA. The core content of GA is composed of five elements: parameter coding,
initial population setting, fitness function design, genetic operation design, and control



Appl. Sci. 2023, 13, 4058 7 of 23

parameter setting. As a global optimization search algorithm, GA is simple, universal,
robust, and suitable for solving COPs.

Table 1. TTSA parameter table.

Parameter Explanation

Freqi Transmission frequency value of the task
Task Input data and transmission task sequence

Vaij
Evaluation value of the transmission effect of the ith transmission
equipment operating in the jth frequency band

ValueMatrix Transmission effect evaluation value matrix
Tri Description of the ith transmitting equipment, including 〈TaFr, TaskNo〉
Result Output results, consisting n of Tri.TaskNo ordered sequences

In the design of the mathematical model, some of the five elements of GA were set,
including the use of a task allocation result queue to solve the problem of chromosome
coding parameters, and the use of an optimal allocation objective function to solve the
design of fitness function. According to the summary of relevant research, the GA has
been used to obtain a large number of research results in dealing with COPs, including the
selection operator based on strategies such as championship, roulette, and elite reservation,
and the crossover operator based on technologies such as multi-agent GA, multi-point
crossover, random crossover, and conflict processing, but it is also used to solve TTSA. The
adaptive improvement of genetic operation and control parameters is also needed.

2.3. PSO

PSO is a group search optimization algorithm. The motion of each particle is deter-
mined by the value of the fitness function, and the “direction” and “displacement” of its
motion are determined by the “speed” of each particle. Then, the particles iterate in the
solution space according to the direction of the current optimal particle.

In PSO, x represents the position of the particles, v represents the motion speed of the
particles, and p represents the optimal position of the particles searched. PSO initializes
a group of random particles and finds the optimal solution through iteration. In each
iteration, the particle updates its position by tracking two optimal values. One optimal
value is the optimal solution that the particle can find. This solution is called particle
best; the other optimal value is the optimal solution found by the whole population at
present, which is called the global best. Suppose that a population composed of K particles
is searched in the D-dimensional solution space, where the position of the ith particle is
expressed as a D-dimensional vector:

Xi = (xi1, xi2, . . . , xiD) , i = 1, 2, . . . , K (11)

The motion speed of the ith particle is also a vector of the D-dimension:

Vi = (vi1, vi2, . . . , viD) , i = 1, 2, . . . , K (12)

The optimal position searched by the ith particle, namely, the particle best, is expressed
as:

Pbesti = (pi1, pi2, . . . , piD) , i = 1, 2, . . . , K (13)

The optimal position searched by the whole population, namely, the global best, is
expressed as:

Gbest = (g1, g2, . . . , gD) (14)

The update formula of speed and position is as follows:

vid = w ∗ vid + c1r1(pid − xid) + c2r2(gd − xid), d = 1, 2, . . . , D (15)
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xid = xid + vid, d = 1, 2, . . . , D (16)

where c1 and c2 are the acceleration constant, r1 and r2 are uniform random numbers, and
w is the inertia constant.

3. Methodologies
3.1. IGA

In order to adapt to TTSA, the genetic selection operator, genetic crossover operator,
and genetic mutation operator are improved, as follows:

1. The selection operator (SO) adopts the elitist retention strategy and increases the
parameter of selection factor. When selecting the population, it retains a certain
proportion of excellent parents, and enters the selection range together with the
offspring, so as to achieve the optimal individual survival rate in the process of
genetic evolution. In order to ensure the diversity of the population, the algorithm
replaces the duplicate individuals in the new population during the execution of the
selection operator in each iteration.

2. The improved crossover operator (ICO) adopts the traditional genetic crossover
processing according to the arrangement sequence that each individual is assigned
to the equipment based on the task. Usually, the crossover point is determined, the
sequence before the crossover point is reserved, and the sequence after the intersection
point of two individuals is exchanged to generate new individuals. However, for two
permutation sequences, there is a high probability of conflict after cross-processing,
which is reflected in the issue of TTSA; that is, one task is assigned to two equipment
items or two tasks are assigned to one equipment item. This paper proposes a method
of the cyclic exchange of packets. The two sequences are divided into multiple packets
according to the cyclic exchange calculation between two parents using a tracking
calculation, and then one or more packets whose size is close to half of the length of the
individual sequence are selected as the reservation or exchange reason, thus avoiding
the occurrence of node gene conflict after the crossover operation and achieving the
purpose of preserving all excellent genes. The specific operation is shown in the
example provided in Figure 2.

3. The improved mutation operator (IMO): In order to ensure the diversity of the pop-
ulation and avoid falling into the local optimal trap, the mutation operator uses
the random selection of two positions in the sequence to exchange the transmission
tasks performed by the two positions of the transmission equipment to generate
new mutation individuals. The specific operation is shown in the example provided
in Figure 3.

Figure 2. Process of ICO.
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Figure 3. Process of IMO.

3.2. PSO-GA Hybrid Algorithm

The idea of PSO is introduced to improve the selection operator, crossover operator,
and mutation operator of IGA.

1. Selection operator: PSO is adopted to formulate a genetic selection strategy and
establish the PSO population. The update operation of each particle selects global
best, particle best, and particle position for the crossover operator.

2. Crossover operator: The ICO operator above is used for the crossover operation, and
the idea of multi-agent inheritance is introduced. Three gene sequences are selected
based on the selection operator, and the particle position is crossed with the global
extreme and individual extreme, respectively, to generate four generations. Then, the
four children are divided into two groups. The two children with a global best gene
and the two children with a particle best gene cross over each other to generate eight
children. The children with the largest evaluation value are selected from the eight
children as the result of the crossover calculation to replace the particle position and
complete the iteration. The specific operation is shown in Figure 4.

3. Mutation operator: In order to ensure the diversity of the population and avoid
falling into the local optimal trap, the IMO above performs a mutation operation
on the particle position. The mutation factor is set, and the particle position of the
population is calculated according to the factor proportion according to the gene
mutation operation.

Figure 4. Selection operator and particle update operation.

The PSO-GA only sets one parameter of mutation factor (MF), which is easy to operate
and easy to implement.
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3.3. GA-SPO Hybrid Algorithm
3.3.1. Probability Selection Model and Random Disturbance

In the basic PSO, the speed update is composed of three parts: the inertia maintenance
part, the particle best direction update part, and the global best direction update part. In
Formula (15), w, c1r1, c2r2 represent the influence of the three parts of the update on the final
speed update. For continuous problems, the final particle speed can be obtained by vector
calculation and parameter comprehensive reference. However, the TTSA has discrete
characteristics. Inertia retention, particle best, and global best represent different task
allocation schemes. The schemes are discrete from each other, and there is no correlation
between them. Therefore, the vector superposition method cannot be used for calculation.
The probability model is used to select one of the three parts as the final selected particle
motion direction and target; that is, the algorithm parameters w, c1r1, c2r2 are set according
to the probability model, which respectively represent the probability value of selecting
the inertia retention, particle best, and global best, and the final direction and target are
selected according to the set probability value proportion. The w, c1r1, c2r2 total probability
is 100%, and the w probability is inertia retention operation. The probability c1r1 is updated
according to the particle best direction and target, and the c2r2 probability is updated
according to the global best direction and target.

According to the definition of the PSO, inertia is maintained as the particles continue
to move forward along the direction and displacement of the last iteration. The selection of
the last iteration has been replaced and updated according to the rules. Inertia maintenance
has no practical operational significance.

In order to avoid the particle position update falling into the local optimal solution
trap, a random perturbation operation is proposed: when the particle motion direction and
target calculated in this iteration are completely consistent with the motion direction and
target calculated last time, the algorithm randomly selects the task nodes to exchange, thus
increasing the diversity of the particle position update and avoiding the algorithm falling
into the local optimal solution trap.

3.3.2. GA-PSO Operation

Based on PSO, because the speed and position update operation of the defined particles
is complex, the ICO is used to replace the update operation of PSO, and the parameter
control algorithm of GA-PSO is used for execution. The operational improvements are as
follows:

1. Definition of particle position: According to the characteristics of TTSA solution space
of the transmission task, the particle swarm coding is represented by the preceding
text; that is, the “position” of the particle is represented by an orderly task sequence
number. When the algorithm is started, a random sequence is used to initialize the
particles. The goal of the algorithm is to continuously update the particle’s position,
so that the task allocation sequence represented by the position information can obtain
the maximum comprehensive effect evaluation value through Formula (10)—that is,
continuously optimize the Result sequence, and obtain the optimization result of the
particle swarm optimization, which is recorded as:

Xi =
(
xi1, xi2, . . . , xij, . . . , xin

)
, i = 1, 2, . . . , K, xij = Trj.TaskNo (17)

The definition of particle best and global best is the same as the definition of particle
position, which is recorded as:

Pbesti =
(

pi1, pi2, . . . , pij, . . . , pin
)
, i = 1, 2, . . . , K pij = Trj.TaskNo (18)

Gbest = (g1, g2, . . . , gi, . . . , gn), gi = Tri.TaskNo (19)

2. Particle update operation based on probability selection and ICO: When the particle
branch direction is calculated according to the parameters, and inertia operation is
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performed according to the parameters, some particles move to global best, and some
particles move to particle best. In order to avoid the problem whereby the motion
direction and speed cannot be defined by a vector, the ICO is used to replace the
particle motion operation for the move toward global best and particle best. One of
the two generations is selected with a better evaluation value to replace the particle
position to realize particle iteration. This achieves the goal of simplifying the PSO.
The particles performing inertia operations adopt MO to increase the diversity of the
particles.

3. Algorithm termination: When the defined number of iterations is reached, the algo-
rithm terminates, and the global best is the output of the algorithm’s optimal solution,
ending the algorithm calculation.

3.4. DSPO
3.4.1. Particle Motion Direction and Target Definition

The PSO is usually used to solve the optimization problem of continuous space. The
problem of the optimal allocation of transmission tasks mainly involves solving the map-
ping problem between the tasks and equipment, which is obviously a discrete allocation
problem. The solution space of this problem is equivalent to the total arrangement COP of
allocating n tasks to n equipment items, and the number of all solutions in the space is Pn

n .
According to the previous description of the PSO, the PSO needs to be improved

to adapt to the characteristics of the problem. The particle motion direction and target
are redefined.

1. Definition of particle motion direction: According to the description of the PSO,
the particle motion speed is calculated by the position vector, which contains the
direction and displacement information. In TTSA, due to the discrete characteristics,
the decomposition speed is divided into two items: direction and displacement. Each
node of the task sequence is defined as the particle motion direction. The particle
motion direction suitable for the problem in this paper is VDi, defined as:

VDi =
(
vdi1, vdi2, . . . , vdij, . . . , vdin

)
, i = 1, 2, . . . , K, vdij = 0, 1 (20)

Only one vdij of the VDi sequence values represented by each is 1, and the other is 0.
The position of 1 represents the task of replacing the node when the particle updates its
position, that is, the particle’s motion direction.

2. Definition of particle motion target: According to the discrete characteristics of TTSA,
the velocity displacement is defined as the number of transmission tasks to be re-
placed by the node representing the particle motion direction. Referring to the PSO
Formula (12), the particle motion target suitable for the problem in this paper is
defined as:

VTi =
(
vti1, vti2, . . . , vtij, . . . , vtin

)
, i = 1, 2, . . . , K, vtij = 0, TaskNo (21)

Only one vtij value of each represented VTi sequence is taken as TaskNo, and the others
are taken as 0. The value taken as TaskNo indicates that the particle replaces the node with
the representative task when updating the position, that is, the replacement target of the
particle position code in the particle motion direction, which is defined as the particle
motion target.

3.4.2. Particle Position Update Calculation

According to the definition of particle motion direction and particle motion target,
a new update strategy of DPSO is proposed. The particle velocity update operation is to
calculate the particle motion direction and the particle motion target. The emission effect
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evaluation value of each task of the particles is calculated according to the particle position,
which is recorded as XVi:

XVi =
(

xvi1, xvi2, . . . , xvij, . . . , xvin
)
, i = 1, 2, . . . , K, xvij = Vaj xij (22)

where xij is the currently assigned task code of the jth equipment represented by the ith
particle in the particle position definition, and Vaj xij represents the transmission effect
evaluation value in the effect evaluation matrix when the jth equipment executes the jth
task. Similarly, the transmission effect evaluation value sequence of particle best and global
best is recorded as PbestVi, GbestV:

PbestVi =
(

pvi1, pvi2, . . . , pvij, . . . , pvin
)
, i = 1, 2, . . . , K pvij = Vajpij (23)

GbestV = (gv1, gv2, . . . , gvi, . . . , gvn), gvi = Vaj gi (24)

where pij is the task code of the jth equipment indicated in the definition of the particle best
position of the ith particle, and Vajpij represents the transmission effect evaluation value
in the effect evaluation matrix when the jth equipment performs the pij task. Similarly, it
is the gi task code of the jth equipment indicated in the global best definition, and Vaj gi
represents the transmission effect evaluation value in the effect evaluation matrix when the
jth equipment executes the gi task.

The DPSO calculates the D-value between the current particle and the particle best
according to the D-value between the two data series of Formulas (22) and (23), and
calculates the D-value between the current particle and the global best according to the
D-value between the two data series of Formulas (22) and (24). The maximum D-value
is selected, that is, the maximum D-value between the evaluation values, as the motion
direction option of particles. At the same time, the position of the particle best and the
global best of the maximum D-value position is recorded, that is, the task code of the
corresponding position in Formulas (20) and (21).

The selection of particle best and global best selects the iteratively updated particle
motion direction according to the probability model, and the task code is the particle
motion target.

Taking particle best as an example, through the comparison of XVi and PbestVi cal-
culations, the maximum value of Vajpij − Vaj xij at the time j = L, and then L is de-
termined as the motion direction calculated according to the particle best, that is, only
VDi = (0, 0, . . . , 1, . . . , 0), the Lth value is 1, and the other value is 0. The motion target
is VTi = (0, 0, . . . , TrL.TaskNo, . . . , 0), where TrL.TaskNo is the task code with the value in
the L-th position in Formula (18).

A summary of the DPSO parameters proposed to solve TTSA are presented in Table 2.

Table 2. DPSO parameter table.

Parameter Explanation

XVi
Particle evaluation value sequence: the evaluation value sequence taken
from the task allocation sequence represented by the ith particle

PbestVi
Particle best evaluation value sequence: the evaluation value sequence
obtained from the task allocation sequence recorded by the ith particle best

GbestV Global best evaluation value sequence: the evaluation value sequence
obtained from the task allocation sequence of the global best record

w
In the probability selection model, the inertia maintains part of the
probability value. According to the DPSO, this part is the random
disturbance probability value

c1r1 In the probability selection model, particle best partial probability value
c2r2 In the probability selection model, global best partial probability value
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4. Experiments
4.1. Simulation Experiment Environment

The experimental program writing tool is Visual Studio 2012, and the language is
C++ with MFC architecture. The hardware environment is a Microsoft Surface X1 portable
computer, the CPU is Intel Core i7 3.60 GHz, the memory is 16 GB, and the operating
system is Win10.

In order to test the effect of the algorithm, the experiment adopts the full task allocation
mode with an equal number of equipment items and tasks. The task data are randomly
generated, and the frequency band is divided into eight bands. The evaluation value
matrix uses randomly generated fixed values. According to the actual data acquisition
simulation of the SWR, the evaluation value is randomly generated in the range of 0.5–1.0.
In order to compare the efficiency and results between the different algorithms and different
configuration parameters, the same task sequence and evaluation value matrix are used for
the input, and the average value of multiple tests is used for comparison.

4.2. Comparison Algorithms

The research on TTSA is relatively sparse, and GA and the various intelligent algo-
rithms proposed are compared. The specific operation of GA refers to the specific methods
in the reference literature and the reprograms based on the application problems in this
paper. The specific genetic operation is described in Table 3. The other four intelligent
algorithms are proposed in this paper.

Table 3. Compare intelligent algorithm list.

Algorithm Explanation Parameter
Representation Parameter Description

GA

Selection: roulette strategy, Crossover:
direct crossover and then conflict

processing strategy, Mutation: random
mutation and then conflict processing

strategy [8,11–13]

GA (CF, MF)

New individuals are generated in the
new population according to the ratio
of crossover factor (CF) and mutation

factor (MF)

IGA

Selection: the elitist retention strategy,
Crossover: replace the group crossover
with the crossover cycle, Mutation: use

the random exchange

IGA (SF, CF, MF)

In the new population, excellent
individuals of the parent generation are

retained according to the selection
factor (SF), and new individuals are
generated according to the ratio of
crossover factor (CF) and mutation

factor (MF)

PSO-GA

Establish a selection mechanism based
on PSO, establish a multi-agent genetic

mechanism based on particle itself,
particle best, and global best, and use

ICO and MO of IGA

PSO-GA (MF)

After the particle update operation,
some particles are changed according

to the proportion of the mutation factor
(MF)

GA-PSO

Initialize the population based on PSO,
according to the probability selection
model, replace the particle position

update with ICO, and perform the MO
when maintaining inertia

GA-PSO (IRF, PBF,
GBF)

According to the probability model,
determine the proportion of particles in

the population updated according to
three parameters: inertia retention

factor (IRF), particle best factor (PBF),
global best factor (GBF)

DPSO

Initialize the population based on PSO,
according to the probability selection

model, and complete the position
update operation. When the selected

direction and target remain unchanged,
add random disturbance

DPSO (IRF, PBF,
GBF)

According to the probability model,
determine the proportion of particles in

the population updated according to
three parameters: inertia retention

factor (IRF), particle best factor (PBF),
global best factor (GBF)
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4.3. Algorithm Parameter Test

Before algorithm comparison and verification, the optimal parameter selection test
of each algorithm is carried out. The experimental population size of the algorithm is
calculated by 100, and the population size is kept unchanged during the iteration process.
The upper limit of the number of iterations of the intelligent algorithm is set according to
the following formula:

IterationNumber =
n

∑
i=1

i2 (25)

The value of n is the number of equipment items and tasks.
The algorithm parameter test is carried out using the comparison method of accurate

calculation (enumeration algorithm). The parameters are selected based on the algorithm
success rate (the proportion of the global optimal solution obtained by the algorithm
through multiple calculations) and the algorithm convergence (after multiple calculations,
the total number of iterations of the algorithm to obtain the global optimal solution is accu-
mulated according to the upper limit of the number of iterations if the number of iterations
reaches the upper limit, but still does not obtain the global optimal solution). The efficiency
of intelligent algorithms depends on the calculation time of the fitness function, and the
number of calculations of the fitness function is consistent in each iteration. Therefore, this
paper uses the number of iterations to measure the efficiency of each intelligent algorithm.
The test of the optimal parameters of each algorithm and the representative (all successful,
fast convergence) parameter data are shown in Tables 4 and 5, which list the best parameter
combinations of the intelligent algorithm parameter groups.

Table 4. Multi-algorithm parameter experiment success rate data table.

Algorithm and Parameter
Number of Equipment Items and Tasks

Average
8 9 10 11 12

GA (0.6,0.4) 100% 99% 100% 100% 88% 97.4%

IGA (0.8,0.1,0.1) 100% 100% 100% 100% 100% 100%

IGA (0.7,0.2,0.1) 100% 100% 100% 100% 100% 100%

IGA (0.6,0.2,0.2) 100% 100% 100% 100% 100% 100%

IGA (0.5,0.3,0.2) 100% 100% 100% 100% 100% 100%

IGA (0.4,0.3,0.3) 100% 100% 100% 100% 100% 100%

IGA (0.3,0.3,0.4) 100% 100% 100% 100% 100% 100%

PSO-GA (0.6) 100% 99% 97% 94% 95% 97%

GA-PSO (0.3,0.1,0.6) 100% 100% 100% 100% 100% 100%

GA-PSO (0.1,0.2,0.7) 100% 99% 100% 100% 99% 99.6%

GA-PSO (0.6,0.2,0.2) 100% 100% 100% 99% 99% 99.6%

DPSO (0.2,0.3,0.5) 100% 100% 100% 100% 100% 100%

DPSO (0.3,0.2,0.5) 100% 100% 100% 100% 100% 100%

DPSO (0.1,0.2,0.7) 100% 100% 100% 100% 100% 100%

DPSO (0.5,0.1,0.4) 100% 100% 100% 100% 100% 100%

DPSO (0.4,0.1,0.5) 100% 100% 100% 100% 100% 100%

DPSO (0.3,0.1,0.6) 100% 100% 100% 100% 100% 100%
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Table 5. Multi-algorithm parameter experiment number of iteration data table.

Algorithm and Parameter
Number of Equipment Items and Tasks

Total
8 9 10 11 12

GA (0.6,0.4) 1666 3932 6101 10,239 24,789 46,727

IGA (0.8,0.1,0.1) 2391 3079 4455 4821 5936 20,682

IGA (0.7,0.2,0.1) 1503 1926 2419 3216 4234 13,298

IGA (0.6,0.2,0.2) 1100 1397 1848 2193 2944 9482

IGA (0.5,0.3,0.2) 840 1053 1413 1652 2089 7047

IGA (0.4,0.3,0.3) 653 843 1192 1390 1742 5820

IGA (0.3,0.3,0.4) 576 699 923 1123 1418 4739

PSO-GA (0.6) 1188 1974 4049 8285 7990 23,486

GA-PSO (0.3,0.1,0.6) 894 1131 2153 2357 4913 11,448

GA-PSO (0.1,0.2,0.7) 625 1212 1676 2185 3463 9161

GA-PSO (0.6,0.2,0.2) 666 1236 2140 2935 5261 12,238

DPSO (0.2,0.3,0.5) 432 767 1136 1528 2123 5986

DPSO (0.3,0.2,0.5) 495 1071 1291 2070 2330 7257

DPSO (0.1,0.2,0.7) 515 1047 1364 1972 2398 7296

DPSO (0.5,0.1,0.4) 582 1362 2089 2856 3996 10,885

DPSO (0.4,0.1,0.5) 628 1354 1844 2747 3974 10,547

DPSO (0.3,0.1,0.6) 540 1464 1763 2623 3754 10,144

4.4. Algorithm Experiments

Experiment 1: The objective is to verify the calculation accuracy of the algorithm
through comprehensive evaluation value calculations. The parameter groups of all algo-
rithms are calculated according to the iteration number of Formula (25), and the evaluation
value is shown in Table 6.

Table 6. Multi-algorithm comprehensive evaluation value comparison table.

Algorithm and Parameter
Number of Equipment Items and Tasks

8 9 10 11 12 13

GA (0.6,0.4) 0.905917 0.910875 0.901094 0.937174 0.937185 0.936331

IGA (0.8,0.1,0.1) 0.905917 0.910875 0.901097 0.937207 0.937478 0.936362

IGA (0.7,0.2,0.1) 0.905917 0.910875 0.901097 0.937207 0.937478 0.936362

IGA (0.6,0.2,0.2) 0.905917 0.910875 0.901097 0.937207 0.937478 0.936362

IGA (0.5,0.3,0.2) 0.905917 0.910875 0.901097 0.937207 0.937478 0.936362

IGA (0.4,0.3,0.3) 0.905917 0.910875 0.901097 0.937207 0.937478 0.936362

IGA (0.3,0.3,0.4) 0.905917 0.910875 0.901097 0.937207 0.937478 0.936362

PSO-GA (0.6) 0.905898 0.910849 0.901045 0.936897 0.937376 0.936174

GA-PSO (0.3,0.1,0.6) 0.905917 0.910875 0.901097 0.937207 0.937458 0.936362

GA-PSO (0.1,0.2,0.7) 0.905917 0.910875 0.901097 0.93715 0.937458 0.936349

GA-PSO (0.6,0.2,0.2) 0.905917 0.910875 0.901097 0.937178 0.937478 0.936349

DPSO (0.2,0.3,0.5) 0.905917 0.910875 0.901097 0.937207 0.937444 0.936354
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Table 6. Cont.

Algorithm and Parameter
Number of Equipment Items and Tasks

8 9 10 11 12 13

DPSO (0.3,0.2,0.5) 0.905917 0.910875 0.901097 0.937207 0.937386 0.936362

DPSO (0.1,0.2,0.7) 0.905917 0.910875 0.901097 0.937207 0.937466 0.936362

DPSO (0.5,0.1,0.4) 0.905917 0.910875 0.901097 0.937207 0.937478 0.936362

DPSO (0.4,0.1,0.5) 0.905917 0.910875 0.901097 0.937207 0.937478 0.936362

DPSO (0.3,0.1,0.6) 0.905917 0.910875 0.901097 0.937207 0.937478 0.936362

Algorithm and Parameter
Number of Equipment Items and Tasks

14 15 16 17 18 19

GA (0.6,0.4) 0.920982 0.927141 0.935498 0.937482 0.949289 0.925388

IGA (0.8,0.1,0.1) 0.921115 0.927263 0.936067 0.938276 0.949914 0.925894

IGA (0.7,0.2,0.1) 0.921115 0.927266 0.936067 0.938287 0.949892 0.925843

IGA (0.6,0.2,0.2) 0.921115 0.927269 0.936067 0.938286 0.949935 0.925872

IGA (0.5,0.3,0.2) 0.921115 0.927269 0.936067 0.938267 0.949858 0.92572

IGA (0.4,0.3,0.3) 0.921115 0.927266 0.936046 0.938245 0.949771 0.925716

IGA (0.3,0.3,0.4) 0.921078 0.927269 0.936063 0.938189 0.949753 0.925521

PSO-GA (0.6) 0.920734 0.92711 0.935687 0.938034 0.949794 0.925663

GA-PSO (0.3,0.1,0.6) 0.921099 0.92726 0.935907 0.938218 0.949846 0.925759

GA-PSO (0.1,0.2,0.7) 0.921094 0.927193 0.935904 0.938224 0.949888 0.925741

GA-PSO (0.6,0.2,0.2) 0.921027 0.927247 0.936019 0.93824 0.949925 0.92585

DPSO (0.2,0.3,0.5) 0.92102 0.927258 0.936053 0.938287 0.949983 0.925886

DPSO (0.3,0.2,0.5) 0.921103 0.927269 0.936067 0.938287 0.949983 0.925906

DPSO (0.1,0.2,0.7) 0.921115 0.927268 0.936067 0.938287 0.949978 0.925906

DPSO (0.5,0.1,0.4) 0.921115 0.927269 0.936067 0.938287 0.949983 0.925906

DPSO (0.4,0.1,0.5) 0.921115 0.927269 0.936067 0.938287 0.949983 0.925906

DPSO (0.3,0.1,0.6) 0.921115 0.927269 0.936067 0.938287 0.949983 0.925906

Algorithm and Parameter
Number of Equipment Items and Tasks

20 21 22 23 24 25

GA (0.6,0.4) 0.924698 0.93266 0.948151 0.945635 0.937196 0.932849

IGA (0.8,0.1,0.1) 0.942251 0.940722 0.940895 0.948123 0.936434 0.945138

IGA (0.7,0.2,0.1) 0.942251 0.940707 0.940848 0.948091 0.936418 0.945083

IGA (0.6,0.2,0.2) 0.942251 0.940727 0.94086 0.948109 0.936401 0.945047

IGA (0.5,0.3,0.2) 0.942251 0.940711 0.9408 0.948031 0.936405 0.945035

IGA (0.4,0.3,0.3) 0.942249 0.940695 0.940781 0.948053 0.936265 0.944858

IGA (0.3,0.3,0.4) 0.942251 0.940613 0.940735 0.947955 0.936355 0.94466

PSO-GA (0.6) 0.942028 0.940462 0.940715 0.948021 0.936212 0.944911

GA-PSO (0.3,0.1,0.6) 0.942157 0.940702 0.940873 0.94802 0.936288 0.94493

GA-PSO (0.1,0.2,0.7) 0.942062 0.940581 0.940739 0.947989 0.936225 0.944912

GA-PSO (0.6,0.2,0.2) 0.942084 0.940555 0.94081 0.948079 0.936324 0.945145

DPSO (0.2,0.3,0.5) 0.94223 0.94071 0.940962 0.9481 0.936462 0.945255
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Table 6. Cont.

Algorithm and Parameter
Number of Equipment Items and Tasks

20 21 22 23 24 25

DPSO (0.3,0.2,0.5) 0.942249 0.940732 0.941009 0.948124 0.936484 0.945267

DPSO (0.1,0.2,0.7) 0.942242 0.940732 0.941009 0.948129 0.936482 0.945276

DPSO (0.5,0.1,0.4) 0.942251 0.940732 0.941009 0.948129 0.936485 0.945276

DPSO (0.4,0.1,0.5) 0.942251 0.940732 0.941009 0.948129 0.936485 0.945276

DPSO (0.3,0.1,0.6) 0.942251 0.940732 0.941009 0.948129 0.936485 0.945276

According to the average value in the above table, a comparison chart of multi-
algorithm multi-parameter array can be drawn (Figure 5).

Figure 5. Comparison chart of multi-algorithm comprehensive evaluation average.

According to the experiment, it can be seen that the evaluation value obtained by GA
is the lowest, followed by PSO-GA, and the best experimental result is DPSO. In all tests
of the three parameter groups, the highest value is completely consistent. In this case, it
can be considered that the evaluation value calculated according to the three groups of
parameters of the algorithm is the global optimal solution.

Experiment 2: the objective is to verify the effectiveness of the algorithm through the
success rate. In combination with the results of Experiment 1, three groups of DPSO result
data are taken as the global optimal solution and recalculated, and the proportion of the
global optimal solution can then be calculated by other algorithms to verify the effectiveness
of the algorithm. The algorithm is compared and the best group of algorithm parameters
selected from Experiment 1. The obtained experimental data are shown in Table 7.
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Table 7. Multi-algorithm success rate comparison table.

Algorithm and Parameter
Number of Equipment Items and Tasks

8 9 10 11 12 13 14 15 16

GA (0.6,0.4) 100% 100% 99% 97% 89% 97% 90% 81% 77%

IGA (0.8,0.1,0.1) 100% 100% 100% 100% 100% 100% 100% 99% 100%

IGA (0.6,0.2,0.2) 100% 100% 100% 100% 100% 100% 100% 100% 100%

PSO-GA (0.6) 99% 99% 97% 95% 92% 93% 88% 91% 81%

GA-PSO (0.3,0.1,0.6) 100% 100% 100% 100% 98% 100% 97% 99% 94%

GA-PSO (0.6,0.2,0.2) 100% 100% 100% 98% 100% 99% 96% 96% 94%

DPSO 100% 100% 100% 100% 100% 100% 100% 100% 100%

Algorithm and Parameter
Number of Equipment Items and Tasks

17 18 19 20 21 22 23 24 25

GA (0.6,0.4) 48% 46% 55% 58% 21% 12% 18% 10% 7%

IGA (0.8,0.1,0.1) 97% 96% 98% 100% 99% 89% 98% 96% 87%

IGA (0.6,0.2,0.2) 99% 95% 96% 100% 98% 86% 97% 93% 77%

PSO-GA (0.6) 84% 86% 75% 84% 78% 71% 82% 79% 69%

GA-PSO (0.3,0.1,0.6) 94% 87% 84% 91% 93% 84% 84% 83% 72%

GA-PSO (0.6,0.2,0.2) 97% 91% 89% 90% 86% 84% 90% 86% 80%

DPSO 100% 100% 100% 100% 100% 100% 100% 100% 100%

According to the above data, a comparison chart can be drawn (Figure 6).

Figure 6. Comparison chart of multi-algorithm success rate.

Analysis of experimental data:

1. Except for DPSO, the success rate of all algorithms decreases gradually with the
number of tasks.

2. Compared with other algorithms, the GA calculation results are the worst. The IGA,
PSO-GA, and GA-PSO calculation results are equivalent, but with the increase in
the number of tasks, the gap between the GA and DPSO calculation results is wide.
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It shows that the ICO can effectively improve the calculation success rate of the
intelligent algorithm.

The number of iterations when the algorithm calculates is recorded to obtain the global
optimal solution (if the optimal solution is not obtained, count according to the upper limit
of the number of iterations set by the algorithm), and the number of iterations of multiple
algorithms is obtained (Table 8).

Table 8. Multi-algorithm number of iterations comparison table.

Algorithm and Parameter
Number of Equipment Items and Tasks

8 9 10 11 12 13 14 15 16

GA (0.6,0.4) 2226 4544 7299 10,334 22,411 22,703 37,218 52,963 78,680

IGA (0.8,0.1,0.1) 2152 3206 3829 4906 5998 6733 8202 11,879 12,107

IGA (0.6,0.2,0.2) 1016 1397 1767 2390 2519 3247 3910 4570 5502

PSO-GA (0.6) 1407 2054 4339 5549 11,127 11,115 20,909 21,067 41,885

GA-PSO (0.3,0.1,0.6) 682 1282 1892 2424 4489 4743 7662 8182 21,488

GA-PSO (0.6,0.2,0.2) 639 984 1559 3582 3776 6524 9717 15,660 22,344

DPSO (0.5,0.1,0.4) 699 1226 2072 2967 4438 5397 7962 9579 12,810

DPSO (0.4,0.1,0.5) 622 1303 1910 2879 3651 4895 6265 8283 10,733

DPSO (0.3,0.1,0.6) 644 1237 1874 2613 3310 4407 6222 7747 10,097

Algorithm and Parameter
Number of Equipment Items and Tasks

17 18 19 20 21 22 23 24 25

GA (0.6,0.4) 125,956 155,587 168,004 184,432 299,930 354,558 398,367 466,670 532,595

IGA (0.8,0.1,0.1) 20,016 26,127 29,061 18,695 29,897 73,513 46,724 59,135 125,374

IGA (0.6,0.2,0.2) 8712 19,732 22,638 9329 23,594 76,462 33,057 52,605 150,233

PSO-GA (0.6) 40,362 52,858 83,780 70,156 98,626 137,713 110,321 137,800 222,637

GA-PSO (0.3,0.1,0.6) 25,750 44,814 56,354 40,915 48,824 94,523 104,378 123,837 201,774

GA-PSO (0.6,0.2,0.2) 19,774 43,101 51,090 56,063 73,014 114,275 81,685 116,186 176,458

DPSO (0.5,0.1,0.4) 18,052 20,118 26,519 24,658 31,859 45,711 53,620 64,200 67,979

DPSO (0.4,0.1,0.5) 12,995 17,680 19,686 18,324 24,852 30,707 35,037 37,732 43,879

DPSO (0.3,0.1,0.6) 13,612 14,993 17,979 17,297 21,105 27,875 30,236 32,038 45,693

According to the above table, the comparison diagram can be drawn (Figure 7).
Analysis of the experimental data:

1. The number of iterations of all algorithms increases gradually with the number
of tasks.

2. The number of iterations of the GA calculation increases rapidly because of the low
success rate. In the experiment, it is almost impossible to obtain the optimal solution
using the set number of iterations. The number of iterations of PSO-GA and GA-
PSO is equal, which shows that both hybrid strategies can effectively improve the
convergence of intelligent algorithms. The IGA calculation results are superior to
those of the hybrid algorithms. The advantage of the number of iterations of the DPSO
calculation is obvious, which proves that the convergence of DPSO is the highest.
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Figure 7. Comparison chart of multi-algorithm number of iterations.

4.5. Discussion of Experiments

From the experiments, it can be seen that:

1. The mathematical model and intelligent algorithm built can solve the TTSA of radio
and television transmission.

2. Through the enumeration algorithm verification, when the number of tasks is small,
the intelligent algorithm can calculate the global optimal solution, indicating that
the intelligent approximation algorithm can achieve the same calculation results as
the accurate algorithm. However, the limitation is that not all intelligent algorithms
can achieve the same results as accurate algorithms. Comparing different intelligent
algorithms is a contribution of this paper.

3. A large number of attempts of the algorithms can find the optimal approximate
calculation scheme for specific problems. The parameter selection of the algorithm is
the key to achieving optimal results. This paper directly uses the results of parameter
testing in previous studies. It is recommended that when using this algorithm to
solve other similar problems, the algorithm parameter selection test ought to be
conducted again.

4. In order to obtain better results, the algorithm should be adapted to specific problems,
for example, the improved crossover operator and probability selection model in
this paper.

5. The hybrid algorithm can achieve good results in a certain range, but it may not
completely inherit the advantages of the original algorithm. Although the computa-
tional results of the PSO-GA and GA-PSO in this paper are better than GA, there is no
advantage in comparing the results of IGA and DPSO.

The advantages and disadvantages of the various algorithms and comparison algo-
rithms proposed in this paper are shown in Table 9.
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Table 9. Comparison of advantages and disadvantages of the algorithms.

Algorithm Parameter Success Rate Astringency Accuracy Comprehensive

GA Middle Low Low Low Low
IGA Middle Middle High High high

PSO-GA Low Low Middle Middle Middle
GA-PSO High Middle Middle Middle Middle

DPSO High High Highest Highest Highest

5. Conclusions

Based on the analysis of the characteristics of the TTSA, this paper establishes a
mathematical model for the quantitative evaluation of the TTSA. Summarizing the previous
research results of solving COPs, based on GA and PSO, a variety of intelligent algorithms
for solving COPs, such as ICO, hybrid intelligent computing, and redefining the basic
operation of PSO, are proposed. Through the analysis and comparison of a large number
of simulation experiments, the DSPO that can obtain the global optimal solution within a
certain task range was found. The approximate calculation of the algorithm obtained the
global optimal solution consistent with the accurate algorithm.

In GA, chromosomes share information with each other, so the movement of the
whole population is relatively uniform to the optimal region. In the PSO, only the global
optimum and individual optimum give information to other particles, which is a one-way
flow of information. The whole search and update process follows the current optimal
solution. Compared with GA, in most cases, all particles converge to the optimal solution
more quickly. For the TTSA, the individual coding of the population is discrete and has
no continuous correlation. The mathematical description of the particle position update
when the PSO is used is the key to making full use of the advantages of the PSO. At the
same time, the probability model is used to describe the vectorization flight of the particle
position, as the proportional and separate position update of the multi-particle population
is the key to the success of the DSPO.

Using intelligent algorithms to accomplish TTSA can effectively improve the trans-
mission effect at specific points in time and achieve the goal of optimizing transmis-
sion coverage.

The limitation of this paper is that it only considers the static allocation of multiple
tasks to multiple pieces of equipment at a single point in time. The next step is to study
the dynamic task scheduling based on the TTSA at the same time point, aiming at solving
the problem of how to realize the optimal intelligent dynamic task scheduling across time
periods when the time span is introduced and the tasks are not transferable. The appli-
cation scenarios are more in line with the actual situation of current radio and television
transmission stations.
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