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Abstract: White blood cells (WBCs) must be evaluated to determine how well the human immune
system performs. Abnormal WBC counts may indicate malignancy, tuberculosis, severe anemia,
cancer, and other serious diseases. To get an early diagnosis and to check if WBCs are abnormal
or normal, one needs to examine the numbers and determine the shape of the WBCs. To address
this problem, computer-aided procedures have been developed because hematologists perform this
laborious, expensive, and time-consuming process manually. Resultantly, a powerful deep learning
model was developed in the present study to categorize WBCs, including immature WBCs, from
the images of peripheral blood smears. A network based on W-Net, a CNN-based method for
WBC classification, was developed to execute the segmentation of leukocytes. Thereafter, significant
feature maps were retrieved using a deep learning framework built on GhostNet. Then, they were
categorized using a ResNeXt with a Wildebeest Herd Optimization (WHO)-based method. In
addition, Deep Convolutional Generative Adversarial Network (DCGAN)-based data augmentation
was implemented to handle the imbalanced data issue. To validate the model performance, the
proposed technique was compared with the existing techniques and achieved 99.16%, 99.24%, and
98.61% accuracy levels for Leukocyte Images for Segmentation and Classification (LISC), Blood Cell
Count and Detection (BCCD), and the single-cell morphological dataset, respectively. Thus, we can
conclude that the proposed approach is valuable and adaptable for blood cell microscopic analysis in
clinical settings.

Keywords: image classification; white blood cell; deep learning; W-Net; GhostNet

1. Introduction

Blood is an essential component of life in the human body. Blood cells and plasma are
the components of human blood. Most of the blood is made up of a yellow liquid called
plasma, which makes up about 55% of the blood volume. Blood also contains blood cells,
hormones, carbon dioxide, proteins, carbohydrates, and micronutrients [1–3]. The three
major biological elements of blood are white blood cells (WBCs), platelets (thrombocytes),
and red blood cells (RBCs), which can be individually identified by their color, structure,
and shape. Neutrophils, eosinophils, basophils, monocytes, and lymphocytes are the five
types of WBCs.

WBC analysis is critical and considerably aids in the tracking and early detection
of our immune status. Additionally, it can inform a diagnosis for conditions including
HIV, acute myeloid leukemia (AML), and adult acute lymphoblastic leukemia (ALL). An
essential characteristic of AML is rapid growth in the number of immature blood cells.
These cells replace healthy blood cells, proliferate, and prevent the production of new
healthy cells from the bone marrow [4–7]. Therefore, the initial stage in the diagnosis of
AML is the detection of immature WBCs. In this detection, WBCs are classified as healthy
or immature cells and divided into subgroups. The classification of immature WBCs is
highly complicated because of their intricacy and resemblance to each other.
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The typical method for diagnosing leukemia involves microscopy of peripheral blood
smears, though alternative techniques are also employed. Traditional blood smear exami-
nation is a lengthier and more effort-intensive process [8–11]. Further, such examination is
vulnerable to several errors, including fatigue, operator experience, and significant inter-
and intra-observer variation of standards. Manual inspection has a 30–40% error rate,
based on the hematologist’s experience level. Hence, an efficient technique is necessary
for the fast diagnosis of the illness [12–14]. Challenges in the existing manual technique of
identification can be overcome by an automated system, especially in the poorest countries,
allowing for the standardized and effective detection of mature and immature WBCs.

The automatic categorization of WBCs using computer vision algorithms has drawn
significant scientific attention in digital image processing technology [15–17]. However, the
categorization and identification of WBCs based on machine learning are difficult because
of the morphological similarity among several subtypes and their structural abnormalities.
In modern medical imaging, deep learning-based techniques are the most effective for
identification and categorization tasks [18–20]. Moreover, they perform very well on
large datasets.

This paper classified normal WBCs into five categories and immature ones into seven
categories. An efficient segmentation and feature extraction was carried out for this purpose
using W-net and GhostNet. Thereafter, ResNeXt-based multi-class classification on WBC
was carried out with the aid of Wildebeest Herd Optimization (WHO). Deep Convolutional
Generative Adversarial Network (DCGAN)-based image augmentation was also employed
to address the issues of imbalanced data and a lack of appropriate sample sizes.

The key contributions of this study are summarized below:

(1) To improve the classifier’s overall performance, we suggest a powerful W-net-based
segmentation that can precisely find the WBC area.

(2) We developed an efficient GhostNet-based deep learning technique to gather all
high-level and low-level features of WBCs.

(3) We employed ResNeXt with WHO to effectively classify atypical WBCs, including
immature WBCs.

(4) A data augmentation strategy based on DCGAN was applied to increase the number
of images in the dataset and to train the deep learning model successfully.

(5) Various public datasets were used in extensive trials to show how effectively the
proposed approach outperforms other well-known methods.

The rest of the paper is structured as follows. Section 2 discusses earlier research
on WBC segmentation and classification. Section 3 explains the proposed methodology.
Section 4 contains the experimental findings and their implementations, and Section 5
includes the conclusion.

2. Literature Review

Ahmad et al. [21] suggested a hybrid strategy for classifying WBCs and first pre-
processed the input dataset before inputting it via feature extraction and feature fusion,
utilizing a transfer learning step. This was done by using DarkNet53 and DenseNet201—
two deep learning methods. An entropy-controlled Marine Predators Algorithm was then
used to choose the best attributes. In terms of several performance indicators, this strategy
was compared with other existing methods.

A two-stage deep learning model was developed by Elhassan et al. [22] to categorize
abnormal WBCs. To create different synthetic WBC pictures, an initial augmentation
technique based on geometric modification and the Deep Convolutional Auto-Encoder
(DCAE) generating model was presented. Further, the WBCs were divided by utilizing the
framework of CMYK-Moment Localization-Feature Fusion Extraction. Then, binary and
multi-class classifications were carried out using a hybrid DCAE/Convolutional Neural
Network (CNN). Using DCAE, the image was first transformed into a refined version. Then
it was supplied into the CNN for further extraction of features. The model’s outputs were
compared against existing techniques to classify abnormal WBCs.
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Cheuque et al. [23] classified four blood cell categories, including eosinophils, neu-
trophils, monocytes, mononuclear, and lymphocytes, using a multi-level hybrid system.
A Faster R-CNN network was used at the first level to identify the region of interest in
WBCs and to distinguish polymorphonuclear from mononuclear cells. On being separated,
the second-level subclasses were recognized using two adjacent CNNs in the MobileNet
framework. The suggested model presented the results of Monte Carlo cross-validation
according to F1-score, precision, recall, and accuracy.

Using a random forest approach, Dasariraju et al. [24] created a model that could pre-
cisely identify and divide immature leukocytes into four categories: myeloblasts, promye-
locytes, monoblasts, and erythroblasts. To acquire the masking of the cytoplasm and
nuclei, a segmentation method based on multi-Otsu thresholding was used. The feature
extraction approach was used to obtain 16 cytomorphological characteristics. Finally,
using the retrieved features as a basis, the random forest algorithm performed the classi-
fication where accuracy, precision, recall, and specificity measurements were applied to
evaluate performance.

For WBC segmentation, Akram et al. [25] developed a multi-scale information fusion
network (MIF-Net) with external and internal procedures for fusing spatial information;
MIF-Net is a deep network. To fuse external information, the MIF-Net separated and
reproduced the boundary information on multiple scales. For internal fusion, the split-
ter also transmitted spatial data. It ensured network-wide feature empowerment. After
going through a few stages of processing, internal information fusion was finally com-
bined with the fusion of external data. Outcome masks were ultimately created using
fused characteristics. On four publicly accessible datasets, the performance assessment
was conducted.

Haider et al. [26] presented two deep models for the combined segmentation of nuclei
and cytoplasm in WBC pictures: the leukocyte deep aggregation segmentation network
(LDAS-Net) and the leukocyte deep segmentation network (LDSNet). For feature extraction,
only three down-sampling stages were included in the LDS-Net. To minimize the loss
of spatial information and transmit low-level information, the improved version of the
LDS-Net-LDAS-Net was presented. To combine low-level data with downscaled spatial
features in the LDAS-Net, a dense feature concatenation block was used.

Finally, the overall summary of the literature review is presented in Table 1.

Table 1. Summary of literature review.

Reference Technique Dataset Performance Metrics Drawback

Ahmad et al. [21] DarkNet53 and
DenseNet201

Real-world large-scale
dataset Accuracy, ANOVA test

This framework is
computationally expensive

due to the two feature
extractors and feature

fusion process

Elhassan et al. [22] deep convolutional
autoencoder (DCAE)

Single-cell
morphological dataset

Precision, sensitivity, and
F1-score

For feature extraction, the
entire input image was used.
As a result, undesirable traits

were also extracted from
the image

Cheuque et al. [23] MobileNet

Blood Cell Detection,
Complete Blood Count

dataset, White Blood Cells
dataset, Kaggle Blood Cell

Images dataset,
LISC dataset

Accuracy, recall, precision,
and F1-score

Overfitting occurs due to the
imbalanced dataset problem

Dasariraju et al. [24] random forest Single-cell
morphological dataset

accuracy, recall, precision,
and specificity

Precision value of
Promyelocyte class is very low.

This means the technique
attains a higher number of

false positives due to
imbalanced classes
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Table 1. Cont.

Reference Technique Dataset Performance Metrics Drawback

Akram et al. [25] MIF-Net Four private datasets

Precision, misclassification
error, dice coefficient, mean
intersection over union, false

positive rate and
false-negative rate

They do not perform any
pre-processing techniques to

improve the quality and
remove noise from the image.

This reduces the learning
capacity of the network

Haider et al. [26] LDAS-Net Four private datasets

Precision, misclassification
error, dice coefficient, mean
intersection over union, false

positive rate and
false-negative rate

Computationally expensive

3. Proposed Methodology

The created framework entailed five steps: picture pre-processing, image augmenta-
tion, WBC segmentation, feature extraction, and classification. Initially, the input images
were obtained from the dataset, and then the pre-processing and data augmentation using
DCGAN were performed. Afterward, W-Net-based deep learning technique was used to
segment the WBC nuclei. Then, the significant features from the segmented images were
extracted by the GhostNet-based technique. Finally, the extracted features were sent to the
optimized ResNeXt classifier to perform the multi-class classification on mature and im-
mature WBCs. To improve the performance of the classifier, WHO-based hyperparameter
optimization was applied. Figure 1 depicts the proposed framework’s overall structure.
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3.1. Pre-Processing

As a precondition, the images should be ready for a successful outcome before their
analysis. Therefore, image pre-processing is crucial in examining the data for experiments.
Each photograph was resized into a 256 × 256 resolution image in this work. After that,
the complete dataset was subjected to image contrast enhancement based on Contrast
Limited Adaptive Histogram Equalization (CLAHE) to boost contrast and create cell bodies
more visible.
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3.2. DCGAN-Based Data Augmentation

This section presents the DCGAN-based model for oversampling a few rare classes,
such as promyelocyte (bilobed), metamyelocyte, etc. This network produced more than
10,000 image data to oversample these rare classes. For both the discriminator and gen-
erator models in this network, convolutional neural layers were utilized. These layers
were used to produce a more stable architecture and obtain improved outcomes. Com-
pared to traditional GANs, it produces more images with better quality. In addition, it
performs more consistently while learning. This network was organized by the following
objective function:

V(D, G) = Ex ∼ pdata(x)[logD(x)]Ez ∼ pz(z)[log(1− D(G(z)))] (1)

Here, the real sample is denoted by x. D(G(z)) represents the probability that the
discriminator network D would identify. G(z) is a real sample. D(x) denotes the probability
that the discriminator networks would correctly recognize x as a real sample. A sample
produced by the generator network G from noise z is denoted by G(z).

In the generator and discriminator network, stride convolution substituted the pooling
operation in DCGAN. Additionally, global pooling was used in place of the fully connected
layer to increase model stability. Then, using the following (Equations (2) and (3)), the
discriminator loss L(D) and generator loss L(G) were determined.

L(G) =
1
N ∑N

i=1−log(D(G(zi))) (2)

L(D) =
1
N ∑N

i=1−log(D(xi))− log(1− D(G(zi))) (3)

Adam optimizer updated the producing network and discriminated network param-
eters during the training phase, based on the loss functions mentioned earlier. After the
first layer of convolution, the combination mode of convolution, batch normalization, and
Leaky Rectified Linear Unit (ReLU) function was regularly used. Batch normalization was
used on the generator and discriminator but not in the network’s last layer. The generator’s
initial layer was the full connection layer, and the final layer of convolution was activated
by the hyperbolic tangent activation function (Tanh).

3.3. W-Net Based Segmentation

After the pre-processing, W-net-based segmentation was implemented to obtain the
segmentation maps of the cell nucleus. This network preserves the localization and content
information using the decoding and encoding paths. Moreover, edge information is pre-
served to sharpen the image and maintain consistency in segmentation. As an advancement
of the U-Net, this network was planned. Thereafter, a single autoencoder was implemented
by joining two U-Net topologies together. In each u-net, a contracting (encoder) and an
expansive path- (decoder) based structure was implemented.

The first component of the W-net was the contracting path, which comprised a series
of blocks. The batch normalization layers and three three-layer convolutional layers inter-
spersed with ReLUs were the blocks’ essential components. To create a single convolutional
block, this fundamental component was taken into account twice. By using 2 × 2 layers of
max pooling, the blocks were joined. The critical target information could be preserved, and
the number of parameters could be decreased using max pooling. The convolutional layer’s
kernel count was 8 in the expanding path, rising from 8 to 128 in the contracting path.

The decoder portion was the second-wide path. Layers of convolution and up sam-
pling made up its structure. In the encoder part, the input was downscaled once, and in the
decoder part, it was upscaled four times. Thus, the final feature maps of the upsampling
process were the same size as the input images. To recover the lost data during the max
pooling and convolution processes, the feature maps from the encoder path were concate-
nated with the equivalent feature maps from the decoder component. This second portion
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is equivalent to the first, but in the first U-Net section, the outcome of the units located at
the same level and the outcome of the top pooling layers are combined.

Following the upsampling of the decoder’s last unit and the final combination of
the encoder’s initial unit, there was an additional block identical to all the others. In
that block, the last layer, a softmax activation function, and a 1×1 convolutional layer was
employed to match the desired number of classes and feature maps. This method combined
total-variation loss (CT-loss) and cross-entropy loss (CEL).

Loss = Lcr−etrp + Ltotal−var (4)

Lcr−etrp = L
(
sr′n, pcn

)
= −∑K

i pcilog(sr′i
)

(5)

Ltotal−var = L({sr})′n = ∑W−1
ξ ∑H−1

η

∥∥∥sr′ξ+1,η − sr′ξ,η

∥∥∥∥∥∥sr′ξ+1,η − sr′ξ,η

∥∥∥1 (6)

Here, W and H represent the width and height of an input image, respectively. The
pixel value at that location in the standardized segmentation map {pcn} denotes the pseudo
segmentation mask formed by the index that maximizes the value of the measured seg-
mentation map; {sr′n} indicates the sample n’s normalized segmentation map. This CT
loss helps reduce time and utilize memory. Due to the characteristics of the total-variation
loss, the segmentation mask can also be compressed significantly, negating the need for
post-processing.

3.4. GhostNet-Based Feature Extraction

After the nucleus segmentation, a GhostNet-based deep learning technique was im-
plemented to extract the features from the image. GhostNet suggested a creative Ghost
module that produced more feature maps via affordable operations. This fundamental
neural network unit could create many image features with fewer inputs and computa-
tions. There are two aspects to this module’s implementation. To create feature maps with
more channels, GhostNet first performed the standard convolutional calculation. Next, it
performed a simple operation to create more feature maps. Finally, it concatenated several
feature maps to create a new output.

Ghost bottleneck was the fundamental part of GhostNet, which included two ghost
modules. The process of creating M feature maps in the ghost modules can be represented as

Y = X ∗ f + b (7)

Here, the width and height of the input are denoted by w and h, respectively; the
number of channels is indicated by c; the bias term is denoted by b; and the convolution
operation is represented by *; f ∈ Rc×k×k×m, X ∈ Rh×c×w is the convolution kernel of this
layer. The size of the convolution kernel f is k*k.

Initially, the W × H × C size-based input feature map is downscaled with regular
convolution. A cheap linear process is then used on the W’ × H’ × C feature map with
a k × k tiny kernel convolution operation, which immediately produces a significant
amount of additional ghost features. At last, the outcomes of these two processes are
combined to produce an outcome feature map of size W’ × H’ × c that is comparable to the
original. The linear transformation and regular convolution used in Ghost Module allow
for a more excellent preservation of the original features.

The stride rate of each stage’s final bottleneck is set to 2. The stride rate of other ghost
bottlenecks is set to 1. Lastly, the feature map is transformed into the final
1280-dimensional feature vector using the global average pooling and convolutional layer.
The Ghost module’s processing cost is considerably less than that from traditional convolu-
tion directly.
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3.5. ResNeXt-Based Classification

An improved version of ResNet was called ResNeXt. In this network, a parallel
stacking block with the same topology was used in place of a three-layer convolutional
block. One convolutional layer, four ResNeXt block structures, two pooling layers, one
fully-connected layer, and one Softmax classifier were all included in the ResNeXt network.
Deep residual networks had cardinality and were made up ResNeXt blocks. They modified
the leftover block using the split-transform-merge technique, which led to branching routes
inside a cell. With the skip connection path, the ResNeXt block’s output was provided.
The residual networks’ depth grew in an orthogonal manner, and the ResNeXt block’s
cardinality was determined by the quantity of branching routes it contained. The ResNeXt
block can be described mathematically as follows:

OP = a +
ca

∑
i=1

τi(a) (8)

Here, the arbitrary conversion is denoted by τi, cardinality is denoted by ca, OP
represents the output, and the input from the preceding layer is denoted by a.

Each ResNeXt block consists of a shortcut connection and three convolutional layers.
The three different types of convolutional layers are group convolution, convolution in
sequence, and convolution. With the exception of the last convolutional layer, which was
followed by a BN (batch normalization) layer, the ReLU activation function was employed
to boost the network’s nonlinearity after each convolutional layer. The final convolution
layer’s output was mixed with the input characteristics provided by the shortcut, and it
was then activated using the ReLU activation algorithm. The group convolution stride of
the ResNeXtBlock1 module was 2. When compared to the size of the input feature map, it
could cut the size of the feature map in half.

Max pooling was used in the pooling layer to expedite training and achieve spatial
invariance while preserving accuracy. The fundamental concept behind max-pooling was
selecting the most discriminative feature and using it to represent a bunch of features. The
neighborhood’s highest value was determined during the pooling process by

vx,y
i,L =

max
m ∈ [0, mi − 1], n ∈

[
0, ni − 1](x+m),(y+n)

(i−1),L
(9)

Here, mi,ni is the kernel size, and L indexes the feature map in the (i− 1)th convolu-
tion layer.

The residual learning module’s feature map was transformed into a 128-dimensional
feature vector and was sent to the fully connected layer using global average pooling. The
softmax classifier was then used to perform the final classification.

Parameter Optimization Using the WHO Technique

The hyperparameters of the proposed framework have been optimized in this study
using the WHO Algorithm. The fundamental justification for choosing this method is that,
as compared to other kinds of metaheuristic algorithms, it is too new. Additionally, its
outcomes for the benchmark functions based on the study also yield improved outcomes.
This prompts us to employ this metaheuristic method to raise the proposed technique’s
effectiveness. The Wildebeests’ habit of food-seeking serves as the model for the WHO
algorithm. Wildebeests are active, sociable mammals that search for food sources. Males
compete in sex challenges with rivals to attract females for mating.

Populations (wildebeests) were randomly initialized as candidates at the beginning of
the WHO algorithm. In between lower (Xmin) and upper (Xmax) borders, the population
was constrained, i.e.,

Xi ∈ [Xmin, Xmax] (10)

Here, I = 1, 2 . . . N.
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The wildebeest subsequently employed the milling method of locomotion. Continuing
to look for the optimal position while considering a fixed number (n) as the little random
mobility dependent on the location was how this phase was represented. The competitors
in position X had employed a random phase Zn that ought to routinely search for the little
random phase spots. The length was adjustable and was determined by the size of the
contestants’ random steps. Thus, the localized experimental phase Zn was produced using
the following formula:

Zn = Xi + ε× θ × v (11)

Here, a random unit vector is represented by v; a random uniform value between 1
and 0 is denoted by θ′; the ith candidate number is denoted by Xi; and the learning rate is
denoted by ε.

After evaluating a fixed number (n) of minor random possibilities, the wildebeest
adjusted its location to obtain an ideal random position. It is described in the following
Equation (12).

Xi = α1 × Z∗n + β1 × (Xi − Z∗n) (12)

Here, the local movement of the candidates is instructed by the α1 and β1 leader variables.
Modeling the wildebeests’ swarm behavior was the final step. This was mimicked

after placing other contestants in a spot with an appropriate food source, such as

Xi = α2 × Xi + β2 × Xh (13)

Here, α2 and β2 stand in for the leader variables to direct the crew’s local movement,
and Xh denotes a random candidate.

Xi = Xi + θ × (Xmax − Xmin)× v (14)

Here, the random unit vector is denoted by v.
Simulating busy areas was another phrase used in the algorithm. When the grassland

had vast productivity, there was a population. This concept is called individual pressure.
This term is used to complete a task, and the best contender uses the following Formula (15)
to destroy other contenders.

i f (‖X∗ − Xi‖) < η, (‖X∗ − Xi‖) > 1 (15)

Then Xi = X∗ + ε× n̂ (16)

where η denotes a threshold to prevent congestion in the location, and n̂ indicates the
number of accessible sections near the ideal solution point.

The swarm’s social memory, which was simulated in the last stage to provide better
placements, was determined by the following equation:

X = X∗ + 0.1× v̂ (17)

Finally, the best optimal value of this algorithm was initialized to the hyperparam-
eters of the classifier. The optimized values are a learning rate of 0.001, a weight decay
rate of 1 × 10−6, a momentum of 0.8, a batch size of 8, and a dropout rate of 40% with
L2 regularization.

3.6. Computational Complexity

In Ghostnet, the overall time required to generate a network is O (w). Here, W is the
number of weights. In w-net, the computational complexity is O (n), where n is the number
of layers. In ResNeXt, the computational complexity is O

(
∑k

j=1 xj−1.p2
j .xjy2

j

)
. Here, the

output feature map’s spatial size is denoted by yj; the filter’s spatial size is denoted by pj;
and the number of kernels and convolutional layers are denoted by x and k, respectively.
The complexity of the WHO algorithm is O (p ×m). Here, m and n denote the population
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and problem dimension, respectively. Finally, the overall computational complexity of
the network is O

((
∑k

j=1 xj−1.p2
j .xjy2

j

)
n× w×m). The total time taken for the proposed

approach is 1.95 s.

4. Result and Discussion

The results from the proposed model are presented in this section. The experimental
investigation for this paper was conducted on a personal computer with an Intel Core (i7)
8700U processor (Intel, Santa Clara, CA, USA) operating at 3.20 GHz, NVIDIA GeForce-
GTX 1050 Ti graphics (NVIDIA, Santa Clara, CA, USA) totaling 4 GB, and 16 GB of main
memory. Python 3.7 and its associated libraries were used to create the software. To increase
the learning capacity of the network and avoid overfitting and network degradation, 30%
of the data was reserved for testing and 70% for training. The hyperparameters optimized
by the WHO algorithm are a learning rate of 0.001, a weight decay rate of 1 × 10−6, a
momentum of 0.8, a batch size of 8, and a dropout rate of 40% with L2 regularization.
The model’s training was set to 100 epochs to ensure learning stability. The training and
learning curves converged after 50 epochs, suggesting that the model has stabilized.

4.1. Dataset Description

In our experiments, three different datasets were employed for performance evaluation.
They were BCCD, LISC, and the single-cell morphological dataset (immature WBCs). The
brief description of these datasets is explained as follows, and the properties are given
in Table 2.

Table 2. Properties of three datasets.

Dataset Pixel Size Number of WBC Total Number
of Images Staining Microscopic and

Zoom Camera

BCCD 320 × 240

Neutrophil 3123

12,444 Gismo-right
Regular light
microscope

Zoom: 100×
CCD color camera

Monocyte 3098

Lymphocyte 3103

Eosinophil 3120

LISC 720 × 576

Neutrophil 50

242 Gismo-right Axioskope40
Zoom: 100× Sony-SSCDC50AP

Monocyte 48

Lymphocyte 52

Eosinophil 39

Basophils 53

Single Cell
morphological

dataset
400 × 400

Myelocyte 42

3517 Papanicolaou stain M8 digital micro-
scope/scanner

-

Metamyelocytes 15

Bilobed
Promyelocytes 18

Myeloblast 3268

Promyelocyte 70

Monoblast 26

Erythroblast 78

BCCD dataset:
The Blood Cell Count Detection (BCCD) dataset [27] is publicly available on Kaggle,

an online community platform for data scientists and machine learning enthusiasts. It
contains cell type designations in a CSV file and 12,453 JPEG images of leukocytes. Neu-
trophil, monocyte, lymphocyte, and eosinophil are the four cell types included in this
collection. In contrast to the 207, 21, 33, and 88 original pictures, there are 3123, 3107, 3103,
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and 3120 augmented pictures, respectively. The dataset excludes basophils because they
typically comprise less than 1% of all leukocytes.

LISC dataset:
Tehran University’s Hematology-Oncology Research Centre (Iran) and BMT Research

Center of Imam Khomeini hospital in Tehran, Iran provided the LISC dataset [28]. It
contained 250 photos of ground truth as well as hematological images obtained from 400
participants on 100 microscopic images. The acquired photos are 720,576 pixels in size and
the .bmp file type. Medical experts categorize the dataset into five subcategories using
multiple photos, including fifty-three basophils, thirty-nine eosinophils, fifty neutrophils,
forty-eight monocytes, and fifty-two lymphocytes.

Single-cell morphological dataset:
The single-cell morphological dataset (AML Cytomorphology LMU) [29] used in this

study included WBCs from patients with AML and from healthy people. The dataset
was created by the Munich University Hospital, using 18,365 single-cell images identified
by experts and gathered from peripheral blood samples of 100 AML patients and 100
healthy individuals between 2014 and 2017. There were 15 different single-cell image
categories created from the collection. In that, seven classes were leukemic WBC myelocytes,
metamyelocytes, bilobed promyelocytes, myeloblasts, promyelocytes, monoblasts, and
erythroblasts, whereas the rest were normal WBCs. Based on a recognized morphological
classification, professional analyzers assessed the cancer and non-cancerous WBCs.

4.2. Segmentation Results

We employed three standard metrics—Dice Similarity Coefficients (DSC), Mean Inter-
section Over Union (mIoU), and Misclassification Error (ME)—to assess the effectiveness
of the proposed segmentation technique statistically. These metrics are described in the
following equations:

DSC =
2
∣∣∣GR f ∩ PR f

∣∣∣∣∣∣GR f

∣∣∣+ ∣∣∣PR f

∣∣∣ (18)

mIoU =
1
2

 |GRb ∩ PRb|
|GRb ∪ PRb|

+

∣∣∣GR f ∩ PR f

∣∣∣∣∣∣GR f ∪ PR f

∣∣∣
 (19)

ME = 1−
|GRb ∩ PRb|+

∣∣∣GR f ∩ PR f

∣∣∣∣∣∣GR f

∣∣∣+ |GRb|
(20)

Here, GRb and GR f represent the non-WBC and WBC areas in the ground truth,
respectively. In contrast, PRb and PRf represent the non-WBC and WBC areas in the
expected segmentation findings. However, the lowest values of ME and the greatest values
of Dice and mIoU imply superior segmentation results.

4.2.1. Multi-Class Segmentation on BCCD Dataset

The segmentation outcomes for the suggested technique are shown in Figure 2. To
locate the WBCs, the nucleus must also be segmented. However, the nucleus characteristics,
colors, and shapes differ among different databases. Therefore, the segmentation of the
WBC pictures was carried out using an effective W-net-based deep learning approach.
The segmented images produced by the suggested method from the BCCD dataset were
flawless. Even when the pattern borders were uneven, the segmentation correctly retrieved
the nucleus areas.
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Figure 3 displays the quantitative outcomes of the suggested approach using the
BCCD dataset. From Figure 3, it is observed that the proposed approach outperformed
every performance measure for all classes. Therefore, it is concluded that our segmentation
algorithm successfully segments the photos/images on the BCCD dataset. Particularly,
eosinophils and monocytes achieved better results than the other classes, with 99.56% and
99.12% DSC, respectively. On the other hand, neutrophils and lymphocytes achieved the
highest ME compared to the other classes. As the eosinophils and segmented neutrophils
had comparable attribute values, except for the nuclei’ ruggedness, a small misclassification
occurred. However, the overall segmentation result of the proposed approach for all classes
was satisfactory.
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4.2.2. Multi-Class Segmentation on LISC Dataset

Segmentation of the five main WBC types—neutrophil, monocyte, lymphocyte,
eosinophil, and basophil—is illustrated in Figure 4. It helped to understand how the
proposed method could give more accurate results without introducing extra artifacts and
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how these photos were closer to the ground truth pictures. The approach proposed in this
study has the benefit of utilizing two U-net structures, which optimizes the boundary of
the segmented cells by fusing low-level and high-level data to improve WBC localization
and yield improved results.
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Figure 5 displays the segmentation outcome (quantitative) for the five categories of
WBC for the LISC dataset. Here, we can observe that the average DSC for segmentation is
>99% for all cell types, with the exception of lymphocytes and monocytes. The monocytes
and lymphocytes in the LISC achieve DSCs of 98.90% and 98.88%, respectively. In addition,
the precision and DSC of the recommended segmentation method have minimum standard
deviations, demonstrating that it consistently performs well for different cells in the dataset.
The suggested method also offers low false- and leak-detection ratios and performs well
with boundaries that have been traced.
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4.2.3. Multi-Class Segmentation on Single Cell Morphological Dataset

Figure 6 shows the visualization result of immature WBC segmentation on a single-cell
morphological dataset.
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Figure 7 shows the quantitative outcomes. Among the atypical WBCs, myeloblasts,
the most important cell type for the diagnosis of AML, were particularly well-classified by
the model. The model’s classification performance for myeloblasts was 99.45% DSC and
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99.36% mIoU. In addition, the method was successful in classifying additional blast cells,
such as erythroblasts and monoblasts.
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Segmenting myeloblasts is easier than segmenting promyelocytes (bilobed) because
the dataset of promyeloblasts comprises only a tiny number of instances for promyelocytes
(bilobed). The samples of this class are enlarged due to the suggested data augmentation
technique, known as DCGAN, and improved results are obtained, such as 97.92% DSC,
97.87% mIoU, and 0.76% ME.

In the initial stage of the metamyelocyte stage, these WBC types are misclassified as
myelocytes (Figure 7). Similarly, in the initial phase of promyelocytes, they were misclas-
sified as myeloblasts. It could be because metamyelocytes and promyelocytes (bilobed),
unlike erythroblasts and monoblasts, are in the intermediate phases of the myelocyte, a
very complex process that is prone to categorization error.

4.3. Classification Results

Accuracy, precision, recall, and F1-score are the evaluation measures used in this study
for the categorization of WBC subtypes. The following formulae are used to determine
these metrics:

Accuracy =
TrP + TrN

TrP + TrN + FsP + FsN
(21)

Precision =
TrP

TrP + FsP
(22)

Recall =
TrP

TrP + FsN
(23)

F1− Score =
2× precision× recall

precision + recall
(24)

Here, False Negative (FsN) indicates the number of blood cell types that were improp-
erly identified. FsP counts the number of cells that were mistakenly classified as the wrong
type of blood cell, while True Positive (TrP) indicates the number of blood cell types that
were correctly separated. The number of cells correctly detected as not being the target
blood cell type is known as True Negative (TrN).

4.3.1. Multi-Class Classification of BCCD Dataset

The classification accuracy, precision, recall rate, and F1 score for various cell types
in the BCCD dataset are shown in Table 3. The categorization performance measures in
the table show the selected classifier’s capacity to distinguish between various categories
on the BCCD dataset. The proportion of successfully identified images is indicated by
the sensitivity, often known as the “recall”. The proposed method, except for eosinophils,
delivers above 99% recall on the BCCD dataset. Eosinophils have a 98.95% recall rate.
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However, these subtypes achieved better outcomes in terms of precision (99.16%) and
accuracy (99.04%).

Table 3. Quantitative results of multi-class classification on BCCD dataset.

WBC Subtypes Accuracy Precision Recall F1-Score

Monocytes 99.12 99.23 99.07 99.15
Eosinophils 99.04 99.16 98.95 99.02
Neutrophils 99.57 99.64 99.51 99.57

Lymphocytes 99.85 99.89 99.81 99.87

The F1 score is the balanced mean of the classifier’s recall and precision, in which the
precision considers erroneous positives. Precision and recall metrics typically have to be
traded off. The highest F-measure indicates that recall and precision have similarly high
values. Table 3 shows that the lymphocytes class achieves the most excellent F1-score value
(99.87%) and superior precision (99.89%) and recall (99.81%) values.

4.3.2. Multi-Class Classification on LISC Dataset

Table 4 displays the suggested model’s performance on the LISC dataset. The perfor-
mance of the proposed classifier gave slightly less accurate results in the lymphocyte and
monocyte subtypes, as shown in Table 3, because these classes discriminate poorly and
have comparable cell nuclei. In comparison to these categories, the suggested technique
successfully identified neutrophils, eosinophils, and basophils with significant F1 scores of
99.34%, 99.47%, and 99.21%, respectively.

Table 4. Multi-class classification on the LISC dataset.

WBC Subtypes Accuracy Precision Recall F1-Score

Monocytes 98.92 99.11 99 99
Eosinophils 99.47 99.58 99.42 99.50
Neutrophils 99.34 99.41 99.37 99.39

Lymphocytes 98.87 98.98 98.91 98.94
Basophils 99.21 99.34 99.27 99.30

Additionally, the model had 98.87% accuracy, 98.98% precision, 98.91% recall, and a
98.94% F1-score when it came to differentiating atypical lymphocytes from other WBCs.
Given the limited number of atypical cells in the dataset, our results and accuracy data are
very good. A cell can be reinfected with bacteria, viruses, or parasites. Typical lymphocytes
have more stable nuclei than monocytes, despite having similar cytoplasm size and volume.
Therefore, the exact categorization of atypical cells is a challenging issue.

4.3.3. Multi-Class Classification on Single Cell Morphology Dataset

Table 5 summarizes the findings of the multi-class categorization of immature WBCs.
The proposed model was tested on all classes and had precision and recall values above
98%, except for the promyelocyte (bilobed) class. With average precision used as the scoring
criterion during model construction, the improved model achieved precision above 97%
for all classes (see Table 5). For the myeloblast class, which is the most prevalent immature
leukocyte in patients with AML, the model achieved 99.56% precision and 99.32% recall.

The sensitivity and precision of the suggested model summarized by the F-score
are shown in Table 5. Myeloblasts and erythroblasts received the best scores, while
promonocytes and metamyelocytes achieved the worst score. This was due to the dif-
ference in properties between myeloblasts and erythroblasts, which originate from two
distinct myelopoiesis branches. Additionally, the availability of myeloblast images helped
develop more specific features and produce more exact outcomes. In contrast, promono-
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cytes and metamyelocytes were prone to misclassification since they are in successive
stages of myelopoiesis.

Table 5. Multi-class classification on single-cell morphology dataset.

WBC Subtypes Accuracy Precision Recall F1-Score

Erythroblast 99.62 99.73 98.67 99.2
Metamyelocyte 98.15 98.23 98.2 98.21

Monoblast 98.45 98.49 98.47 98.48
Myeloblast 99.51 99.56 99.32 99.44
Myelocyte 98.35 98.38 98.47 98.42

bilobled 97.99 97.98 98 98
Promyelocyte 98.21 98.26 98.33 98.29

4.3.4. Comparison of the Proposed Methodology with Existing Techniques

Table 6 compares and evaluates the classification results for the proposed methodology
with other advanced methods. The ResNeXt with a WHO algorithm was utilized for
classification purposes. The optimization strategy utilized in the suggested approach will
increase classification accuracy while also enhancing algorithm performance.

Table 6. Comparison of the proposed approach with existing techniques on three datasets.

Dataset Techniques Accuracy Precision Recall F1-Score

BCCD

Resnet-densenet-SCAM [30] 88.44 90.84 88.45 88.73
WBC-AMNet [31] 89.22 90.72 89.22 89.47
Cubic SVM [32] 98.44 - - -
DRFA-Net [33] 95.87 96.13 92.94 94.51

Proposed 99.24 99.48 99.33 99.4

LISC

K-nearest neighbor [34] 97.8 - - -
Alexnet [35] 97.21 72.75 89.6 -

CNN [36] - 93.42 96.27 94.73
SVM [37] 92.21 92.65 92.44 92.44
Proposed 99.16 99.28 99.19 99.22

Single-cell morphology
dataset

deep convolutional
autoencoder (DCAE) [22] 93.12 67.35 81.65 -

XGBoost [38] 97.57 98.48 97.16 97.82
Random forest [24] 93.4 86.68 92.26 -

Deep convolutional Neural
network (DCNN) [39] 98.27 96.95 98.04 -

Proposed 98.61 98.66 98.49 98.57

From Table 6, it is observed that the performance of Resnet-densenet-SCAM on the
BCCD dataset was very low (88.44% accuracy) compared to other techniques. They did
not use any segmentation technique. For feature extraction, the entire input image was
used. As a result, undesirable traits were also extracted from the image. Moreover, the
loss function used in this paper ignores the variations among the samples, which leads to
poor performance.

In the LISC dataset, the performance SVM was slightly decreased compared to that of
other techniques. This was because the images in the LISC dataset contains a vast range of
hue and intensity fluctuations. To tackle this problem, the pre-processing techniques were
not implemented in [37] because it leads to misclassification.

In the single-cell morphology dataset, four existing techniques were used for the
comparison with the proposed approach. In that, the performance of the deep convolutional
autoencoder (DCAE) and random forest was lower than the other techniques. Random
forest technique contains many significant hyper parameters. The manual tuning of these
hyper-parameters reduces the performance of the system. Moreover, the entire raw input
image is processed in DCAE [22] for classification. They do not perform any segmentation
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process. As a result, undesirable traits are also extracted from the image, which slows down
the performance of the classifier.

Compared to all the other techniques, the proposed method produced the best results
for the datasets for BCCD, LISC, and single-cell morphology with 99.24%, 99.16%, and
98.57% accuracy, respectively.

The following are reasons for the greater accuracy of the proposed method:

(a) A better feature extraction technique based on GhostNet obtained low and high-level
characteristics of the image.

(b) Use of a ResNext-based good classification technique that incorporated the WHO
algorithm for parameterization that worked effectively with these characteristics.

(c) A superior segmentation depending on W-net assists in identifying WBCs and
yields accurate information relevant to the structure of the nucleus for each cate-
gory of WBCs.

Finally, from all the above observations, it is concluded that the workflow of algorithms
in this study showed the best performance compared to that of other existing techniques.

4.3.5. Ablation Study

To demonstrate the impact of our suggested framework, ablation experiments are pre-
sented in this subsection. The proposed framework contains five modules: pre-processing,
data augmentation based on DCGAN, segmentation based on W-net, feature extraction
based on GhostNet, and classification based on ResNext with WHO-based hyperparame-
ter optimization. The above-mentioned testing results demonstrated that the suggested
approach can deliver a powerful performance. In order to examine the impact of each
component in the suggested framework, we further implemented the ablation experiment
in this section.

In order to achieve this, networks with different module combinations were con-
structed. Table 7 presents the quantitative results. It only achieves 98.93% accuracy, 99.12%
precision, 99% recall, and 99.06% F1-score in the BCCD dataset without the W-net phase.
The impact of data augmentation (DCGAN) on the outcomes is another factor. It achieves
just 99% accuracy without the DCGAN.

Table 7. Impact of the various modules on proposed approach.

DCGAN
Data Augmentation

W-Net
Segmentation

WHO Hyperparameter
Optimization Accuracy Precision Recall F1-Score

BCCD dataset

4 4 99 99.15 99.06 99.11

4 4 98.93 99.12 99 99.06

4 4 99.06 99.20 99.12 99.16

4 4 4 99.24 99.48 99.33 99.4

LISC dataset

4 4 98.96 99.10 99 99.05

4 4 98.87 98.98 98.91 98.94

4 4 99.04 99.17 99.09 99.13

4 4 4 99.16 99.28 99.19 99.22

Single-cell morphology dataset

4 4 98.52 98.58 98.43 98.50

4 4 98.43 98.50 98.34 98.42

4 4 98.57 98.62 98.45 98.53

4 4 4 98.61 98.66 98.49 98.57
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5. Conclusions

The classification of WBCs is one of the most critical problems in the medical field.
An increasing number of infection cases and the challenges associated with the early de-
tection of these infections make it crucial to properly classify WBCs. Within the context
of this paper, an effective GhostNet- and an optimized ResNeXt-based feature extraction
and classification were conducted with the aid of W-net-based segmentation to classify
matured and immature WBCs. With accuracy rates of 99.24%, 99.16%, and 98.61% for
the BCCD, LISC, and single-cell morphology datasets, respectively, the proposed model
surpassed previous approaches. Furthermore, the segmentation effectiveness of the sug-
gested strategy is equally satisfactory and produced one of the finest outcomes. It shows
that the suggested method is effective for identifying mature and immature WBCs in both
clinical and diagnostic labs. In the future, we want to employ the suggested architecture
to accurately differentiate leukemia cells from other forms, such as acute lymphoblastic
leukemia (ALL).
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