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Abstract: In a point cloud semantic segmentation task, misclassification usually appears on the
semantic boundary. A few studies have taken the boundary into consideration, but they relied on
complex modules for explicit boundary prediction, which greatly increased model complexity. It is
challenging to improve the segmentation accuracy of points on the boundary without dependence
on additional modules. For every boundary point, this paper divides its neighboring points into
different collections, and then measures its entanglement with each collection. A comparison of the
measurement results before and after utilizing boundary information in the semantic segmentation
network showed that the boundary could enhance the disentanglement between the boundary
point and its neighboring points in inner areas, thereby greatly improving the overall accuracy.
Therefore, to improve the semantic segmentation accuracy of boundary points, a Boundary–Inner
Disentanglement Enhanced Learning (BIDEL) framework with no need for additional modules and
learning parameters is proposed, which can maximize feature distinction between the boundary
point and its neighboring points in inner areas through a newly defined boundary loss function.
Experiments with two classic baselines across three challenging datasets demonstrate the benefits of
BIDEL for the semantic boundary. As a general framework, BIDEL can be easily adopted in many
existing semantic segmentation networks.

Keywords: point cloud; semantic segmentation; semantic boundary; boundary–inner disentanglement;
local aggregation operation

1. Introduction

Semantic information is the key to understanding the virtual scene constructed by a
point cloud [1] in applications such as indoor navigation [2], autonomous driving [3], and
cultural heritage [4]. Advances in the current semantic segmentation networks are due to
various delicate designs of local aggregation operators (LAOs), which generally take the
features and coordinates of the center point and its neighboring points as input, outputting
the transformed feature for the center point [5]. Nevertheless, most LAOs aggregate
the features of all neighboring points equally, thus smoothing the extracted features on
the semantic boundary, which results in a bad contour for final semantic segmentation.
Here, the semantic boundary refers to the transitional area between objects with different
categories. For example, the joint where the window meets the wall can be defined as the
boundary (the points not on the boundary make up the inner areas), as shown in the red
regions in Figure 1.

There are a few boundary-related methods for point cloud semantic segmentation [6–12].
IAF-Net [6] adaptively selects indistinguishable points such as boundary points and im-
proves the segmentation performance of these points through multistage loss. JSENet [7]
adds a semantic edge detection stream, which outputs the semantic edge map and jointly
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learns the semantic segmentation and semantic edge. BoundaryAwareGEM [8] constitutes
a boundary prediction module to predict the boundary, utilizing the predicted boundary
to generate LAO aggregate features with discrimination. PushBoundary [9] consists of
two streams for prediction of the boundary and the direction of the interior, thus guiding
boundaries to their original locations. Most of these methods rely on additional boundary
prediction modules, thus increasing model complexity. Unlike existing works, this paper is
motivated by the goal of improving the segmentation accuracy of boundary points without
requiring additional modules and learning parameters.
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It is well known that endowing a point cloud with boundary information can help
improve the overall segmentation accuracy [12]. The boundary information can change the
segmentation result by affecting features learned by the network. To explore the role of
the boundary, this paper analyzes the change in feature similarity between the boundary
point and its neighboring points utilizing the boundary information. Specifically, for every
boundary point, its neighboring points are partitioned into four collections in terms of
two factors: whether they are on the boundary, and whether their categories are the same as
the center point. Then, the entanglement between the boundary point and each collection
of neighboring points is measured, representing their proximity in the representation space.
Results show that the boundary can weaken the boundary–inner entanglement, where
“boundary–inner” represents the boundary point and its neighboring points in inner areas.
It is shown that reducing the boundary–inner entanglement is beneficial for improving the
segmentation accuracy.

Therefore, to improve the segmentation accuracy of boundary points, a lightweight
Boundary–Inner Disentanglement Enhanced Learning (BIDEL) framework is proposed,
which can maximize the boundary–inner feature distinction through a newly defined
boundary loss function LBIDEL. Boundary information is only utilized in the loss function
at the training stage; thus, BIDEL does not need additional modules for explicit boundary
prediction. Experiments with two classic baselines across three datasets demonstrate
that BIDEL can assist the baseline in obtaining a better accuracy of boundary points and
small objects.

In summary, the following key contributions are highlighted:

(1) This paper shows that reducing boundary–inner entanglement is beneficial for overall
semantic segmentation accuracy.

(2) This paper proposes BIDEL, a lightweight framework for improving the segmentation
accuracy of boundary points, which can maximize boundary–inner disentanglement
through a newly formulated boundary loss function. Notably, BIDEL does not need
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additional complex modules and learning parameters, and it can be integrated into
many existing segmentation networks.

(3) Experiments on challenging indoor and outdoor benchmarks show that BIDEL can bring
significant improvements in boundary and overall performance across different baselines.

The remainder of this paper is organized as follows: semantic segmentation methods
based on deep learning, especially those related to boundaries, are reviewed in Section 2;
the proposed BIDEL is described in Section 3; the experimental results are presented and
discussed in Section 4; lastly, the conclusions are summarized in Section 5.

2. Related Work
2.1. Semantic Segmentation

Semantic segmentation of a point cloud is aimed at assigning each 3D point to an
interpretable category. Recently, methods based on deep learning have gradually replaced
traditional methods that rely on handcrafted features. They can automatically learn high-
dimensional features, realizing end-to-end semantic classification. These methods can be
classified into three types based on input data formats: voxel-based [14–18], multi-view-
based [19–26], and point-based [27–34].

To process 3D data, one typical approach is to store the point cloud in voxel grids
and apply 3D convolution directly [14]. However, limited by acquisition techniques, the
points in the point cloud are usually not distributed homogeneously, making most voxel
grids unoccupied. Therefore, an unmodified dense 3D convolution on sparse grids is
inefficient. To solve this problem, SS-CNs [15] was proposed as a sparse convolution
operator to deal with sparse point clouds more efficiently. On the other hand, OctNet [16]
partitions 3D space hierarchically using a set of unbalanced octrees, allowing more memory
and computation resources to be allocated to relatively dense regions. This achieves
a deeper network without prohibitive high resolution. However, transforming a point
cloud into voxels is both memory-unfriendly and computation-inefficient, and this process
can inevitably discard a lot of geometric information. Another approach is to project
the point cloud into multiple views on which the de facto standard 2D convolution can
be adopted directly [19–26]. However, this kind of method is highly independent on
projection position and angle, thus becomes a suboptimal choice for large-scale point cloud
semantic segmentation.

PointNet [33] pioneered the original research on point clouds without any data trans-
formations. It independently learns point features with pointwise multilayer perceptions
(MLPs). Despite being permutation-invariant, it fails to capture local context and performs
poorly on complex scenes. PointNet++ [34] was a further optimization of PointNet. It
adopts hierarchical multiscale feature aggregation structures to extract local features, which
can significantly improve the overall accuracy. It also provides a de facto standard paradigm
for subsequent segmentation networks, which mostly comprise subsampling, LAO, and
up-sampling modules. RSNet [35] splits the point cloud into many ordered slices along the
x-, y-, and z-axes, on the basis of which global features are pooled. Then, the learned orderly
feature vectors are processed with a recurrent neural network. However, such MLP-based
methods do not fully consider the relationship between points and their local neighbors,
limiting their ability to capture local contexts [36]. It is well known that local contextual
information is crucial for dense tasks, such as semantic segmentation. Recently, much effort
has been made for effective LAOs, enabling researchers to explore and make the most of
local relationships. Among them, pseudo-grid-based methods [31,37–39] and adaptive-
weight-based methods [28,30,40,41] are widely used. Akin to 2D convolution for image
pixels, pseudo-grid-based methods associate the weight matrix with predefined kernel
points. However, the pseudo-kernel points must be defined artificially, which limits model
generalizability and flexibility on different datasets. In contrast, adaptive-weight-based
methods learn the convolution weight from features and the relative position relationship
through MLPs.
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Although these delicately designed LAOs work well, experiments have shown that
they already describe the local context sufficiently with saturated performance [42]. There-
fore, this paper turns to another direction, focusing on semantic boundaries, which are
usually overlooked in current segmentation networks.

2.2. Semantic Boundary

In 2D image vision tasks, boundaries were initially a concern, especially in the medical
field [43,44]. However, few studies noted the impact of semantic boundaries on holistic
point cloud segmentation. Research has shown that boundary points are more likely to be
misclassified than those in inner areas [12]. Therefore, it is very important and challeng-
ing to improve performance on the semantic boundary. GAC [40] learns the convolution
weights from the feature differences between the center point and its neighboring points,
thus guiding the convolution kernel to distinguish the boundary location. The boundary
areas delineating skeletons provide basic structural information, while the extensive inner
areas depicting surfaces supply the geometric manifold context. Therefore, GDANet [45] di-
vides the holistic point cloud into high-frequency (contour) components and low-frequency
(flat) components, paying attention to different types of components when extracting geo-
metric features, so that the network can capture and refine their complementary geometries
to supplement local neighboring information. BEACon [10] designs a boundary embedded
attentional convolution network, where the boundary is expressed through geometric and
color changes to influence the convolution weights. These studies considered the boundary
implicitly in segmentation backbones.

IAF-Net [6] categorizes areas that are hard to be segmented into three types: boundary
areas, confusing interior areas, and isolated small areas. It can adaptively select points in
these areas and specifically refine their learned features. It is well known that semantic
boundaries cannot been adopted a priori at the testing stage. Therefore, to utilize boundary
information explicitly, one common workaround is to add an extra boundary prediction
module (BPM) to predict the semantic boundary, and then use these predictions as auxil-
iary information in the segmentation backbone. To prevent the local features of different
categories from being polluted by one another, an independent BPM module was proposed
in [8] to predict point cloud boundaries. The predicted boundary information is utilized as
an auxiliary mask to assign different weights to different points during feature aggregation,
thus preventing the propagation of features across boundaries. JSENet [7] jointly learns
the semantic segmentation and semantic edge detection tasks. However, these methods
are not suitable for unstructured environments, which usually feature unclear semantic
edges. To this end, the authors of [11] designed cascaded edge attention blocks to extract
high-resolution edge features, and then fused the extracted edge features with semantic
features extracted by the main segmentation branch. These methods utilize boundary
information explicitly to improve performance on the boundary, but the newly embed-
ded boundary prediction modules greatly increase complexity. On the other hand, the
numbers of boundary points and inner points vary hugely, which is a challenge for binary
boundary/inner classification. To improve performance on the boundary with no need
for complex modules, CBL [12] optimizes the representations learned by LAOs through
contrastive learning on the boundary point, enhancing its similarity with neighboring
points belonging to the same category in the representation space. However, it ignores the
relationship between the boundary point and its neighboring points in inner areas.

Unlike the abovementioned studies, this paper explores the relationship between
the boundary point and its neighboring points in inner areas, proposing a lightweight
framework for improving the segmentation accuracy of boundary points with no need for
additional modules.

3. Methods

Firstly, to explore the role of the boundary, the change in entanglement between
the boundary point and its neighboring points after utilizing boundary information is
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analyzed (Section 3.1). It is found that the boundary can greatly reduce boundary–inner
entanglement and help improve the overall semantic segmentation accuracy. Then, BIDEL
is proposed for improving the segmentation accuracy of boundary points (Section 3.2),
which can enhance boundary–inner disentanglement through a boundary loss function
LBIDEL. Lastly, the implementation details such as semantic segmentation baselines and
network parameter settings are presented in Section 3.3.

3.1. Boundary–Inner Entanglement Measurement

Consider a point cloud with n points, denoted by X = {χ1, · · · , χi, · · · , χn|χi =
(pi, fi), pi ∈ R3, fi ∈ Rd}, where pi = (xi, yi, zi) represents Euclidian 3D coordinates, fi
represents additional feature attributes such as color, surface normal, and intensity, and d
represents feature dimensions. With point χi as a centroid, its neighboring points Ni are
identified using the simple K-nearest neighbors (KNN) algorithm. A point χi is annotated
as a boundary point if there exists a point in a different category in the neighborhood;
otherwise, it is annotated as an inner point. Accordingly, a boundary point set Bl can be
generated from the ground truth:

Bl = {χi ∈ X|∃χk ∈ Ni, lk 6= li}, (1)

where li represents the ground truth of the center point χi.
Some basic variables involved in this paper are summarized as follows:

• X denotes the input point cloud;
• n denotes the number of points in X;
• χi denotes point i in X;
• li denotes the ground truth of χi;
• pi = (xi, yi, zi) denotes the Euclidian 3D coordinates of χi;
• fi denotes the feature of χi;
• Bl denotes the boundary point set in X.

For training the point cloud with the ground truth, its boundary information @bound-
ary is generated according to Equation (1). As shown in Figure 1, the generated boundaries
(red regions) are located at the joints between objects belonging to different categories, de-
lineating a clear semantic contour of the 3D objects. Specifically, @boundaryi is equal to 1 if
point χi belongs to Bl ; otherwise, it is equal to 0. Table 1 compares the segmentation results
of the control group and experimental group, where the control group takes the initial
point cloud as input, whereas the experimental group takes the point cloud endowed with
boundary information as input. The mean intersection over union (mIoU), overall accuracy
(OA), and mean class accuracy (mACC) are used as evaluation metrics to quantitatively
compare the results of the different methods, which are respectively computed as

mIoU =
1
S

S

∑
s=1

∑χi∈X [predi = s ∧ li = s]
∑χi∈X [predi = s ∨ li = s]

, (2)

OA =
∑χi∈X [predi = li]

n
, (3)

mACC =
1
S

S

∑
s=1

∑χi∈X [predi = s ∧ li = s]
∑χi∈X [li = s]

, (4)

where S represents the total number of classes, predi represents the predicted label of point
χi, [·] represents a Boolean function that outputs 1 if the condition within [·] is true and
0 otherwise.
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Table 1. The semantic segmentation results of S3DIS Area1 on RandLA-Net [28]. Bold font in the
table body denotes the best performance.

Input OA (%) mACC (%) mIoU (%)

Control group (x, y, z, r, g, b) 88.7 85.9 74.4
Experiment group (x, y, z, r, g, b, @boundary) 93.0 90.5 81.6

As can be seen, the experimental group achieved the better mIoU of 81.6%. To explore
the role of the boundary, the change in entanglement between boundary point and its
neighboring points is analyzed. The detailed steps are as follows:

Partition the neighboring points into four collections. For a center point χi ∈ Bl , its
neighboring points are partitioned into four collections from the perspective of two factors:
whether they are on the boundary, and whether their categories are the same as χi. The
four collections are as follows:

(1) C1
i = {χk ∈ Ni | lk = li ∧ χk ∈ Bl}: boundary points within the same category;

(2) C2
i = {χk ∈ Ni | lk = li ∧ χk /∈ Bl}: inner points within the same category;

(3) C3
i = {χk ∈ Ni | lk 6= li ∧ χk ∈ Bl}: boundary points in a different category;

(4) C4
i = {χk ∈ Ni | lk 6= li ∧ χk /∈ Bl}: inner points in a different category.

Measure the entanglement between boundary point to its each collection. Inspired
by [46,47], the soft nearest loss without negative logarithm function is used to measure the
entanglement. For a boundary center point χi ∈ Bl , its entanglement with Cj

i is defined

by Pj
i :

Pj
i =

∑
χk∈Ni∧χk∈Cj

i
exp(− ‖ fi − fk ‖)

∑χk∈Ni
exp(− ‖ fi − fk ‖)

, 0 ≤ Pj
i ≤ 1, (5)

where ‖ · ‖ represents the L2 Euclidean distance. A larger Pj
i denotes stronger entanglement

between point χi and its neighboring collections Cj
i . Bl is generated from the ground truth

of the input point cloud, and the boundary feature is a kind of low-level local feature that
can be extracted by LAO. Therefore, fi refers specifically to the internal representation
learned by the LAO in the first encoding stage, where the point cloud has not yet been
subsampled. In the LAO, greater affinity between the center point χi and its neighboring
point results in a greater corresponding convolution weight and denotes more similar
transformed features. Entanglement essentially represents feature the similarity between
point pairs. Therefore, the metric Pj

i can be intuitively described as the degree of attention

between point χi and its neighboring collections Cj
i .

Compare the measuring results. The measuring results are plotted in Figure 2. Com-
paring the plots by column, in the control group (Figure 2a), P1

i > P2
i > P3

i > P4
i on

average, indicating that the boundary point is more entangled with its neighboring points
in the same category, whereas, in the experimental group (Figure 2b), P1

i > P3
i > P2

i > P4
i

on average, indicating that the boundary point is more entangled with its neighboring
points on the boundary. Comparing the plots by row, P2

i and P4
i decreased greatly in the

experimental group.
It was speculated that the boundary acts as a barrier in the LAO, where it prevents the

boundary point from focusing on neighboring points in inner areas. Due to the role of the
boundary, relatively more attention is paid to neighboring collections C1

i or C3
i (boundary

points when put together), such that boundary feature is preserved and, subsequently, the
overall performance is improved. In summary, the entanglement between boundary point
χi and its neighboring collections C2

i or C4
i (inner points when put together) are weakened

greatly after utilizing boundary information. This shows that reducing boundary–inner
entanglement is beneficial for semantic segmentation accuracy.
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3.2. Boundary–Inner Disentanglement Enhanced Learning

According to the measurement results from Section 3.1, a lightweight Boundary–Inner
Disentanglement Enhanced Learning (BIDEL) framework for improving the segmentation
accuracy of boundary points is proposed. Specifically, BIDEL maximizes the boundary–
inner feature distinction through the boundary loss function LBIDEL:

LBIDEL = − 1
|Bl |∑χi∈Bl

log (P1
i + P3

i ), (6)
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where |·| represents the number of points. LBIDEL maximizes the sum of P1
i and P3

i , as a
result of which the sum of P2

i and P4
i is minimized, and the boundary–inner disentangle-

ment is enhanced. As shown in Figure 3, BIDEL pushes neighboring collections C2
i (points

in orange) and C4
i (points in yellow) apart, thus preserving the boundary by preventing it

from being contaminated by the features of inner points, which improves the segmentation
accuracy of boundary points in particular.
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Notably, the boundary information generated from the ground truth is only used for
network training; therefore, an additional boundary prediction module is not required.

LBIDEL is added to the final loss function as a regularizer, through which the model
can achieve two training objectives: (1) minimize the overall segmentation cross-entropy
loss; (2) minimize boundary–inner entanglement. The final loss function is

L = Lcross entrophy + λLBIDEL, (7)

where λ is the loss weight of LBIDEL.

3.3. Implementation Details

Current segmentation networks generally follow the encoder–decoder paradigm,
where different LAOs and subsampling strategies are used in encoding layers to extract
multilevel local features, skip connections, and up-sampling operations employed in
decoding layers to achieve end-to-end semantic segmentation. LAOs can be classified into
three types: MLP-based, pseudo-grid-based, and adaptive-weight-based [5]. The latter
two types have become the mainstream due to their excellent local feature extraction ability.
Pseudo-grid-based methods preplace some pseudo-kernel points in the neighborhood and
learn their convolutional weights directly. However, the pseudo-kernel points must be
defined artificially, which can limit the generalizability and flexibility of models. In contrast,
adaptive-weight-based methods learn convolutional weights indirectly from the relative
position and features of the center point and its neighboring points. KPConv [31] and
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RandLA-Net [28] are classic representatives of pseudo-grid-based methods and adaptive-
weight-based methods, respectively. Both follow the encoder–decoder paradigm. RandLA-
Net obtains a lower segmentation accuracy than KPConv, but has a marked drop in memory
overhead and computation cost due to the mechanism of random sampling.

To validate the benefits of the proposed BIDEL across different LAOs, this paper
refers to KPConv and RandLA-Net as baselines. The overall architecture is depicted in
Figure 4, where BIDEL is applied to optimize the representations learned by LAO in the
first encoding layer.
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This paper sets the loss weight λ = 1 for LBIDEL, and ten follows the same training
settings as the baselines for fair comparisons. Specifically, for KPConv, the optimizer,
initial learning rate, and maximum training epoch are set to Momentum, 0.01, and 500,
respectively; for RandLA-Net, the optimizer, initial learning rate, batch size, maximum
training epoch, and the number of nearest points are set to Adam, 0.01, 4 × 40,960, 100, and
16, respectively.

The mIoU, OA, and mACC are considered as the evaluation metrics to quantitively
demonstrate the benefits of BIDEL, in line with most point cloud semantic segmentation
works. The experimental configurations are detailed in Table 2.

Table 2. The hardware and software configurations for the experiments.

Configuration

Hardware
CPU AMD Ryzen 9 5900X 12-Core Processor 3.70 GHz
GPU NVIDIA GeForce RTX 3080 Ti

Software
Python IDE Pycharm

Deep learning library Tensorflow
Visualization Cloud Compare

4. Experimental Results and Discussion

In this section, we evaluate the benefits of BIDEL with two baselines across three large-
scale public datasets, S3DIS [13] (Section 4.1), Toronto-3D [48] (Section 4.2), and Seman-
tic3D [49] (Section 4.3), before demonstrating its effectiveness through ablation analysis
(Section 4.4).

4.1. S3DIS Indoor Scene Segmentation

S3DIS [13] is an indoor dataset with high quality, recorded by a Matterport camera.
The whole dataset has around 273 million points annotated with 13 semantic labels. It
consists of six large areas. Area 5 is used for validating and testing, which follows common
practice [12,28]. The experimental results are compared with baselines and some classic
studies in Table 3. The results of methods other than KPConv and RandLA-Net were
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directly cited from public reports. It can be seen that KPConv improved the mIoU by 0.8%
and RandLA-Net improved the mIoU by 2% after being integrated with BIDEL, showing
the effectiveness and generalizability of BIDEL in different LAOs. With BIDEL, KPConv
obtained the leading performance of 94.9% for ceiling, 83.3% for wall, 75.7% for bookstore,
and 61.1% for clutter. Notably, considerable gains were achieved over RandLA-Net for
small objects such as sofa (+9.4%), column (+9.3%), and board (+5.7%). Although the
improvements of BIDEL were inferior to those of other boundary-related methods such
as JSENet [7] (+2.3%) and CBL [12] (+2.9%), BIDEL can be considered superior due to its
simplicity without increasing model parameters. For example, JSENet designs a semantic
edge detection stream to explicitly predict the edge, which greatly increases the number
of parameters; CBL applies contrast boundary learning to the input point cloud and each
subscene point cloud. However, if contrast boundary learning is only applied to the input
point cloud, as performed in BIDEL, the relative improvement compared to baseline is
much lower than that of BIDEL.

Table 3. Quantitative results on S3DIS Area 5. The red font denotes obvious better results (greater
than 1%) than baseline. Bold font denotes the best result among all methods. * These methods
consider boundaries.

Methods mIoU
(%)

OA
(%)

mACC
(%) Ceil. Floor Wall Beam Col. Wind. Door Table Chair Sofa Book. Board Clut.

PointNet [33] 41.1 - 49.0 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
SegCloud [50] 48.9 - 57.4 90.1 96.1 69.9 0.0 18.4 38.4 23.1 70.4 75.9 40.9 58.4 13.0 41.6
PointCNN [29] 57.3 85.9 63.9 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7

SPG [51] 58.0 86.4 66.5 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
GAC [40] 62.9 87.8 - 92.3 98.3 82.0 0.0 20.4 59.0 40.9 85.8 78.6 70.8 61.7 74.7 52.8
PCT [27] 61.3 - 67.7 92.5 98.4 80.6 0.0 19.4 61.6 48.0 76.6 85.2 46.2 67.7 67.9 52.3

IAF-Net * [6] 64.6 88.4 70.4 91.4 98.6 81.8 0.0 34.9 62.0 54.7 79.7 86.9 49.9 72.4 74.8 52.1
JSENet * [7] 67.7 - - 93.8 97.0 83.0 0.0 23.2 61.3 71.6 89.9 79.8 75.6 72.3 72.7 60.4

PushBoundary * [9] 67.1 89.7 - 94.0 97.9 82.6 0.0 23.3 56.6 75.4 80.1 91.1 75.7 74.4 62.3 59.1
CBL * [12] 65.3 87.5 74.5 92.2 97.7 81.0 0.0 36.8 61.0 39.4 78.1 88.1 81.4 71.5 68.7 52.6

KPConv [31] 66.2 - - 94.8 98.4 82.9 0.0 18.0 53.4 67.1 83.0 91.4 63.8 75.5 71.6 60.8
+BIDEL * 67.0 - - 94.9 98.5 83.3 0.0 21.4 54.9 68.5 83.1 91.2 66.0 75.7 71.8 61.1

RandLA-Net [28] 62.7 87.5 71.1 92.3 97.8 80.7 0.0 19.5 59.2 46.8 78.0 85.7 63.2 70.9 68.0 53.0
+BIDEL * 64.7 88.0 73.6 93.0 96.1 81.5 0.0 28.8 62.7 43.9 74.0 87.0 72.6 71.9 73.7 55.8

Furthermore, the benefits of BIDEL for KPConv and RandLA-Net are qualitatively
demonstrated in Figures 5 and 6, respectively. Misclassification usually appears in transition
areas. For example, in Figure 6, in the second row, third column, points of the “clutter”
category and “ceiling” category are poorly separated; in the fifth row, third column, the
chair cannot be identified accurately when put together with the table. By contrast, BIDEL
performs well in these transition areas. The overall improved areas are consistent with the
semantic boundaries.

4.2. Toronto-3D Outdoor Scene Segmentation

This paper also demonstrates the generalizability of BIDEL using an outdoor dataset,
Toronto-3D [48]. This is a large-scale urban outdoor point cloud dataset acquired by the
MLS system in Toronto, Canada, covering about 1 km of point clouds and consisting
of about 78.3 million points belonging to one of eight classes, such as road markings
and cars. It covers four blocks. The L002 scene was selected for validation and testing,
whereas the other scenes were selected for training. This dataset is labeled inaccurately
in some areas. For example, objects that should be utility lines are labeled as buildings
(Figure 7a) or trees (Figure 7b), while objects that should be poles are labeled as natural
(Figure 7c). Although each point provides rich attributes such as xyz coordinates, rgb
colors, intensity, GPS time, scan angle rank, and class label, this experiment only used the
xyz and rgb attributes, following the same settings as used for S3DIS. There were some
challenges when performing the semantic segmentation task: (1) objects belonging to the
pole/natural/utility line categories often overlapped with each other; (2) road markings
were small and narrow objects.
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(+4.5%) and car (+1.9%) categories based on RandLA-Net. With BIDEL, KPConv achieved
the leading performance of 97.9% for roads, 76.3% for road markings, 82.6% for poles, and
95.1% for cars. Figure 8 visualizes the segmentation results. It is evident that the improved
areas aligned with the boundary contours. For example, as shown in the first column,
RandLA-Net tended to broaden the width of road markings, whereas BIDEL outlined the
boundaries more accurately. Compared to outdoor Toronto-3D scenes, objects were labeled
in more detail and connected more densely in indoor scenes such as S3DIS [7], resulting
in more semantic boundary points, enabling the effectiveness of BIDEL to be adequately
demonstrated. Therefore, fewer gains were obtained for the Toronto-3D dataset.

Table 4. Quantitative results on Toronto-3D benchmark. The red font denotes better results (greater
than 0.5%) than the baseline. Bold font denotes the best result among all methods. * These methods
consider boundaries.

Input Methods mIoU(%) OA(%) Road Road Marking Natural Building Utility Line Pole Car Fence

xyz

PointNet++ [34] 41.8 84.9 89.3 0.0 69.0 54.1 43.7 23.3 52.0 3.0
DGCNN [41] 61.8 94.2 93.9 0.0 91.3 80.4 62.4 62.3 88.3 15.8
KPConv [31] 69.1 95.4 94.6 0.1 96.1 91.5 87.7 81.6 85.7 15.7

MS-PCNN [52] 65.9 90.0 93.8 3.8 93.5 82.6 67.8 72.0 91.1 22.5
MS-TGNet [48] 70.5 95.7 94.4 17.2 95.7 88.8 76.0 74.0 94.2 23.6

RandLA-Net [28] 77.7 93.0 94.6 42.6 96.9 93.0 86.5 78.1 92.9 37.1
Multi-Loss PointNet++ [53] 71.0 83.6 92.8 27.4 89.9 95.3 85.6 74.5 44.4 58.3

MappingConvSeg [54] 82.9 94.7 97.2 67.9 97.6 93.8 86.9 82.1 93.7 44.1

xyz, rgb

KPConv [31] 81.4 - 97.9 74.9 96.6 91.6 87.1 81.7 94.8 26.9
+BIDEL * 82.0 - 97.9 76.3 97.5 92.5 87.5 82.6 95.1 26.2

RandLA-Net [28] 81.1 96.3 95.5 56.8 96.2 93.1 88.0 82.2 88.2 48.4
+BIDEL * 81.5 96.7 96.1 61.3 97.0 93.5 87.3 81.2 90.1 45.3
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Figure 6. Visualization results on S3DIS Area 5 after applying BIDEL to RandLA-Net. The images
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(c) the baseline (RandLA-Net), (d) the baseline + BIDEL, and (e) the improved areas (blue regions
were misclassified by the baseline but identified accurately by BIDEL).

4.3. Semantic3D Outdoor Scene Segmentation

Semantic3D [49] is a large-scale outdoor dataset with over four billion points. It pro-
vides 15 scenes for training and four for testing, with each point assigned to one of eight
labels such as buildings and cars. Misclassified boundaries are likely to cause misidentifica-
tion of small objects such as cars, which would be catastrophic for autonomous driving
applications. In Semantic3D, low vegetation and cars are both small objects, while low
vegetation usually exists on building balconies, making the recognition of these two classes
challenging. By contrast, BIDEL performed well for small objects such as low vegetation
and cars, as shown in Figure 9. For example, as shown in the fourth row, the baseline did
not identify cars at all, whereas BIDEL achieved this successfully. Improvements in these
two classes prove the power of the proposed method for semantic boundaries.
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4.4. Ablation Analysis

Effectiveness of BIDEL. The proposed BIDEL can maximize the feature similarity
between boundary points and its neighboring points on the boundary (C1

i and C3
i ), thus

preserving the boundary and boosting segmentation accuracy. However, CBL [12] encour-
ages the learned representations of boundary points more similar to their neighboring
points within the same category (C1

i and C2
i ) in decoding layers. Therefore, several different

boundary loss functions are discussed in this section to prove the effectiveness of BIDEL.
For the first loss function setting, the learned representations of boundary point χi are

encouraged to be more similar to its neighboring collections C1
i (boundary points within

the same category), which can be represented as LA:

LA = − 1
|Bl |∑χi∈Bl

log (P1
i ). (8)

For the second loss function setting, the learned representations of boundary point χi
are encouraged to be more similar to its neighboring collections C1

i and C2
i (points within

the same category), which can be represented as LB:

LB = − 1
|Bl |∑χi∈Bl

log (P1
i + P2

i ). (9)

As shown in Table 5, when setting LA as the boundary loss function, the mIoU reached
64.5%, showing a 1.8% increase compared to the baseline. LBIDEL achieved the best result
of 64.8%. Points in collection C3

i only accounted for a small proportion of all neighboring
points, which limited the effect of BIDEL and resulted in a slight improvement in accuracy.
However, LB unfortunately diminished the accuracy. Compared to LA, LB also encouraged
entanglement between the boundary point and its neighboring collections C2

i (inner points
within the same category). This shows that a high engagement of inner points in LAO can
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weaken the boundary information, thus reducing overall performance. Such observations
successfully verify the effectiveness of BIDEL.
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Figure 8. Qualitative results on Toronto-3D L002 dataset. The images from top to bottom are (a) the
input point cloud overlaid with the boundaries (red points) generated from the ground truth, (b) the
ground truth, (c) the baseline (RandLA-Net), (d) the baseline + BIDEL, and (e) the improved areas
(blue regions were misclassified by the baseline but identified accurately by BIDEL).
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Figure 9. Visualization results on the challenging Semantic3D reduced-8 dataset [49]. The images from
left to right are (a) the input point cloud, (b) the baseline (RandLA-Net), and (c) the baseline + BIDEL.
Objects in red rectangles were misclassified by the baseline but identified accurately by BIDEL. Note
that, although the ground truth of the test set was not publicly provided, the class of objects in the
red rectangles could be easily recognized by human eyes with the support of RGB attributes.

Table 5. The quantitative results of different boundary loss functions for semantic segmentation.
Bold font denotes the best performance.

Boundary Loss mIoU (%) OA (%) mACC (%)

LA 64.5 87.5 72.5
LB 62.2 86.7 71.7

LBIDEL 64.8 87.8 72.9

Hyperparameter optimization. Three values of λ were evaluated to select the best
loss weight for LBIDEL. The experiments were conducted on S3DIS Area 5, and the results
are reported in Table 6. It can be seen that λ = 1 was the best choice.
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Table 6. Quantitative results with different values of λ. Bold font denotes the best performance.

λ mIoU (%) OA (%) mACC (%)

0.5 64.0 87.4 72.5
1 64.8 87.8 72.9
5 63.4 87.7 71.2

5. Conclusions

This paper proposed a novel lightweight BIDEL framework that can improve the
semantic segmentation accuracy of boundary points. The results in this paper revealed
that reducing boundary–inner entanglement is beneficial for overall accuracy; accordingly,
BIDEL was proposed, which uses a boundary loss function to maximize boundary–inner
disentanglement. Compared with the current boundary-related networks that rely on
complex modules and increase model complexity, BIDEL does not require additional
modules or learning parameters. On a large-scale indoor dataset with more semantic
boundaries, BIDEL significantly improved the overall segmentation accuracy, especially
for small objects. On large-scale outdoor datasets with fewer semantic boundaries, the
visualization results showed that the improved areas approximately aligned with the
semantic boundaries. Both quantitative and qualitative experimental results demonstrated
the better effect of BIDEL on semantic boundaries.

Due to the excellent performance of BIDEL on boundary points, semantic segmentation
networks integrated with BIDEL can improve indoor navigation, automatic driving, and
other application scenarios containing small objects or rich semantic boundaries, thereby
obtaining a more accurate semantic contour.

However, this research had some limitations. Firstly, this paper’s focuses was on
the input point cloud boundary. As the point cloud is progressively subsampled in the
encoder, subscene boundaries can be generated. How to define the subscene boundary
and analyze its relationship with neighboring points in inner areas will be studied in
the future. Secondly, BIDEL achieved fewer gains in outdoor scenes than indoor scenes.
A more effective framework for large-scale outdoor scene segmentation is worthy of
deep exploration.
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