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Abstract: Community detection is a significant and challenging task in network research. Nowadays,
many community detection methods have been developed. Among them, the classical Louvain
algorithm is an excellent method aiming at optimizing an objective function. In this paper, we
propose a modularity function F2 as a new objective function. Our modularity function F2 overcomes
certain disadvantages of the modularity functions raised in previous literature, such as the resolution
limit problem. It is desired as a competitive objective function. Then, the constrained Louvain
algorithm is proposed by adding some constraints to the classical Louvain algorithm. Finally, through
the comparison, we have found that the constrained Louvain algorithm with F2 is better than
the constrained Louvain algorithm with other objective functions on most considered networks.
Moreover, the constrained Louvain algorithm with F2 is superior to the classical Louvain algorithm
and the Newman’s fast method.
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1. Introduction

Lots of real systems can be expressed as complex networks [1]. In complex networks,
besides the small world effect [2,3] and the power-law feature of degrees’ distribution [4,5],
the community structure is considered as a most interesting and important feature [6,7],
for example, the collection of web pages on related topics in the network of the World
Wide Web [8,9], clusters of customers with similar interests in the network of purchase
relationships [9], and academic collaborations in a co-authorship network [10]. Community
detection is helpful to find these interesting structures and to understand dynamical
behaviors on complex networks [11]. Therefore, a community detection algorithm is
significantly important.

Community detection is thought as a NP-hard problem. Therefore, obtaining a correct
community partition is a large challenge. At present, many methods have been developed
to detect the community structure, such as divisive algorithms [6,12], agglomerative algo-
rithms [13–15], spectral clustering [16–18] dynamic methods [19–21], Infomap [22], Label
propagation [23], clustering based on density [24], and optimization methods [25–27].
Among them, the optimization methods are widely focused on. These class methods define
the community detection as the optimization problem of an objective function. Two popular
optimization methods are the Newman’s fast algorithm [13] and the Louvain algorithm [26].
The Newman’s fast algorithm maximizes the modularity Q [28] in the merging process of
communities in pairs. Finally, the community partition with maximal Q is thought as a
good partition result. The complexity is O(m(m + N)), and m, N is the number of nodes
and edges of a network. Compared with the Newman’s fast algorithm, the complexity
of the Louvain algorithm [26] is linear, which has less time cost than the Newman’s fast
algorithm. It aims to maximize the modularity Q [28]. When a node is removed from
one community to another one, the calculation of the increase in the modularity is only
related to the node and two corresponding communities. Thus, the computational efficiency
is obviously better than that of the Newman’s fast algorithm. In addition, the Louvain
algorithm can be conveniently parallelized to improve the calculation speed [29–31].
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The Louvain algorithm [26] has been applied to a larger network. However, the
accuracy of the detection result is rarely researched [32,33]. If we do not consider the
processing of the network structure [32,33], the accuracy of the Louvain algorithm can be
improved simply from two main points. Firstly, we can select a better objective function
as the optimization goal. Currently, in addition to Q, some other quality functions can
also be used as the objective functions of optimization, such as moudularity F [34] and
M [35]. However, they have some shortcomings. For example, there exists the resolution
limit problem for modularity Q [36–39]: when the size of a community is below a certain
threshold, it cannot be detected by Q [36]. This threshold does not depend on a particular
network structure, but results only from the comparison between the number of links of
interconnected communities and the total number of links of the network. Conversely,
in some cases, maximizing Q tends to split a large community into smaller ones [39,40].
Moreover, some random networks, which have no apparent community structure, may
have unreasonably large values of Q [41,42]. M approaches the infinite when an isolated
subgraph within the network emerges as a community, or the whole network constitutes
a single community. Thus, we need to design a better quality function as an objective
function. Secondly, for the result of the Louvain algorithm, we can combine the feature
of the real communities to obtain a better community structure. Currently, two plausible
definitions to describe the community feature are weak community and strong community.
The weak community is defined as the community with an internal degree larger than
the external degree from a mesoscopic view. This is because the community structure is a
mesoscopic structure and not all communities found by an algorithm meet the definition
of a weak community. Thus, we can consider the definition of the weak community to
constrain the communities obtained by the Louvain algorithm.

In this paper, we propose a new modularity called F2 as an objective function. Com-
pared with other objective functions, the F2 have many advantages. For example, F2
overcomes the resolution limit problem on the considered networks and does not divide
the closely connected network into several small communities. Moreover, we propose a
constrained Louvain algorithm by combining the definition of a weak community. Gen-
erally, the communities obtained by an algorithm contain some small communities and
communities not satisfying the definition of a weak community. Therefore, it is necessary to
added some constraints to the communities obtained by the Louvain algorithm. The results
on ground truth networks and benchmark networks demonstrate that the constrained
Louvain algorithm with F2 is better than the other three objective functions. Moreover,
the constrained Louvain algorithm with F2 is also superior to the Newman’s fast algorithm
and the classical Louvain algorithm with F2.

2. Related Work
2.1. Several Existed Objective Functions

Currently, some existed quality functions can be used as objective functions. They are
described as follows.

(1) Modularity Q:

The most popular modularity is the Newman’s modularity Q [28], which is formu-
lated as,

Q =
m

∑
i=1

[
lin(Ci)

L
− d2(Ci)

(2L)2 ], (1)

where lin(Ci) is the number of edges connecting all nodes in community Ci. d(Ci) is the
total degree of all nodes in Ci. L is the number of total edges in a network.

(2) Fitness function F:

In [34], the F function is defined as,

F =
m

∑
i=1

din(Ci)

[din(Ci) + dout(Ci)]
α , (2)
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where din(Ci) and dout(Ci) are the internal degrees and the external degrees, respectively.

(3) Modularity M:

The modularity M [35] is defined as,

M =
m

∑
i=1

Ein(Ci)

Eout(Ci)
, (3)

where Ein(Ci) and Eout(Ci) indicates the number of internal edges and the external
edges, respectively.

2.2. Two Optimization Algorithms

At present, two optimization algorithms are popular. One is the Newman’s fast algo-
rithm, which adopts the greedy technique. Another is the Louvain algorithm. The simple
description is given below.
(1) Newman’s fast algorithm:

In 2004, Newman proposed a fast algorithm to detect the community structure. The al-
gorithm starts with a state in which each node is a single community. Then, the communities
are joined together in pairs at each step so that Q has the greatest increase. The progress can
be represented as a “dendrogram”. Generally, we can select the best community partitions
by looking for the maximal value of Q.

(2) Louvain algorithm:

The Louvain algorithm is an optimization algorithm based on modularity Q. It detects
communities through removing the node to its adjacent community to maximize the
modularity Q.

The Louvain algorithm consists of two phases. Phase one aims to optimize the modu-
larity by iteratively removing nodes. (1) Initially, each node is assigned to a community.
For each node i, calculate the modularity gain ∆Q by removing it to the community of its
neighbor j. Find the maximal gain ∆Qmax of modularity. If ∆Qmax > 0, remove the node i
to the community of the neighbor with ∆Qmax. (2) Repeat (1) until the modularity cannot
be increased by removing any one node. Phase two constructs a new network, whose
nodes are the communities found in phase one. The new weights of the links are obtained
by summing up the weights between the nodes of two corresponding communities. More-
over, the self-loop of a node is obtained by summing up the weights of links within the
corresponding community. We executed phase one and phase two iteratively until the
modularity was not improved.

The Louvain algorithm is very efficient, because the number of community is decreased
drastically and the calculation of the modularity gain is simple. However, it is possible that
the nodes in different communities is merged in the final partition due to the resolution
limit of modularity Q.

3. Materials and Methods
3.1. A Novel Objective Function

The objective function of Louvain algorithm is very important. Here, we propose a
novel modularity F2 as an objective function. The F2 of a community Ci is defined as

F2(Ci) =
[din(Ci)]

2

[din(Ci) + dout(Ci)]2
, (4)

where din(Ci) is the internal degree, i.e., the twice number of edges in a community. dout(Ci)
indicates the external degree, which is the number of edges connecting the nodes in a community
with the nodes out of the community. The modularity F2 for the whole network is

F2 =
m

∑
i=1

F2(Ci), (5)
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where m denotes the number of communities.
For the existed objective functions and proposed F2, the correct partition corresponds

with the big value of an objective function. Based on this, we compare different objective
functions on different example networks and prove the advantages of F2 theoretically on
some example networks.

(i) Unlike Q and M, which both have a resolution limit problem [36–39], the F2 has
not had this problem. That is to say, Q and M tend to merge some small communities
together. However, F2 can identify each small community as an individual community. In
Figure 1a, we construct a network with a series of q-cliques connected to a ring with single
edges. Here, each q-clique is a complete graph containing q nodes and q(q− 1)/2 edges.
Obviously, such a network has a clear community structure that each clique corresponds to
a community. Supposing the ring network is constructed by l q-cliques, we can prove that
any h q-cliques cannot be merged to one community by F2. If each community corresponds
a single clique, we have

F2single = l ×
[

q(q− 1)
q(q− 1) + 2

]2

, (6)

If we merge h q-cliques into one community, the F2 is

F2merge =
l
h

[
q(q−1)h+2(h−1)

q(q−1)h+2(h−1)+2

]2

= l
h

[
q(q−1)h+2(h−1)

q(q−1)h+2h

]2

= l

[
q(q−1)h+2h−2

h3
q(q−1)+2

]2

≤ l
[

q(q−1)+1
4

q(q−1)+2

]2

(h ≥ 2)

= l
[

q(q−1)+ 1−3q(q−1)
4

q(q−1)+2

]2

< l
[

q(q−1)
q(q−1)+2

]2
(q ≥ 3)

< F2single

(7)

In the table of Figure 1a, we provide the values of Q, M and F2 when l = 10, q = 3.
In this case, F2 identifies each q-clique as an individual community. However, Q and M
tend to merge adjacent communities as a bigger community, as shown in Figure 1a.

(ii) When the network is constructed by cliques of different sizes, Q and M still have a
resolution limit problem on smaller cliques. As in Figure 1b, the network is constructed by
two p-cliques and two q-cliques. We prove F2 can identify communities correctly. When
two q-cliques are considered as two separated communities, the value of F2 is

F2single = [ p(p−1)
p(p−1)+1 ]

2 + [ p(p−1)
p(p−1)+3 ]

2 + 2× [ q(q−1)
q(q−1)+2 ]

2

= [ p(p−1)
p(p−1)+1 ]

2 + [ p(p−1)
p(p−1)+3 ]

2 + [q(q−1)]2+[q(q−1)]×[q(q−1)]
[q(q−1)+2]2

(8)

However, if two q-cliques are merged into one community, we have

F2merge = [ p(p−1)
p(p−1)+1 ]

2 + [ p(p−1)
p(p−1)+3 ]

2 + [ 2q(q−1)+2
2q(q−1)+4 ]

2

=
[

p(p−1)
p(p−1)+1

]2
+
[

p(p−1)
p(p−1)+3

]2
+
[

q(q−1)+1
q(q−1)+2

]2

=
[

p(p−1)
p(p−1)+1

]2
+
[

p(p−1)
p(p−1)+3

]2
+ [q(q−1)]2+2q(q−1)+1

[q(q−1)+2]2

<
[

p(p−1)
p(p−1)+1

]2
+
[

p(p−1)
p(p−1)+3

]2
+ [q(q−1)]2+[q(q−1)]×[q(q−1)]

[q(q−1)+2]2
(q ≥ 3)

< F2single

(9)

In the table of Figure 1b, we provide the values of Q and F2 when p = 6 and q = 3.
Obviously, only F2 can identify communities correctly.
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Figure 1. Performances of different objective functions on several representative networks. (a) Several
3-cliques connected to a ring through single edges (Reprinted/adapted with permission from Ref. [36],
Copyright (2007) National Academy of Sciences, U.S.A.). On this network, two candidate community
structures are generated. One is to identify each q-clique as a single community. The other is to merge
each pair of adjacent cliques into one community. The values of modularity functions Q, M and F2
for these two structures are listed as ‘single’ and ‘merge’ when the network contains 10 3-cliques in
the inserted table. (b) A network consisting of two 6-cliques and two 3-cliques (reprinted/adapted
with permission from Ref. [36], Copyright (2007) National Academy of Sciences, U.S.A.). ‘Single’ in
the inserted table refers to identifying each clique as an individual community, while ‘merge’ refers
to the integration of the two 3-cliques. (c) A well-connected network which is more compact than
networks of Figure 1 in Ref. [40]. “single” splits the network into two communities, while “merge”
identifies the whole network as one community.

(iii) When two 4-cliques are connected by multiple edges, as in Figure 1c. Such a
network has been recognized as a well-connected network [40]. In this case, F2 can avoid
splitting a well-connected community into smaller ones. However, Q and F still tend to
split the whole network into two communities.

(iv) It can be theoretically proven that a random network or a complete graph cannot
be divided into any two parts. When a random network is considered as one community,
F2single = 1. When it is divided into any two parts, which contain n1 and n2 nodes,
respectively, we have

F2merge = [ n1(n1−1)p
n1(n1−1)p+n1n2 p ]

2 + [ n2(n2−1)p
n2(n2−1)p+n1n2 p ]

2

= ( n1−1
n1+n2−1 )

2 + ( n2−1
n2+n1−1 )

2

= 1− 2n1n2−1
(n1+n2−1)2 < F2single

(10)

Similarly, when a complete network is a single community, we have F2single = 1. If the
network is divided to any two communities which include n1 and n2 nodes, respectively,
the F2 is

F2merge = [ n1(n1−1)
n1(n1−1)+n1n2

]2 + [ n2(n2−1)
n2(n2−1)+n1n2

]2

= 1− 2n1n2−1
(n1+n2−1)2 < F2single

(11)

In a word, Q has a resolution limit problem; however, F2 has not had this problem
on the considered networks. The main reason is that Q is related to the number of links of
the whole network. It is not scale-independent as a global index. The resolution limit of Q
results from the comparison between the number of links of the interconnected communities
and the total number of links of the whole network. However, F2 is a local index, which
is unrelated to the whole network. It is only related to the local structure. Therefore, F2
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overcomes the resolution limit problem to certain extent. Moreover, F and M may detect
unreasonable community partition. However, F2 can provide a reasonable community
partition. As a result, compared with the other objective functions, the modularity F2 can
identify the partition of communities correctly. It is better than the other three functions.
Therefore, F2 has many advantages for community detection.

3.2. Constrained Louvain Algorithm with F2

We propose a constrained Louvain algorithm to detect communities by considering
the definition of a weak community [12]. Next, we take F2 as an objective function to
introduce the constrained Louvain algorithm. The algorithm is described as two phases.

In the first phase, the classical Louvain algorithm is executed. (1) Initially, each node is
a community. (2) For the node i, we calculate the increase ∆F2j of the objective function
when removing i from its community and placing it next to the community of its neighbor j.
Find the maximal increase ∆F2max for all neighbors. If ∆F2max > 0, then remove the node
i to the community with the maximal increase ∆F2max. Otherwise, the node i stays in its
original community. For all nodes, we execute the operation in turns. (3) Repeat the (2)
sequentially until the movement of any one node cannot increase the objective function,
so that all communities keep invariant. (4) Compress each community as a new node
to construct a new network. The summation of edge weights within each community is
converted to the weight of the self-ring of the new node. Moreover, the summation of
the weights between the nodes of each pair of communities is converted to the weight
between the two new nodes. (5) Repeat the steps (1)–(4) until the objective function of
the community is not increased any more. In this phase, the step (1)–(3) is shown in
Algorithm 1 and the step (4) is shown in Algorithm 2.

Algorithm 1 Optimization of objective function F2.

Require: Network G(V, W)
Ensure: temprary communities partition C = {Ci, i = 1 : m}

1: Calculate the objective function F2
2: F20 ← F2− 0.8
3: while F2 > F20 do
4: F20 ← F2
5: randomize nodes as {vi, i = 1...N}
6: Ci ← node vi
7: for i = 1→ N do
8: Find the neighbor set of vi: T(vi) = {u1, u2..u|T(vi)|}
9: for j = 1→ |T(vi)| do

10: calculate ∆F2j supposing removing vi to Cj
11: end for
12: ∆F2max ← max(∆F21,∆F22, ...,∆F2|T(vi)|)
13: umax ← neighbor with ∆F2max
14: if ∆F2max > 0 then
15: remove node vi to the community with umax
16: F2← F2 + ∆F2max
17: end if
18: end for
19: end while
20: return C = {Ci, i = 1 : m}

In the second phase, we find the communities to not be satisfying the definition of a
weak community and the communities with the number of nodes less than 4. The nodes in
these communities are disbanded to form a set of residual nodes. The other communities
are the quasi-communities. Then, we assign each residual node to the quasi-communities.
Select a node randomly from the residual nodes set and calculate the increase in the
objective function ∆F2j when this node is removed to the community Cj of its neighbor j.
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Finally, the node is assigned to the adjacent community with a maximal increase ∆F2max.
Repeat the step until all disbanded nodes are assigned into the communities. This phase is
shown in Algorithm 3.

In the algorithm above, when a node i is added to a community Ci, the increase ∆F2
of the objective function is calculated as follows,

∆F2 =
[din(Ci) + 2din(i)]2

[d(Ci) + d(i)]2
− [din(Ci)]

2

[d(Ci)]2
, (12)

here, d(Ci) is the total degree of the community Ci. din(i) is the number of edges between
node i and the community Ci. The d(i) represents the degree of the node i. When a node i
is removed from a community, the calculation is similar.

In the algorithm, the order of adding nodes is random; thus, the result of the community
partition is different every time. Here, we implement the method many times and take the
community structure with the largest value of the modularity as the final result.

Algorithm 2 Construction of a new network.

Require: Network G(V, W) and temporary communities C = {Ci, i = 1 : m}
Ensure: a new network G′(V′, W ′)

1: for i = 1→ m− 1 do
2: for j = i + 1→ m do
3: W(Ci, Cj)← summation of W(vk, vkk), vk ∈ Ci, vkk ∈ Cj
4: end for
5: node v′i ← Ci
6: node v′j ← Cj

7: W ′(v′i, v′j)←W(Ci, Cj)

8: end for
9: return G′(V′, W ′)

Algorithm 3 Addition of constraints.

Require: Network G(V, W) and temporary communities C = {Ci, i = 1 : m}
Ensure: Final communities partition of the network

1: S = {}
2: for i = 1→ m do
3: if |Ci| < 4 or F2(Ci) <= 0.5 then
4: S = S

⋃{vj, vj ∈ Ci}
5: C = C \ {Ci}
6: end if
7: end for
8: while |S| > 0 do
9: for j = 1→ |S| do

10: for k = 1 : |C| do
11: calculate ∆ F2k, supposing removing vj to Ck
12: end for
13: ∆F2max ← max(∆F21,∆F22, ...,∆F2|C|)
14: Cmax ← community with ∆ F2max
15: remove node j to the community Cmax with ∆ F2max
16: S = S \ {i}
17: end for
18: end while
19: return C

3.3. Data

In this paper, we use two kinds of networks. One kind is the ground truth networks
with the recognized real community structures. Another kind is the LFR benchmark net-
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works generated by the computer [43]. In the ground truth networks, the DBLP and amazon
networks give top 5000 overlapping communities with highest quality. We deal with each
overlapping node to the community with more edges to the community with the node and
delete the communities with the size less than and equal to 3 nodes. The structure parame-
ters and the communities’ number of these networks are all listed in Table 1. Their detailed
description is shown below. (i) Karate Network: The Zachary’s karate club network is a
friendship network in a karate club in an American university [44]. After a dispute between
the coach and the treasurer, the club splits into two. (ii) Dolphins Network: The dolphins
network contains 62 dolphins living in Doubtful Sound, New Zealand, as reported by
Lusseau [45]. Two dolphins are connected by an edge if they are observed together more
often than expected by chance during the years from 1994 to 2001. (iii) Football Network.
The football network is the network of American football games between Division IA
colleges during the regular season of fall 2000 [6]. The nodes denote the 115 teams and the
edges represent 613 games played in the course of the year. The teams are divided into 12
conferences containing around 8–12 teams each. The games are more frequent between
members of the same conferences than those between members of different conferences.
(iv) DBLP Network: The DBLP network is a co-authorship network in computer science,
where two authors are connected if they publish at least one paper together. Authors who
published in a certain journal or conference form a community. (v) Amazon Network:
The Amazon network was collected by crawling the Amazon website. It is based on the
Customers Who Bought This Item Also Bought feature of the Amazon website. If a product i
is frequently co-purchased with product j, the graph contains an undirected edge from i
to j. Each product category provided by Amazon is a ground-truth community. (vi) LFRs
networks: Different from the networks above, LFR networks are classical benchmark net-
works generated by the computer [43]. For LFR networks with the number N of nodes
and the average degree of 〈k〉, degrees of nodes are distributed according to the power
law with exponent 2 < γ < 3, and the sizes of communities also obey the power law
distribution with exponent 1 < β < 2. Moreover, the community size s and node degree k
satisfy the constraint smin > kmin and smax > kmax. A mixing parameter µ represents the
ratio between the external degree of a node with respect to its community and the total
degree of the node. When the value of µ becomes large, the community structure of the
network becomes ambiguous.

Table 1. The structure parameters and the community number of networks. For each network,
parameters N, L and m represent the numbers of nodes, edges and standard communities respectively,
and 〈k〉 represents the average degree of all nodes in the network.

Networks N L M 〈k〉 References

Karate 34 78 2 4.5882 [44]
Dolphins 62 159 4 5.129 [46]
Football 115 613 12 10.6609 [6]

DBLP 317,180 1,049,866 4770 6.62 [10]
Amazon 33,4863 925,872 1015 5.52986 [10]

4. Results

In this section, we evaluate the performance of the constrained Louvain algorithm
with different objective functions and compare the constrained Louvain algorithm with
F2 and two classical algorithms by the normalized mutual information (NMI) [47]. The
better the algorithm, the higher the value of the NMI.

First of all, we execute the constrained Louvain algorithm with different objective
functions on the ground truth networks and the LFR benchmark networks.

For the ground truth networks, the result is as shown in Table 2. The NMI values
of F2 are the highest for the networks, except for the karate network. For the karate
network, the constrained Louvain algorithm with F2 and Q divides the network into four
communities. For the constrained Louvain algorithm with F2, after merging two small
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communities, the node 10 is different than the ground truth network. As a result, The NMI
value of the constrained Louvain algorithm with F2 is smaller than the one with Q. For all
other ground truth networks, the constrained Louvain algorithm with F2 is the best. In
particular, for DBLP and the Amazon network, the constrained Louvain algorithm with
Q identifies 179 and 201 communities, respectively. However, the constrained Louvain
algorithm with F2 obtains 7916 and 1819 communities, respectively. Obviously, the Q has a
resolution limit problem and the F2 has not had this problem. For the constrained Louvain
algorithm with F and M, there are many communities that are not satisfying the definition
of a weak community, or the sizes are less than 4. Finally, these communities are disbanded.
Therefore, the result is inferior to the constrained Louvain algorithm with F2.

We also ran the constrained Louvain algorithm on the LFR benchmark networks.
In Figure 2a, the NMI values of the constrained Louvain with F2 are highest when µ < 0.4.
With the increase in µ, the community structure becomes more fuzzy and harder to identify,
all NMI values decrease and the NMI value of the constrained Louvain algorithm with
F2 becomes less than the one with Q. This demonstrates that the constrained Louvain
algorithm with F2 has the best performance for the networks with a clear community
structure. Here, it is not necessary to calculate the cases of µ > 0.5, because the communities
are not satisfying the definition of a weak community. In Figure 2b, for the small value of
γ, the NMI values of the constrained Louvain algorithm with Q are the highest. However,
with the increase in γ, the heterogeneity of networks becomes stronger and the NMI
values of the constrained Louvain algorithm with F2 becomes higher than the constrained
Louvain algorithm with other objective functions. Obviously, the stronger the heterogeneity
of the networks are, the better is the performance of F2. In Figure 2c, for the high values
of the parameter β, the constrained Louvain algorithm with F2 has the highest NMI
values. With the increase in β value, the distribution of the community sizes becomes
heterogeneous so that the resolution limit problem appears for some objective functions.
Due to the advantage of F2 in Figure 1, the constrained Louvain algorithm with F2 identifies
the number of communities more correctly. In Figure 2d, the values of the NMI are highest
for the constrained Louvain algorithm with F2, regardless of the values of 〈k〉. In this case,
the constrained Louvain algorithm with Q still has the resolution limit problem due to the
small number of communities found. Moreover, the constrained Louvain algorithm with
F and M obtains too many communities that are not satisfying the definition of a weak
community, or the sizes are less then 4. As a result, the constrained Louvain algorithm with
F2 can better identify the community structure.

Table 2. The NMI values for the constrained Louvain algorithm with different objective functions on
the ground truth networks. The NMI = 0 means the whole network constitutes a big community.

Modularities F2 Q F M

Karate 0.6021 0.6873 0.0000 0.0000
Dolphins 1.000 0.7892 0.0000 0.5239
Football 0.9114 0.8903 0.7320 0.9114

DBLP 0.7566 0.6204 0.6893 0.7551
Amazon 0.9854 0.9076 0.9672 0.9735

Due to the optimal performance of the constrained Louvain algorithm with F2, it is
expected to be a competitive algorithm. Next, we compare it with the classical Louvain
algorithm with F2 and the Newman’s fast algorithm [13] by NMI on ground truth networks
and LFR benchmark networks. Table 3 gives the values of NMI on ground truth networks.
Compared with the classical Louvain algorithm based on F2, the constrained Louvain
algorithm based on F2 is better except for the football network. Compared with the fast
algorithm, the constrained Louvain algorithm is better except for the karate network.
Moreover, for the DBLP and Amazon networks, the cost of the fast algorithm is beyond our
tolerance. In Figure 3, we also calculate the values of NMI when one parameter is changed
for parameters µ, γ, β and 〈k〉. As a result, the constrained Louvain algorithm with F2 has
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the highest values of NMI, which perform better than the other two methods. Therefore,
the constrained Louvain algorithm with F2 can identify communities better.
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Figure 2. For the LFR networks, the relationship between the values of NMI and the values of each
parameter. (a) µ is changed when γ = 2.5, β = 1.5 and 〈k〉 = 20. (b) γ is changed when µ = 0.3,
β = 1.5 and 〈k〉 = 20. (c) β is changed when µ = 0.3, γ = 2.5 and 〈k〉 = 20. (d) 〈k〉 is changed when
µ = 0.3, γ = 2.5 and β = 1.5. The results are averaged for 100 networks with N = 1000.

Table 3. The NMI values for the constrained Louvain algorithm with F2, Louvain algorithm with F2
and Newman fast algorithm on the ground truth networks. The / means the algorithm cannot be
executed for the large networks.

Algorithms Constrained Louvain Algorithm Louvain Algorithm Fast Algorithm

Karate 0.6021 0.6021 0.6925
Dolphins 1.000 0.6741 0.7026
Football 0.9114 0.9336 0.6977

DBLP 0.7566 0.7547 /
Amazon 0.9854 0.9542 /
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Figure 3. The NMI values of the constrained Louvain algorithm with F2, the classical Louvain
algorithm with F2 and the Newman’s fast algorithm averaged on the 100 LFR networks with
N = 1000. (a) µ is changed when γ = 2.5, β = 1.5 and 〈k〉 = 20. (b) γ is changed when µ = 0.3,
β = 1.5 and 〈k〉 = 20. (c) β is changed when µ = 0.3, γ = 2.5 and 〈k〉 = 20. (d) 〈k〉 is changed when
µ = 0.3, γ = 2.5 andβ = 1.5..

5. Conclusions

The Louvain algorithm aims to optimize an objective function of the whole network,
so it can excellently detect the community structure. Moreover, the Louvain method has a
high efficiency. However, the communities obtained by the classical Louvain algorithm
are not still the real communities. In this paper, we proposed a new local modularity
function F2 as an objective function of optimization. F2 can overcome certain problems of
other modularity functions such as the resolution limit problem and does not split the well-
connected network into small communities. Both theoretical deductions and some examples
suggest that F2 identifies communities better than the objective functions of Q, F, M. Thus,
F2 is competitive as an objective function. Then, we proposed the constrained Louvain
algorithm by adding the constraints F2 > 0.25, and the node number of each community is
larger than 3 to the Louvain algorithm. This is because there exists some small communities
and some communities that are not satisfying the weak community among the communities
obtained by the Louvain algorithm. The constraints are meaningful. Finally, on both the
real-world networks and the computer generated benchmark networks, the constrained
Louvain algorithm with F2 shows a high accuracy of identifying community structures in
most of the considered networks.

For hierarchical networks, we can add tunable parameters [48] in F2 to detect the
hierarchical structure by the constrained Louvain algorithm. Through proper revisions,
the constrained Louvain algorithm with F2 can be easily extended to directed or weighted
networks. With the development of the computer technique, the data of the large network
and dynamic network are more easily collected. Therefore, the community detection of
dynamic and large networks is an interesting and challenging topic [49,50]. At the same
time, the constrained Louvain algorithm can be paralleled, which is the same as the classical
Louvain paralleled algorithm [30,31,51,52]. This is helpful for community detection in large
or dynamic networks.
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In the interdisciplinary area, the Louvain algorithm has many applications, such
as disease modules’ identification [53], a hierarchical clustering approach of network
embedding [54], the spatiotemporal analysis of a bike-share system [55] and the analysis
of wireless sensor networks [56,57]. Our constrained Louvain algorithms are also applied
to these fields. Moreover, modularity functions can be used to assess the training results
for neural networks [58]. Our study on the modularity function F2 may hopefully lead to
further studies that might be worth pursuing.
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