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Abstract: In today’s digital age, it is crucial to secure the flow of information to protect data and
information from being hacked during transmission or storage. To address this need, we present a
new image encryption technique that combines the Kronecker xor product, Hill cipher, and sigmoid
logistic Map. Our proposed algorithm begins by shifting the values in each row of the state matrix
to the left by a predetermined number of positions, then encrypting the resulting image using the
Hill Cipher. The top value of each odd or even column is used to perform an xor operation with all
values in the corresponding even or odd column, excluding the top value. The resulting image is
then diffused using a sigmoid logistic map and subjected to the Kronecker xor product operation
among the pixels to create a secure image. The image is then diffused again with other keys from
the sigmoid logistic map for the final product. We compared our proposed method to recent work
and found it to be safe and efficient in terms of performance after conducting statistical analysis,
differential attack analysis, brute force attack analysis, and information entropy analysis. The results
demonstrate that our proposed method is robust, lightweight, and fast in performance, meets the
requirements for encryption and decryption, and is resistant to various attacks.
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1. Introduction

Recently, a lot of digital data has been transmitted over the Internet. This data can be
in the form of semi-structured, unstructured, or structured data. In this digitally driven
world, information security is of great importance. Various organizations and institutions
invest a lot of money in the security of their resources, especially in protecting the privacy
of employees, online transactions, and confidential information stored or transmitted in
the form of video, text, audio, or image.

This means that in today’s era of the Internet of Things, everything is connected
to the Internet, and therefore, the security of information must be ensured. Here, it is
imperative to preserve the integrity, confidentiality, and availability of information system
resources on all communication channels, starting from hardware, software, data, or
telecommunications. There are various protection methods, such as antivirus programs,
firewalls, intrusion detection systems, biometric verification processes, routing controls,
and cryptographic techniques.

Text encryption is a widely used technique to secure sensitive information from
unauthorized access, which is usually achieved through the use of cryptography. However,
when it comes to image encryption, additional techniques are required to preserve the visual
content and quality of the image while ensuring its confidentiality. In this context of image
encryption, both chaotic and non-chaotic methods have been used, where chaotic methods
have been found to be more effective due to their ability to provide higher security, faster
encryption, and better resistance to attacks. Some studies, such as [1], have incorporated
chaotic systems into their image encryption algorithms with other cryptography techniques.
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The complexity of chaotic systems can provide a higher level of security for encrypted
information, and key attributes to consider when using chaos for encryption include
initial condition sensitivity, ergodicity, simplicity, and randomness. Generally, different
techniques of image encryption have been introduced and used, such as Chaos-Based
Encryption [1], which is a modern and innovative method for securing digital images.
This technique utilizes the principles of chaos theory to scramble the original image in a
way that is not only secure but also visually pleasing. Unlike traditional image encryption
methods that rely on mathematical algorithms, chaos-based image encryption uses the
inherent randomness and unpredictability of chaotic systems to generate a key that can
be used to encrypt and decrypt the image. This means that the encrypted image is not
susceptible to attacks based on the prediction or manipulation of algorithmic patterns. The
use of chaos theory in image encryption has several advantages over traditional methods
because they provide a high level of security due to their unpredictability and retain their
visual quality, which makes them ideal for applications such as medical imaging and digital
art. There are several chaotic maps that have been used to generate random sequences
of numbers in chaotic systems, including the Sine map [2], Henon map [3], and logistic
map [4]. The logistic map is a one-dimensional chaotic system that can be modified to
create more complex confusion in two- or three-dimensional space.

Transform Domain Encryption [5] is a method of securing digital images by trans-
forming the image from the spatial domain to a different domain, such as the frequency
or wavelet domain, before encryption. The goal of this technique is to utilize the unique
properties of different transform domains to enhance the security of the encrypted image.
Transform Domain image encryption has several advantages over traditional image en-
cryption methods. Firstly, the transformed image often has a lower correlation between
its adjacent pixels, which makes it more difficult for attackers to use statistical attacks to
reverse the encryption. Secondly, the transformed image often has a more robust repre-
sentation of the image content, which makes it more resilient to attacks based on image
manipulation. Examples include discrete cosine transform (DCT) and discrete wavelet
transform (DWT). This method has the drawback of being vulnerable to chosen-text attacks,
in which the attacker examines the coefficients of the plaintext and encrypted image in
order to recover the secret keys. Another weakness is the susceptibility to brute-force
attacks, which take place when the key is too small. Although we did not incorporate
any transform domain encryption techniques into our proposed study, we did integrate
multiple techniques with long and complex secret keys.

Cryptographic Hash Functions play an important role in the field of image encryption
by providing a secure method of verifying the authenticity and integrity of an encrypted
image. A cryptographic hash function is a mathematical algorithm that takes an input, such
as an image, and produces a fixed-length output, called a hash, that is unique to that input.
When an image is encrypted, the hash of the original image can be computed and stored
alongside the encrypted image. When the encrypted image is decrypted and the original
image is retrieved, a new hash of the recovered image can be computed and compared
to the stored hash. If the two hashes match, it is evidence that the encrypted image has
not been tampered with and is a secure representation of the original image. The use of
cryptographic hash functions in image encryption provides several advantages. Firstly, it
allows for the verification of the authenticity and integrity of the encrypted image without
the need to compare the entire image to the original. Secondly, it provides a way to detect
any changes made to the encrypted image, even if the changes are small and go unnoticed
by the human eye. Collision attacks, pre-image attacks, salt attacks, and rainbow table
attacks are some of the drawbacks of hash functions in image encryption. Although we
have not used a hash function, our proposed technique ensures that it is not possible to
use a fake image to obtain the secret key or tamper with the final product by comparing its
hash value with the encrypted image.

Visual Cryptography [6] is a method of encrypting images using techniques that are
based on visual perception, rather than purely mathematical algorithms. The goal of visual
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image cryptography is to make the encrypted image appear as a random, meaningless
pattern to an unauthorized observer, while still preserving the original information when
decrypted by the intended recipient. Visual image cryptography can be more secure
and robust against attacks, as it takes advantage of the human visual system and its
limitations. Another approach used in image encryption is the use of steganography
techniques. Steganography is the practice of hiding secret information [7] within an image
in a way that is not noticeable to the human eye. The goal of image steganography is to
provide a covert communication channel that can be used to transmit sensitive information
without being detected by unauthorized parties. The secret information can be in the form
of text, images, or other digital data, and it is embedded into the host image in such a
way that it does not alter the visual appearance of the image. The ability to hide sensitive
data within digital media files that are resistant to file compression, cropping, and scaling
is one of the advantages of using steganography. However, its weaknesses include easy
detection of the original information when skilled attackers use specialized tools to detect
the presence of hidden data and extract information, and the technique also has a limited
amount of data that can be hidden within other digital files. Despite these weaknesses,
steganography remains an effective way to hide sensitive data, as it allows users to embed
private information within a digital file in an inconspicuous way.

A research study titled “A Secure Image Encryption Method Using Chaotic Map”
by [8] explored the use of chaotic maps for image encryption. The authors proposed a
technique that involves dividing the image into blocks and encrypting each block using
a chaotic map. The effectiveness of this method was tested on various images and found
to provide security for the images. One of the benefits of the image encryption technique
proposed in this study is that it is simple to use and does not require a lot of computing
power, which makes it suitable for use in real-time applications. While the image encryption
technique proposed in this study has some strengths, it also has some limitations. One
potential weakness is that chaotic maps, which are used in the proposed method, can be
susceptible to statistical analysis attacks. In the study “A New Image Encryption Algorithm
Based on Chaotic Maps and DNA encoding” by [9], the authors presented a new approach
for encrypting images that combines chaotic maps with DNA encoding and Huffman
coding algorithms. The proposed method was tested on various images and found to be
effective in providing security. One advantage of this technique is that it uses multiple
encryption techniques, which can enhance the overall security of the method. However, it
is possible that the DNA encoding and Huffman coding algorithms may be susceptible to
certain attacks, which could potentially compromise the security of the proposed method.
The study “Selective image encryption method based on dynamic DNA coding and a
new chaotic map” by [10] introduced a new method for encrypting images that combines
chaotic maps with DNA sequence operations. The proposed technique was tested on
various images and found to be effective in providing security. One benefit of this method
is that it uses both chaotic maps and DNA operations, which can enhance the overall
security of the technique. However, it is possible that DNA operations may be susceptible
to certain attacks, which could potentially compromise the security of the proposed method.

For example, in the study by Xishun et al. [11], the authors propose a novel image
encryption method that combines the Kronecker product with DNA computing. The au-
thors demonstrate that their method is able to achieve high levels of security and efficiency,
making it a promising approach for image encryption. Several other researchers [12–14]
have used the Kronecker product in their image encryption techniques. For instance, in
the study by [15], the authors use the Kronecker product to combine multiple encryption
keys in order to achieve a higher level of security. Similarly, in [15], the semi-tensor product
theory is used to combine a boolean network in order to encrypt images.

The Hill cipher has been widely used in image encryption due to its simplicity and
effectiveness in providing security. In a previous study [16], the authors proposed an image
encryption technique based on the Hill cipher, which involves dividing the image into
blocks and encrypting each block using the Hill cipher algorithm. The proposed method
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was tested on various images and was found to be effective in providing security for the
images. However, the Hill cipher has some weaknesses that may make it vulnerable to
attacks. One weakness is its reliance on a fixed key, which can be discovered through a brute
force attack. Additionally, the Hill cipher is vulnerable to known-plaintext attacks, where
an attacker with access to both the plaintext and the corresponding ciphertext can easily
recover the key. This can be mitigated by using a large key size and regularly changing the
key, but it is still potentially vulnerable.

There is a lack of studies that have successfully integrated Hill cipher, chaotic map,
and the Kronecker xor product for image encryption. As such, this study represents a
significant innovation in the field by presenting a unique combination of these encryption
techniques. The combination of the Hill cipher, chaotic map, and Kronecker xor product is
expected to provide robust security for images, as each technique brings its own strengths
to the table; it should also be able to overcome the problem of plain text attacks due to
having more than one secret key. Hill cipher is a well-known and widely-used technique for
symmetric key encryption, the chaotic map is a powerful tool for generating randomness
and unpredictability, and the Kronecker product is a mathematical operation that can
be used to create complex, nonlinear transformations. By leveraging the strengths of
these techniques, this study’s proposed image encryption method is expected to be highly
effective in protecting the confidentiality and integrity of images.

Contribution of the Study

• This paper presents a novel image encryption method that combines the Hill Cipher,
sigmoid logistic map, and Kronecker xor product matrix techniques. The sigmoid
logistic map was modified in this method to generate complex pseudo-random num-
bers that are effective in encrypting images. By integrating these three techniques,
the proposed image encryption method offers a new approach to digital encryption
that has not been explored previously. The combination of the Hill Cipher, sigmoid
logistic map, and Kronecker xor product matrix brings together a range of strengths
to provide robust security for images. This contribution is expected to be a valuable
addition to the field of image encryption.

• One contribution of this paper is the use of the Kronecker bitwise exclusive OR
operation to make the image pixels more obscure and increase the size of the image.
The Kronecker product of matrices is a well-known technique that is often used for
digital watermarking, encryption, and compression. In this study, we adapted the
Kronecker product approach by replacing the product operator with the xor operator,
which generates extremely large and complex keys. These keys are then combined
with the complex keys generated by the modified sigmoid logistic map through the xor
operation. This contribution represents a new application of the Kronecker product
and xor operator for image encryption and adds to the growing body of knowledge in
this field.

• It is important to note that the Kronecker product used in this paper is the Kronecker
xor product, not the Kronecker tensor product. The Kronecker xor product can signifi-
cantly increase the size of the data being stored when used for encryption. While this
additional storage space may be a consideration, it is essential to weigh this against
the importance of protecting the sensitive information being stored. The Kronecker
xor product is an effective method for ensuring that data is secure and not accessible
to unauthorized parties.

• Another contribution of this paper is the thorough testing and evaluation of the
encrypted image, which was performed and compared to other similar studies. The
results of these tests suggest that the proposed image encryption method meets all
the criteria for good encryption. The effectiveness of the proposed method was
demonstrated through comparison with other techniques, providing confidence in its
ability to secure images against potential threats.
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The structure of this study can be summarized as follows. Section 2 provides an
overview of the basic concepts and background information necessary for understanding
the proposed image encryption method. In Section 3, the details of the encryption process
and its implementation are described and illustrated. Section 4 presents the simulation
results, analysis, and evaluation of the proposed encryption scheme, as well as a comparison
with other studies. Finally, the conclusions of the study are presented in the last section.

2. Preliminaries
2.1. Logistic Map

The logistic map results from the logistic equation, sometimes called the Verhulst
model [17], which is often used to predict the growth of the population of living beings or
the occurrence of natural phenomena. The logistic equation is described by the following
differential Equation (1).

dN
dt

=
rN(K− N)

K
(1)

where r is the Malthusian parameter [18] that determines the growth of a living organism
at a given time, and K is called a carry. If we let x = N/K, then the described Equation (1)
after dividing both sides with K becomes the following Equation (2).

dx
dt

= rx(1− x) (2)

which can be written as Equation (3).

xn+1 = rxn(1− xn) (3)

In the logistic map, “r” is a positive value known as the “biotic potential”. When the
value of “r” is greater than 3.5 and an initial parameter, “x0 ∈ [0, 1],” is used, the map
produces a chaotic system that can be used for encryption. This has been demonstrated
in reference [19], where the logistic map is used to encode the selected content of an
image. The combination of the logistic map and sine map results in a complex, chaotic
map that offers good security performance. The use of these maps in image encryption is
rapidly increasing, as demonstrated in references [19–22]. This trend is likely to continue
as researchers continue to explore the potential of chaotic maps for image encryption.

2.2. Sigmoid Function

This is a mathematical function that maps any input value between 0 and 1, mostly as
the probability of a binary number. The sigmoid function is expressed in different ways,
but the most used is defined as in Equation 4, known as the logistic function.

f (x) =
1

1 + e−x (4)

where x is the input value, e is the mathematical constant e, and f (x) is the output value.
The sigmoid function has been used in many applications, including machine learning,
neural networks, and logistic regression. As explained in depth in [23], the shape of the
sigmoid function is characterized by the steep slope around the origin and the shallow
slope away from the origin. Any changes in the input value near the origin result in larger
changes in the output values. The disadvantage of the sigmoid function is that it is prone
to saturation, which means the slope of the function becomes small as input values become
very large or very small. To overcome this limitation, this study integrates the sigmoid
function and the logistic map, which means the logistic map is the alpha, and the sigmoid
function is the omega, as seen in Equation (7).

In the proposed system, the chaotic behavior begins when the control parameter “r” is
set to 7.0158 and persists throughout the process. In order to achieve a good encryption
result, we used a value of “r” equal to 20.1245 for K2 and 20.1254 for K3. Its corresponding
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bifurcation diagram is shown in Figure 1. To obtain good and complex chaotic results, it is
important that the proposed map has a Lyapunov exponent with a positive value greater
than one. This is because the Lyapunov exponent reflects the rate of separation between
initially close trajectories in the phase space of the system, and a positive value indicates
that the system is chaotic. In this study, we have analyzed the Lyapunov exponent of
both the basic logistic map and the modified sigmoid logistic map, as shown in Figure 2.
The results demonstrate that both maps have Lyapunov exponents with positive values,
indicating that they are suitable for use in image encryption.
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2.3. Kronecker Product

The Kronecker product, also known as the tensor product, is a fundamental operation
in mathematics and engineering. It is a way to combine two matrices or tensors into a
single matrix or tensor, and has a wide range of applications, including signal processing,
image processing, machine learning, error correction, repeated replication of equilibrium,
quantum gates, and statistics in variance estimation. The concept of the Kronecker product
has a long history dating back to the 19th century, and has been extensively studied and
applied in many different fields, as explained in detail in [24].

The Kronecker product, denoted by the symbol “⊗”, is a binary operation that takes
two matrices A and B and produces a new matrix C as the result. The size of the resulting
matrix C is determined by the sizes of the matrices A and B. Specifically, if A is an m-by-n
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matrix and B is a p-by-q matrix, then the resulting matrix C is an mp-by-nq matrix. The
elements of matrix C are computed as follows in Equation (5).

C(i, j) = A(i mod m, j mod n)× ((i div m), (j div n)) (5)

where “mod” denotes the modulo operation and “div” is the integer division operator. The
Kronecker product has many useful properties, including distributivity over addition and
scalar multiplication and bilinearity. In this paper, we propose a new technique known
as the Kronecker xor product that uses the same approach as the Hadamard matrix and
Kronecker product to increase the size of the image from n× n to n2 × n2. The operation
is performed between two paired columns and adjacent rows, using the results of the
pseudo-code random number of sigmoid logistic maps as the input source leading to the
encrypted image.

2.4. Hill Cipher

The Hill cipher is a classic polyalphabetic substitution cipher technique that uses linear
algebra to encrypt and decrypt messages. It was invented by Lester S. Hill in 1929 [25,26]
and has since been widely used as a method of secure communication. In the Hill cipher,
the plaintext message is represented as a matrix of numbers, and a key matrix is used
to perform a series of matrix multiplications and additions to encode the message. The
key matrix must be invertible so that it can be used to reverse the encryption process and
decrypt the message. Some of the weaknesses when the hill cipher is used alone include
having a fixed block size in which the size of plaintext and cipher text is always the same;
this makes the cipher technique vulnerable to block analysis. Another weakness includes
known plaintext attacks, in which the adversaries can decrypt the future image if it contains
both plaintext and ciphertext.

To overcome these vulnerabilities, we propose an encryption method that integrates
the Hill cipher with the sigmoid logistic map and the Kronecker bitwise exclusive OR
operation. The resulting method is simple and effective, making it a promising candidate
for secure image communication. However, as with any cryptographic technique, it is
important to use the Hill cipher in combination with other methods to ensure the maximum
level of security.

3. Design and Implementation of the Proposed Scheme

A cryptosystem is a system designed for secure communication that employs a set of
algorithms and protocols to encode and decode messages. This study presents a technique
that combines multiple encryption methods to enhance the security of digital images. The
proposed approach first scrambles the pixels of an image and then applies confusion and
diffusion techniques. The following steps outline the process used in this study.

3.1. Image Scrambling

Step 1: The scramble process is the same as that of AES encryption [27]. The shift
rows operation works by shifting the values in each row of the state matrix to the left
by a certain number of positions. The number of positions shifted by each row in the
matrix is determined by its index. Specifically, the first row is not shifted at all, the second
row is shifted by one position, the third row by two positions, and the fourth row by
three positions; the process continues for the whole image. Figure 3 shows the example in
a matrix P of size 4 × 4.
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3.2. Diffusion of Image Pixels

Step 2. The top values of matrix P are preserved, while the top value of each odd
column is used to perform a bitwise exclusive OR operation with all values in the cor-
responding even column, excluding the top value. Similarly, the top value of each even
column is used to perform a bitwise exclusive OR operation with all values in the cor-
responding odd column, also excluding the top value to obtain matrix H. Figure 4 and
Equation (6) illustrate the process of performing a bitwise exclusive OR operation on the
matrix, where x and y represent odd and even columns, respectively, and i, j represent the
different image pixel positions within the matrix at the nth position.{

x(i, j + n) = y(i + 1, 0)⊕ x(i, j + n)
y(i, j + n) = x(i− 1, 0)⊕ y(i, j + n)

(6)
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Step 3. In this process, all elements in a matrix H′ are encrypted using the Hill Cipher
technique, in which a predefined 2× 2 secret key K is used to encrypt the diffusion matrix
H′. The process involves iterating over the 4× 4 block matrix until the entire image is
encrypted. To ensure that the encryption is secure, a modulo operation of 256 is performed
on each element of the matrix during the process, as shown in Equation (7), to have
intermediary Ciphertext K1.

K1 = mod
((

H′ × K
)
, 256

)
(7)

Step 4. In this process, a sigmoid logistic map is used to randomly generate secret
keys K2&K3 according to Equation (8). Secret key K2 is used in the exclusive operation
with secret key elements K1 to obtain intermediary Ciphertext K4, as shown in Equation (9).
This helps to ensure that the secret keys are unique and more secure.

K2&K3 =

∣∣∣∣r×( x
1 + exp(x)

)
×
(

1−
(

x
1 + exp(x)

))∣∣∣∣ (8)
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K4 = K1 ⊕ K2 (9)

Step 5. In this stage of the diffusion process, the Kronecker xor transformation process
is applied to matrix K4, expanding the image from size n× n to size n2 × n2. To further
obscure the original message, the columns or rows of the matrix are shifted by the ith

positions, where i acts as the secret key in the process. In the proposed technique, the rows
are moved down, and the value of i is chosen as i = 3. Each element of the matrix K4
undergoes a bitwise exclusive OR operation with the other elements of K4, while its value
remains unchanged to form the image (secret keys) K5. The Kronecker xor product, as
shown in Equation (11), illustrates the operation process on a 2× 2 block matrix M, which
is a part of K4, as shown in Equation (10). This helps to ensure that the diffusion process is
secure and resistant to attacks. Figure 5 shows the expansion of the 2× 2 encrypted image
that results in the 4× 4 matrix.

M =

[
i, j i + 1, j

i, j + 1 i + 1, j + 1

]
(10)

M⊕M⇐ K5 =


(i, j) (i, j)⊕ (i + 1, j) (i, j)⊕ (i + 1, j) (i + 1, j)

(i, j)⊕ (i, j + 1) (i, j)⊕ (i + 1, j + 1) (i, j + 1)⊕ (i + 1, j) (i + 1, j)⊕ (i + 1, j + 1)
(i, j)⊕ (i, j + 1) (i, j + 1)⊕ (i + 1, j) (i, j)⊕ (i + 1, j + 1) (i + 1, j)⊕ (i + 1, j + 1)

(i, j + 1) (i, j + 1)⊕ (i + 1, j + 1) (i, j + 1)⊕ (i + 1, j + 1) (i + 1)⊕ (j + 1)

 (11)
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Figure 5. Kronecker xor product concept.

The use of the Kronecker xor product aims to obscure the original message and
prevent unauthorized access to the information being transmitted. By expanding the
image and shifting the rows or columns, the resulting encrypted image can be made to
appear significantly different from the original, making it more difficult for unauthorized
users to infer the contents of the message. Additionally, the use of a secret key in the
transformation process adds an additional layer of protection, as the original message can
only be decrypted with knowledge of the key.

Step 6. The exclusive operation is performed between intermediary ciphertext K5 and
secret keys K3 to obtain the last encrypted image C, as shown in Equation (12).

C = K3 ⊕ K5 (12)

3.3. Flowchart of the Encrypted System

The following Figure 6 shows the encryption process of the whole operation of this
proposed encryption mechanism.
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3.4. Decryption Step for Proposed Algorithm

The decryption process is described in the pseudo-code at the end of this paper in
Appendix A. The steps for decrypting an encrypted image are provided below.

Step 1. Input an encrypted image (C).
Step 2: Perform a bitwise exclusive OR operation between image (C) and secret key

(K3) from the sigmoid logistic map to obtain an intermediate image (K5).
Step 3: Compress the intermediate image (K5) using the Kronecker xor operation to

obtain a new image (K4).
Step 4: Perform a bitwise exclusive OR operation between the new image (K4) and

secret keys (K2) from the sigmoid logistic map to obtain another new image (K1).
Step 5: Decrypt the new image (K1) using the inverse of the hill cipher and a key (K

inverse) to obtain an intermediate image (H).
Step 6: For each element in an even column of the intermediate image (H), perform a

bitwise exclusive OR operation with the top value of the corresponding odd column. For
each element in an odd column, perform a bitwise exclusive OR operation with the top
value of the corresponding even column, while preserving the top values of matrix (H).

Step 7: Determine the number of rows and columns in the intermediate image (H).
Iterate over each row in the image (H), starting from the second row (the first row is
not shifted). For the current row, shift it to the right by its index within the matrix by
concatenating the portion of the row that was shifted off the end with the portion that was
not shifted until you obtain the plain image (P).

4. Simulation Results and Analysis

In this study, the image sizes 16× 16, 32× 32, 64× 64, 128× 128 and 256× 256 were
used as the dataset for encryption. Insufficient resources, such as computers with high
processing speed and good resolution, have hindered this study’s ability to conduct experi-
ments on data sets exceeding 256× 256 image pixels, including those up to 12 megapixels.
The images used for testing the proposed encryption are presented in Figure 7. The se-
cret key of the Hill cipher was comprised of Kh = [8 7; 9 6], and r = [20.1245, 20.1254],
x0 = 0.71234 which serve as the control parameter for the logistic map and the initial
conditional parameter, respectively.
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4.1. Key Space

The proposed encryption algorithm utilizes a total of three different keys, which
significantly increases the key space and makes it more difficult for unauthorized parties to
decipher the encrypted information. The use of three keys in the proposed algorithm not
only satisfies the requirements but also surpasses the standards set by IEEE [28], making
it an ideal and secure option for encryption. These keys include K, which is the secret
key for hill cipher, as well as K2 and K3, generated from the modified sigmoid logistic
function. According to the guidelines set forth by the IEEE [28], a key space of at least 2100 is
necessary for strong encryption. The Hill cipher (K) comprises four different positions due
to the 4 × 4 square matrix, each of which has 254 possible values (ranging from 0 to 255).
This results in a total of 2254 combinations or key spaces. For the case of the Sigmoid logistic
map (K2 and K3), the value of the key length varies depending on the size of the image.
When using an image of 256 × 256, the resulting key length is 65,536. The keys consist of
only two positions; each position can have two possible values (0 and 1 when converted
to binary numbers), leading to a total combination of 265536. The same approach can be
used for the image of sizes 128 × 128, 512 × 512, and 32 × 32 to obtain the key length and
number of key spaces. Additionally, as shown in Table 1, the proposed algorithm compares
favorably to other studies of a similar nature in terms of averages, further demonstrating
its effectiveness as an encryption method. Overall, the use of multiple keys in the proposed
algorithm effectively strengthens the security of the encryption and makes it a reliable
choice for protecting sensitive information. Equation (13) is used to find the number of key
spaces for three keys in general.

keys =
(

1015×3
)
≈ 2149 (13)

Table 1. Key space comparison.

Proposed Ref [29] Ref [30] Ref [31] Ref [32]

Average 2149 2555 2196 2187 2199

4.2. Key Sensitivity

It is crucial that encryption algorithms are sensitive to even small changes in the secret
key. This is because even a slight change in the key can significantly affect the output. As
shown in Figure 8, we tested the initial value x0 = 0.0117 of our proposed algorithm during
the encryption process and slightly changed it to x0 = 0.0117± 10±14 during decryption.
The results demonstrate that our algorithm is highly sensitive to changes in the key, making
it an effective and secure method for protecting data. This is an important consideration
when choosing an encryption algorithm, as it ensures that the output will be protected
even if the key is slightly altered during the encryption or decryption process.
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4.3. Noise and Data Loss Analysis

When transmitting information online, it is important to consider the potential for it
to become lost or overwhelmed by unrelated and unimportant data, known as noise. If
digital images are not properly managed, this can negatively impact their usefulness when
attempting to analyze, interpret, or retrieve the information they contain. It is important
to handle digital information with care to ensure that it remains clear and meaningful.
As shown in Figure 9, we evaluated the decryption outcomes of encrypted images that
underwent varying levels of data loss. The recovery test was conducted across a range
of data loss from 0.01% to 0.9%, and the results revealed that data loss up to 0.5% can be
effectively recovered. Figure 10 shows the effectiveness of the proposed mechanism in
handling various forms of noise, as demonstrated through the noise effect test. The test
covered a range of gap sizes from 0.01% to 0.2% when applied to encrypted images, and the
recovery results indicated that data up to 0.19% could be successfully recovered. However,
beyond that point, the output quality deteriorates, as evidenced at the 0.2% level. The
results demonstrate the capability of the mechanism to deal with various degrees of noise
as well as data loss to a considerable extent. Our approach proves to be highly efficient in
recovering lost or corrupted data during transmission. The design of the method aims to
be highly effective in retrieving information, even in the presence of significant distortion
during transmission.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 24 
 

 
(a)loss  0.01%  

 
(b)loss  0.03%  

 
(c)loss 59%  

 
(d)loss 90%  

(e)recover  loss 0.01%  (f)recover  loss 0.03%  (g)recover  loss 59%  (h)recover  loss  90%  

Figure 9. Data loss and recovery in different degrees. 

 
(a)pepper & salt 0.1%  

 
(b)pepper & salt 0.01%  

 
(c)pepper & salt 0.05%  

 
(d)pepper & salt 0.02%  

 
(e)pepper & salt 0.2%  

 
(f)recover

pepper & salt 0.1
 

 
(g)recover

pepper&salt 0.01
 

 
(h)recover

pepper & salt 0.05
 

 
(i)recover

pepper & salt 0.02
 

 
(j)recover

pepper & salt 0.2
 

Figure 10. Noise effect on ciphertext and recovery image in different degrees. 

4.4. Differential Attack 
Two methods, namely, the number of pixel change rate (NPCR) and the unified av-

erage change intensity (UACI), are used to measure the resistance of differential attacks. 
The number of pixel change rate is a measure of the difference between two images. It is 
calculated by comparing the number of pixels that have changed between the two images 
and expressing the result as a percentage. An ideal NPCR value for an encrypted image 
is above 99%, indicating that all pixels have been significantly altered from their original 
positions. The UACI is calculated by comparing the pixel values of two images and quan-
tifying the average intensity of the changes between the two images. It is expressed as a 
percentage and can range from 0 to 100, with higher values indicating a greater difference 
between the two images. To calculate the UACI, the differences between the pixel values 
of the two images are first determined. These differences are then averaged and expressed 
as a percentage by dividing the average difference by the maximum possible difference 
between the pixel values and multiplying by 100. The two methods are calculated using 
the following mathematical Equations (14) and (15). 

( )
1 1

1 , j 100%
M N

i j
NPCR D i

M N = =

= ×
×   (14)

Figure 9. Data loss and recovery in different degrees.



Appl. Sci. 2023, 13, 4034 13 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 24 
 

(e)recover  loss 0.01%  (f)recover  loss 0.03%  (g)recover  loss 59%  (h)recover  loss  90%  

Figure 9. Data loss and recovery in different degrees. 

 
(a)pepper & salt 0.1%  

 
(b)pepper & salt 0.01%  

 
(c)pepper & salt 0.05%  

 
(d)pepper & salt 0.02%  

 
(e)pepper & salt 0.2%  

 
(f)recover

pepper & salt 0.1
 

 
(g)recover

pepper&salt 0.01
 

 
(h)recover

pepper & salt 0.05
 

 
(i)recover

pepper & salt 0.02
 

 
(j)recover

pepper & salt 0.2
 

Figure 10. Noise effect on ciphertext and recovery image in different degrees. 

4.4. Differential Attack 
Two methods, namely, the number of pixel change rate (NPCR) and the unified av-

erage change intensity (UACI), are used to measure the resistance of differential attacks. 
The number of pixel change rate is a measure of the difference between two images. It is 
calculated by comparing the number of pixels that have changed between the two images 
and expressing the result as a percentage. An ideal NPCR value for an encrypted image 
is above 99%, indicating that all pixels have been significantly altered from their original 
positions. The UACI is calculated by comparing the pixel values of two images and quan-
tifying the average intensity of the changes between the two images. It is expressed as a 
percentage and can range from 0 to 100, with higher values indicating a greater difference 
between the two images. To calculate the UACI, the differences between the pixel values 
of the two images are first determined. These differences are then averaged and expressed 
as a percentage by dividing the average difference by the maximum possible difference 
between the pixel values and multiplying by 100. The two methods are calculated using 
the following mathematical Equations (14) and (15). 

( )
1 1

1 , j 100%
M N

i j
NPCR D i

M N = =

= ×
×   (14)

( ) ( )1 2

1 1

, ,1 100%
255

M N

i j

C i j C i j
UACI

M N = =

−
= ×

×   (15)

( ) ( ) ( )
( ) ( )

1 2

1 2

, ,0
,

, ,1
C i j C i jiff

D i j
C i j C i jiff

=
=  ≠

 

where M N×  represent the size of the image in terms of width and height, and 1c  and 

2c  are two cipher images after changing one pixel position of their original plain image. 

Figure 10. Noise effect on ciphertext and recovery image in different degrees.

4.4. Differential Attack

Two methods, namely, the number of pixel change rate (NPCR) and the unified
average change intensity (UACI), are used to measure the resistance of differential attacks.
The number of pixel change rate is a measure of the difference between two images. It
is calculated by comparing the number of pixels that have changed between the two
images and expressing the result as a percentage. An ideal NPCR value for an encrypted
image is above 99%, indicating that all pixels have been significantly altered from their
original positions. The UACI is calculated by comparing the pixel values of two images and
quantifying the average intensity of the changes between the two images. It is expressed as
a percentage and can range from 0 to 100, with higher values indicating a greater difference
between the two images. To calculate the UACI, the differences between the pixel values of
the two images are first determined. These differences are then averaged and expressed
as a percentage by dividing the average difference by the maximum possible difference
between the pixel values and multiplying by 100. The two methods are calculated using
the following mathematical Equations (14) and (15).

NPCR =
1

M× N

M

∑
i=1

N

∑
j=1

D(i, j)× 100% (14)

UACI =
1

M× N

M

∑
i=1

N

∑
j=1

C1(i, j)− C2(i, j)
255

× 100% (15)

D(i, j) =
{

0
1

i f f
i f f

C1(i, j) = C2(i, j)
C1(i, j) 6= C2(i, j)

where M × N represent the size of the image in terms of width and height, and c1 and
c2 are two cipher images after changing one pixel position of their original plain image.
Table 2 presents the NPCR and UACI values for the encrypted images. To find the average
NPCR or UACI, we add up the results for all the image sizes and then divide by the total
number of images. Table 2 shows the average NPCR and UACI values for about 24 images
of different sizes. When comparing the NPCR and UACI values of two images of the same
type and the change in pixel values, Table 3 compares these values with those from other
similar studies using the Lena image of size 256 × 256. These results demonstrate the
effectiveness of the proposed encryption in resisting differential attacks.
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Table 2. NPCR and UACI values of Cipher text images.

Algorithm Average Lena
(128×128)

Lena
(64×64)

Lena
(32×32)

Cameraman
(64×64)

Pepper
(64×64)

Pepper
(32×32)

Baboon
(32×32)

NPCR 99.62314 99.6073 99.6213 99.6912 99.5861 99.6639 99.6541 99.5781
UACI 33.3955 33.4477 33.4213 33.4102 33.3896 33.3581 33.4123 33.3514

Table 3. The proposed method with other encryption methods.

Algorithm Proposed Ref [33] Ref [32] Ref [34] Ref [35] Ref [36]

NPCR 99.62314 99.6094 99.62 99.6273 99.6101 99.60
UACI 33.3955 33.4635 33.50 33.4691 33.45.93 33.45

4.5. Histogram

The shape of the histogram of an image is influenced by the distribution of its pixel val-
ues. A histogram can be normal, skewed to the right, or skewed to the left. In the case of en-
crypted images, a flat histogram indicates a successful encryption process. Figure 11 shows
encrypted and decrypted images with their corresponding histograms, while Figure 12
presents the spatiotemporal histogram of plaintext and ciphertext images of various images.
These results suggest that the proposed encryption algorithm is effective in protecting
against statistical attacks.
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Figure 12. Spatiotemporal histogram of the plaintext image and the ciphertext image.

4.6. Information Entropy

Information entropy is a technique used to assess the randomness of variables in an
image. When applied to both encrypted and original images, it can help to determine the
variables present in the image. A high value of information entropy, close to 8, indicates
a high level of randomness in the variables and a strong image encryption mechanism.
Information entropy can be mathematically calculated using Equation (16).

e =
256

∑
i=1

p(i) log
(

1
p(i)

)
(16)

In this study, we have analyzed the values of information entropy for both plain and
encrypted images, and the results are presented in Table 4. In addition, Table 5 presents the
average results of the Lena image encrypted with all image sizes used in this study and
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compares them to those of other similar studies. These tables provide valuable insights
into the security and performance of the proposed encryption method.

Table 4. Information entropy values of Ciphertext images.

Algorithm Lena
(128×128)

Lena
(64×64)

Cameraman
(64×64)

Pepper
(64×64)

Pepper
(32×32)

Baboon
(32×32)

Rice
(256×256)

Plain Image 6.4971 6.4512 6.7457 7.3801 7.5264 6.5335 7.5468

Encrypted image 7.9981 7.9978 7.9991 7.9954 7.9991 7.8546 7.9989

Table 5. Information entropy comparison.

Proposed (Average) Ref [19] Ref [29] Ref [33] Ref [35] Ref [37] Ref [38]

Entropy 7.9992 7.999284 7.9022 7.996513 7.9977 7.9970 7.9974

4.7. Correlation

Correlation analysis is a statistical method used to evaluate the strength and direc-
tion of the relationship between two variables. The correlation coefficient, a measure of
association, quantifies the degree to which two variables are linearly related. The Pearson
correlation coefficient is the most commonly used measure of association and can range
from −1 to 1, with −1 indicating a perfect negative correlation, 1 indicating a perfect
positive correlation, and 0 indicating no correlation. When the correlation coefficient value
is significantly different from 0 on the encrypted image, it becomes difficult or impossible
to interpret the data without using the appropriate decryption key or method. An effective
image encryption scheme should result in a low correlation between adjacent pixels, which
are randomly distributed in order to ensure secure protection of the image, as seen in
Figure 13d–f. In the case of a plain image, the correlation among variables is concentrated,
making it easier to predict the original image, as seen in Figure 13a–c. Equation (17) shows
how to calculate the correlation coefficient of two variables in an image. Table 6 presents
the correlation coefficient for plain and encrypted images of Lena, House, and Cameraman
in various sizes and the average value of the horizontal, vertical, and diagonal correlation
and compares the results to those of previous studies on the encrypted Lena image. This
demonstrates the effectiveness of our proposed encryption techniques and their potential
for use in image encryption.

rxy =
cov(x, y)√
(x)
√
(y)

(17)

where var(x) = 1
N

N
∑

i=1

(
xi − E(x)2

)
, cov(x, y) = E([x− E(X)][y− E(Y)]), E(x) = 1

N

N
∑

i=1
xi,

E(y) = 1
N

N
∑

i=1
yi.

In our proposed scheme, the variables xi and yi represent the grayscale values of two
adjacent pixels, with E(x) denoting the average of xi and E(y) denoting the average of yi.
By applying Equation (16) to the proposed system, we observed a significant difference
between the original and encrypted images. This indicates that the proposed system is
resistant to statistical attacks.
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encrypted graph, respectively.

Table 6. Comparison of average correlation of ciphertext.

Image
Plaintext Ciphertext

Average
Horizontal Vertical Diagonal Horizontal Vertical Diagonal

House(128 × 128) 0.9507 0.9396 0.9058 −0.0001 −0.0085 0.0009 −0.0025
Cameraman(64 × 64) 0.8908 0.9315 0.8443 0.0056 −0.0075 0.0159 0.0047

Lena (128 × 128) 0.8988 0.8573 0.9481 0.0049 −0.0022 −0.0042 −0.00053
Ref [29] - - - 0.001136 0.00080 0.00147 0.00113
Ref [30] - - - 0.002225 0.003075 0.001625 0.00230
Ref [39] - - - 0.0021 0.0029 0.0023 0.00243

4.8. Peak Signal-to-Noise Ratio (PSNR) and Mean Square Error Analysis (MSE)

Evaluating the quality of encrypted images is an important task in ensuring that
the original image is accurately represented after being processed through an encryption
algorithm. Two commonly used metrics for this purpose are the mean square error (MSE)
and the peak signal-to-noise ratio (PSNR) [40]. The MSE is a measure of the similarity
between the encrypted image and the original image. A low MSE value indicates that
the two images are similar and that the encrypted image is of high quality, while a high
MSE value indicates that the encrypted image is of poor quality. The MSE is calculated by
subtracting the encrypted image from the original image, as shown in Equation (18). The
PSNR is another useful metric for evaluating the quality of encrypted images. The higher
the PSNR, the better the image quality; a lower PSNR value is an indicator of poor image
quality. The PSNR is calculated mathematically, as shown in Equation (19). P(i, j) and
E(i, j) represent the original and encrypted image pixels consecutively in this context. The
mean square error (MSE) is always zero when the pixel values of the original and encrypted
images are exactly the same (when P(i, j) and E(i, j) are equal). Table 7 demonstrates the
effectiveness of the proposed image encryption method with the high values of the mean
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squared error (MSE) and low values of the peak signal-to-noise ratio (PSNR), which was
conducted using images that were 128 pixels by 128 pixels in size. These results suggest that
the proposed method is capable of effectively protecting the confidentiality of images, and
thus, has the potential to make a significant contribution to the field of image encryption.

MSE =
1

M× N

M

∑
i=1

N

∑
j=1

(P(i, j)− E(i, j))2 (18)

PSNR = 10× log10
M× N√

MSE
(19)

Table 7. Mean squared error (MSE) and peak signal-to-noise ratio (PSNR).

Cameraman Lena Pepper Rice House

MSE 107.856 89.2446 94.24519 101.1521 130.143
PSNR 8.3741 8.5655 8.4310 9.3546 9.2214

5. Conclusions

In this paper, we propose a new and innovative method for encrypting images that
combines a variety of techniques to provide robust security. The proposed mechanism
includes image scrambling, Hill cipher encryption, and the use of a sigmoid logistic map
and Kronecker xor product techniques. The modified sigmoid logistic map, in particular,
generates complex and secure pseudo-random numbers that are ideal for use in encryption.
This enhances our understanding of digital encryption and helps to ensure the security of
the proposed system.

The use of the Kronecker xor product in encryption can significantly increase the size
of the data being stored. While the increased storage space required by the Kronecker xor
product may be a consideration, it is important to balance this against the value of the
data being protected. In today’s digital age, data breaches and cyber attacks are becoming
increasingly common, and the consequences of such events can be severe. By integrating
techniques such as the Kronecker xor product to encrypt data, we can ensure that the
proposed encryption algorithm is secure and can protect information and minimize the
risk of data breaches and cyber attacks.

To verify the effectiveness and reliability of the proposed mechanism, we conducted a
series of experiments and analyzed the results using various methods such as statistical
attack analysis, differential attack analysis, brute force attack analysis, and information
entropy analysis. The results of these tests demonstrate that the proposed system is highly
secure and efficient and meets all the requirements necessary for protecting information
stored using images. Overall, our proposed image encryption mechanism represents
a significant advancement in the field and offers a reliable and effective way to secure
sensitive information.
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Appendix A

Algorithm A1. Encryption Pseudo-code.

% Read an image from file
P = imread(‘my_image.png’);
% Perform the shift rows operation on the image
shifted_image = shift_rows(P);
function shifted_image = shift_rows(P)
% Shift rows operation for an image
% Determine the dimensions of the input image
[height, width, channels] = size(P);
% Check that the image can be divided into 4 × 4 blocks
if mod(height, 4) ~= 0 || mod(width, 4) ~= 0

error(‘Image dimensions are not divisible by 4.’);
end
% Initialize the shifted image
P = zeros(size(P));
% Iterate through each 4 × 4 block in the image
for i = 1:4:height

for j = 1:4:width
% Extract the current 4 × 4 block
block = P(i:i + 3, j:j + 3, :)
% Shift each row to the left by its index minus 1
for k = 1:4

block(k,:) = circshift(block(k,:), [0, − (k − 1)]);
end
% Store the shifted block in the output image
P(i:i + 3, j:j + 3, :) = block;

end
end
For each odd column i:

Let top_value_i = P [1][i]
For each even column j corresponding to column i:

If j > 1:
For each row k:

P[k][j] = P[k][j] XOR top_value_i
For each even column i:

Let top_value_i = P [1][i]
For each odd column j corresponding to column i:

If j > 1:
For each row k:

P[k][j] = P[k][j] XOR top_value_i
% Divide the image into 4 × 4 blocks
H’ = mat2cell(P, 4*ones(1,size(P,1)/4), 4*ones(1,size(P,2)/4));
% Encrypt each block using the Hill Cipher algorithm
for i = 1:size(H’,1)
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Algorithm A1. Cont.

for j = 1:size(H’,2)
% Convert the block into a column vector
v = reshape(H’{i,j}, [], 1);
% Compute the product of the key matrix and the column vector
c = mod(K*v, 256);
% Convert the resulting column vector back into a 4 × 4 block
K1{i,j} = reshape(c, size(H’{i,j}));

end
end
% Concatenate the encrypted blocks to form the encrypted image
E = cell2mat(K2);
for i = 1:n

% Generate new secret key value from sigmoid-logistic map
x = r*x/(1 + eˆx)*(1 − x/(1 + e6ˆx));
k2(i) = uint8(255*x); % Scale to 8-bit unsigned integer (0–255)

end
K4 = bitxor(K1, k2);
// Apply Kronecker xor transformation to expand matrix K4 to size Nˆ2 x Nˆ2
K5= kron(K4, ones(N, N));
// Shift rows of M by NTH positions
K5= circshift(K5, [N, 0]);
// Apply bitwise exclusive OR operation to each element of M with other elements of M, keeping its value unchanged
for i = 1:Nˆ2

for j = 1:Nˆ2
K5(i,j) = bitxor(K5(i,j), K5(mod(i + NTH-1, Nˆ2) + 1, mod(j + NTH-1, Nˆ2) + 1));

end
end
K3 = zeros(size(K5));
for i = 1:numel(K5)

x = r*x/(1 + exp(x))*(1 − x/(1 + exp(eˆx)));
K3(i) = mod(round(x*256), 256); % modulo 256 to match the image data
end
% Load the K5 matrix
load(‘K5.mat’); % assuming K5 is saved in a .mat file
% XOR K5 with the sigmoid logistic keys k3
ciphertext = bitxor(K5, K3);

Algorithm A2. Decryption pseudo-code.

Input image C
M->xor(C,key2)
function M = inverseKroneckerxor(matrix M, int I)

M = shiftRowsUp(M, I)
M = contractMatrix(M)
for i = 1 to M.numRows

for j = 1 to M.numColumns
M[i][j] = M[i][j] XOR M[i][j − 1] xor M[i − 1][j] xor M[i − 1][j − 1]

return K4
end function
numkeys = K4
function numKeys = inverseGenerateSecretKeys(secretKeys, numKeys)

% Undo bitwise xor with secretKeyElements
secretKeyElements = [1, 2, 3, 4];
keys = xor(secretKeys, secretKeyElements);
% Use inverse logisticMap function to generate numKeys
numKeys = inverseLogisticMap(keys);
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Algorithm A2. Cont.

end
state = numkeys;
for i = 1:size(state, 1)

for j = 1:size(state, 2)
if i == 1 && j == 1 % Skip top-left value

continue
end
if i == 1 % Handle top row

if mod(j, 2) == 0 % Even column
state(i, j) = xor(state(i, j), state(i, j − 1));

else % Odd column
state(i, j) = xor(state(i, j), state(i + 1, j));

end
else % Handle all other values

if mod(j, 2) == 0 % Even column
state(i, j) = xor(state(i, j), state(i, j − 1));

else % Odd column
state(i, j) = xor(state(i, j), state(i−1, j));

end
end

end
end

end
function state = inverseShiftRows(state)

for i = 2:n-size % Shift rows 2-n-size
P(i,:) = circshift(state(i,:), [0, −(i − 1)]);

end
end

Table A1. Sample vector.

IMAGE SIZE NPCR UACI ENTROPY PSNR MSE

LENA

32 × 32 99.69120 33.41020 7.99650 8.93950 94.56743
64 × 64 99.62130 33.44530 7.99780 8.43100 94.24519
128 × 128 99.60730 33.44770 7.90040 8.79068 96.54386
256 × 256 99.6891 33.32720 7.89930 8.08182 98.56431

CAMERAMAN

32 × 32 33.34790 7.90010 8.17186 105.90900
64 × 64 99.58610 33.35810 7.99936 8.85879 105.99800
128 × 128 99.69970 33.47560 7.90560 8.37410 107.85600
256 × 256 99.99970 33.49106 7.90060 8.20933 107.98750

PEPPER

32 × 32 99.58810 33.41230 7.99910 8.14837 94.67875
64 × 64 99.62570 33.34992 7.99540 8.55323 94.89750
128 × 128 99.61949 33.49137 7.99610 8.96133 94.21672
256 × 256 99.60714 33.45404 7.99730 8.43100 94.24519

BABOON

32 × 32 99.57810 33.35140 7.89970 9.37974 99.90874
64 × 64 99.62429 33.48444 7.86610 9.43248 100.19087
128 × 128 99.63179 33.31653 7.84320 9.27922 98.98765
256 × 256 99.61445 33.46576 7.85460 9.12840 99.99876

RICE

32 × 32 99.62432 33.30754 7.99930 9.02900 107.87650
64 × 64 99.63109 33.42864 7.99540 9.39561 105.98760
128 × 128 99.60689 33.40145 7.90870 9.35469 101.15210
256 × 256 99.62870 33.40266 7.99890 9.69764 105.90800

HOUSE

32 × 32 99.63182 33.32305 7.91681 9.66016 133.87900
64 × 64 99.61221 33.48850 7.92955 9.88513 128.02300
128 × 128 99.62649 33.90039 7.96809 9.22140 130.14300
256 × 256 99.60129 33.59067 7.90526 9.32130 129.85400
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