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Abstract: Nowadays, the time lag between vulnerability discovery and the timely remediation of the
vulnerability is extremely important to the current state of cybersecurity. Unfortunately, the silent
security patch presents a significant challenge. Despite related work having been conducted in this
area, the patch identification lacks interpretability. To solve this problem, this paper first proposes
a trusted multi-view security patch identification system called TMVDPatch. The system obtains
evidence from message commit and code diff views respectively, and models the uncertainty of each
view based on the D-S evidence theory, thereby providing credible and interpretable security patch
identification results. On this basis, this paper performs weighted training on the original evidence
based on the grey relational analysis method to improve the ability to make credible decisions
based on multi-views. Experimental results show that the multi-view learning method exhibits
excellent capabilities in terms of the complementary information provided by control dependency
and data dependency, and the model shows strong robustness across different hyperparameter
settings. TMVDPatch outperforms other models in all evaluation metrics, achieving an accuracy of
85.29% and a F1 score of 0.9001, clearly verifying the superiority of TMVDPatch in terms of accuracy,
scientificity, and reliability.

Keywords: security patch; multi-view learning; evidential deep learning; grey relational analysis

1. Introduction

In recent years, cyber attacks have emerged in a constant stream within turbulent net-
work environment, and software vulnerabilities are still the main threat to network security.
The most effective way to address this threat is still to patch the vulnerability. According
to the Snyk report [1], approximately 35% of the vulnerabilities are fixed within 20 days,
while 36% of the vulnerabilities require 70 days or more, resulting in an average resolution
time of 68 days. At the same time, its 2022 Open Source Security Trends Analysis [2] finds
that supply chain attacks are increasingly prevalent. The entire supply chain is an attractive
attack vector because cyber attackers can attack vulnerabilities in development pipelines
without changing software repositories. This means that after vulnerability discovered, it
often requires a lot of time for vulnerability patch, and the security threat brought by the
response time to address vulnerability is greatly amplified in software supply chain attacks.

For instance, a high impact remote code execution vulnerability (CVE-2021-44228
(https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228 (accessed on Decem-
ber 2021)) was disclosed in Apache Log4j2 in 2021. Apache Log4j is the foundational
logging component, with widespread use across numerous applications. According to the
armis report [3], attackers around the world have been trying to exploit the vulnerability
since its discovery. Numerous vendors have observed attempts to distribute coin miners,
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ransomware, remote access Trojans, web shells, and botnet malware. In just one week,
approximately 35% of users were active attacks through the vulnerability, and 31% were
exposed to Log4j-related threats on unmanaged devices. The security vendor said it had
observed as many as 30,000 attack attempts against its users. Other vendors have reported
similar activity. At the same time, according to the armis report [4], the Log4j versions
released from 2013 to 2021 have vulnerabilities, the library is ubiquitous. To go a step
further, it may take years to get rid of the danger, and a large number of programs may
never be patched.

Therefore, the time difference between vulnerability discovery and actual vulnera-
bility patch is extremely important for the current state of network security. After the
manufacturer publishes the announcement of the vulnerability patch, the developers often
package and upload the code changes with descriptions through submission. Ideally, af-
ter the vendor releases the patch, other projects involving this vulnerability will be updated
with the patch in a timely manner. But the reality is that there is frequently a significant
delay between the actual fix and the release of the patch. In order to fix the vulnerability,
the maintainers of each project need to monitor the patch announcement released by the
manufacturer, so as to complete the emergency patching in time.

Unfortunately, the silent fix of the vulnerability poses a significant challenge. Out of
fear of reputation and the security threat brought by the vulnerability disclosure, vendors
often secretly implement vulnerability fixes without assigning the CVE numbers, or even
avoid descriptions of vulnerabilities in the commits. According to GitHub’s 2019 report [5],
about 7.6 million security alerts were fixed, primarily through code changes. Meanwhile,
only 12,174 CVEs were disclosed in the same year. As a result, a large number of security
patches will not be associated with CVE(Common Vulnerabilities and Exposures) numbers,
but will be silently fixed without official reports. Despite this situation, attackers can still
directly analyze the code differences to find related vulnerabilities and develop tools for
secret exploitation. However, in addition to the security patches, there are a large number
of non-security patches in the code changes submitted by the vendors. Additionally, non-
security patches may include bug fixes and functional patches. Table 1 summarizes the
related work in the security patch identification.

Table 1. The related work in the security patch identification.

Ref Year Program
Language Labeled Data Open Source

Dataset
Open Source

Code Method Object of Study

[6] 2019 C/C++ 3272 7 7 Heuristics Code Diff

[7] 2021 C/C++ 40,523 Part 7 Deep learning Commit Message &
Code Diff

[8] 2020 C/C++ 9247 3 3 Heuristics Commit Message &
Code Diff

[9] 2018 JAVA 2715 3 7

Classic
Machine
Learning

Commit Message &
Code Diff

[10] 2021 JAVA 1950 Part 7 Deep learning

The prior and
posterior versions of

source code in
the commit

[11] 2020 C/C++ 82,403 Invalidation 3 Deep learning code diff

[12] 2019 C/C++ 82,403 Invalidation 3 Deep learning Commit Message &
Code Diff

[13] 2021 C/C++ 38,041 3 3 Deep learning

Commit message &
The prior and

posterior versions of
source code in

the commit
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Table 1. Cont.

Ref Year Program
Language Labeled Data Open Source

Dataset
Open Source

Code Method Object of Study

[14] 2020 C/C++ 341,767 7 7
Symbolic

Interpretation

The prior and
posterior versions of

source code in
the commit

[15] 2021 C/C++ 3,329,286
Sample Pairs 7 7 Heuristics Commit Message &

Code Diff

Therefore, how to efficiently identify security patches for vulnerability fixes in a large
number of code change submissions is crucial. To solve this problem, this paper proposes an
efficient and reliable security patch identification system called TMVDPatch. In this paper,
we propose a multi-view decision system for security patch identification that accounts
for classification uncertainty using D-S(Dempster-Shafer) evidence theory. The method
parses the control dependency graph (CDG) and data dependency graph (DDG) of the
source code, and combines the graph diff with commit message to capture the semantic
information and syntax information of the code change. And then, the system uses the
results as evidence in the multi-view learning framework, and determines the relevance of
different views as the weight of evidence input according to the Grey Relational Analysis
method with self-learning correction. Using this approach to self-learning and correction,
we can improve the ability of trusted multi-view decision-making.

In order to effectively evaluate the identification ability of the system, we conducted
related experiments on the large-scale real patch dataset called PatchDB [16]. The experi-
mental results show that we can achieve a comprehensive accuracy of 85.29%, and the F1
score is 0.9001. At the same time, the precision is 85.42% and the recall is 95.11%.

In summary, the contributions of this work are summarized below:

1. We first propose a trusted multi-view security patch identification system called
TMVDPatch. The system adopts a multi-view evidence fusion strategy. Based on the
subjective uncertainty learned from each view, the evidence is weighted by the Grey
Relational Analysis method to provide credible and interpretable decisions, thereby
achieving efficient and scientific security patch identification.

2. We propose a representation method for the semantic and syntactic information of
security patches. The method regards the multi-view evidence, including control
dependency information, data dependency information and description information,
so as to comprehensively represent the semantic and syntax information of security
patches. Compared to learning from commit message alone, the multi-view represen-
tation method shows an excellent ability in control-dependent and data-dependent
complementary information.

3. We conduct a large number of experiments on the model hyperparameter settings
and importance evaluation. The results demonstrate the capability boundary of
TMVDPatch and the robustness of the model to the hyperparameter settings.

4. We conduct related experiments on PatchDB, a large-scale real patch dataset. The
results show that the TMVDPatch model outperforms other models in all metrics,
achieving an accuracy of 85.29% and a F1 score of 0.9001. The superiority of TMVD-
Patch in terms of accuracy, scientificity and reliability is clearly verified.

2. Background and Related Work
2.1. Security Patch Identification

A software patch is a record of changes made to source code between two versions,
and the patch file is generated by the diff command. A patch file consists of “blocks” of code
modifications (parts prefixed with @@) that indicate the location of modifications, which
represent code patches by recording additions and deletions of the code lines. The two
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main types of software patches are security patches and non-security patches. Non-security
patches include primarily bug fixes and functional patches. Bug fix patches are mainly
used for program optimization, and functional patches are mainly used to add new func-
tions.This paper focuses on identifying security patches that fix program vulnerabilities.

In order to clearly illustrate the security patch and the non-security patch, we provide
the corresponding cases in Listings 1 and 2. Listing 1 is an example of security patch for an
integer underflow vulnerability (CVE-2019-13602), which prevents a vulnerability related
to integer underflow in function MP4_EIA608_Convert by modifying the constraints of
the i_bytes local variable (lines 16 and 17). Listing 2 shows a non-security patch in the
FFmpeg software (9e588125193115189b5a609eef6af678a55f6ecf). This patch enables FFmpeg
to automatically call the check_bitstream interface when running writing_frame (the call
to check_bitstream is encapsulated in the do_packet_auto_bsf), thereby improving the
running efficiency of FFmpeg.

Listing 1. Example of security patch for an integer underflow vulnerability (CVE-2019-13602).

1 diff --git a/modules/demux/mp4/mp4.c b/modules/demux/mp4/mp4.c
2 index 77 b46de1c3 ..83 f36db1a7 100644
3 --- a/modules/demux/mp4/mp4.c
4 +++ b/modules/demux/mp4/mp4.c
5 @@ -536,10 +536 ,10 @@ static block_t * MP4_EIA608_Convert( block_t * p_block )
6 } while( i_bytes >= 2 );
7
8
9 /* cdt2 is optional */

10 - if ( i_remaining >= 10 &&
11 - (i_bytes = GetDWBE(p_read)) &&
12 - (i_bytes <= i_remaining) &&
13 - !memcmp ("cdt2", &p_read [4], 4) )
14 + i_bytes = GetDWBE(p_read);
15 +
16 + if (10 <= i_bytes && i_bytes <= i_remaining &&
17 + !memcmp ("cdt2", &p_read [4], 4))
18 {
19 p_read += 8;
20 i_bytes -= 8;

At present, related work has been done on the identification of security patches. This
paper summarizes the related work in this field in recent years’ study in Table 1.

Traditional security patch identification mainly adopts heuristic method. Wang et al. [6]
propose the effective feature for distinguishing security patches and non-security patches.
There are 61 features, including basic features, syntax features and semantic features.
On this basis, they use a voting algorithm to integrate five classic classification algorithms,
Random Forest, Bayes Net, SGD (Stochastic Gradient Descent), SMO (Sequential Minimal
Optimization), and Bagging. The experimental results show that the model has a TPR (True
positive rate) of 79.6% and an FPR (False positive rate ) of 41.3%. Sawadogo et al. [8] achieve
security patch identification using commit message and code diff information for identifi-
cation. Specifically, they propose a semi-supervised method with co-training to train two
classifiers with commit messages and code changes, respectively, addressing the unlabeled
problem of patch data. Tan et al. [15] propose a new approach to transform the security
patch localization search problem into a ranking problem. Therefore,they propose a new
technique for ranking commits related to vulnerabilities and implement a ranking-based
security patch localization method called PatchScout.

With the rise of artificial intelligence, recent research on security patch identification
primarily uses machine learning methods. Sabetta and Bezzi [9] treat code changes as
documents written in natural language and classifies them using standard text classification
methods. Hoang et al. [12] propose a patch classification tool based on hierarchical deep
learning called PatchNet.They learn relevant features from commit message and code diff,
with experimentally verified in Linux kernel patch identification. In order to obtain a deep
understanding of the vector representation of code changes, Hoang et al. [11] propose
a neural network model based on deep learning called CC2Vec. They use an attention
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mechanism to model the hierarchy of code changes, producing a distributed representation
of code diff. Zhou et al. [7] propose a security patch identification system based on deep
learning called SPI. The system consists of two neural networks: one is a neural network
for commit message, which uses commit message for word vector pre-training; the other
is a neural network for code diff, which uses subtractive code change and additive code
change to learn.

Listing 2. An example of non-security patch in FFmpeg.

1 diff --git a/libavformat/mux.c b/libavformat/mux.c
2 index 5cb0ca7482 .. d674bd4a76 100644
3 --- a/libavformat/mux.c
4 +++ b/libavformat/mux.c
5 @@ -893,6 +893 ,10 @@ int av_write_frame(AVFormatContext *s, AVPacket *pkt)
6 return 1;
7 }
8
9 + ret = do_packet_auto_bsf(s, pkt);

10 + if (ret <= 0)
11 + return ret;
12 +
13 #if FF_API_COMPUTE_PKT_FIELDS2 && FF_API_LAVF_AVCTX
14 ret = compute_muxer_pkt_fields(s, s->streams[pkt ->stream_index], pkt);

However, the above work focuses solely on code diff and does not consider the
overall information of the source code before and after modification. To solve this problem,
Cabrera Lozoya et al. [10] propose a new method called Commit2Vec based on code2vec [17]
to capture code change representation from the source code. By analyzing the prior and
posterior versions of source code in the commit, the method compares the differences
observed in the abstract syntax tree (AST) before and after the code change, and implements
the vector representation of AST changes based on neural networks. At the same time,
Wang et al. [13] also propose a security patch identification system called PatchRNN. They
use the TextRNN model to obtain the vector representation of commit message. And then,
they use the prior and posterior versions of source code in the commit to learn code change
representation. Finally, they aggregate them and realize the identification of security
patches based on a fully connected network.

In addition to heuristic methods and machine learning, Machiry et al. [14] propose
a formal method for security patch identification based on symbolic interpretation. They
define security patches from a formal perspective for the first time. Moreover, they propose
a tool for security patch identification called SPIDER, which performs security patch
identification through the source code of the original version and the patched version.

Therefore, based on the analysis of the above work, the key of source code patch anal-
ysis is to learn the syntax and semantics of code patches, rather than simply treating them
as ordinary text. Learning the control and data dependencies in the source code is crucial
for obtaining the essential information of security patches. This paper utilizes commit
message and source code of the original version and the patched version to capture a more
comprehensive patch representation. In our work, we parse the control dependency graph
and data dependency graph of the source code, and combine the graph diff with commit
message to capture the semantic information and syntax information of the code change.

At the same time, the key to machine learning-based security patch identification work
is a modest dataset labelled with ground truth. As PatchRNN [13] uses the same input
information and conducts experiments with the public dataset. In our work, we select the
same dataset to carry out related experiments.

2.2. Multi-View Learning

In recent years, multi-view learning has achieved information complementarity by
fusing features from multiple modes, and has been widely used in practical work. Typi-
cal algorithms include co-training mechanism [18], subspace learning methods [19] and
multiple kernel learning (MKL) [20].
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The traditional representative method for multi-view learning is Canonical correla-
tion analysis (CCA). CCA seeks to maximize the correlation between views by linearly
transforming the data of different views. Traditional CCA can only cope with linear de-
pendencies between views. To solve this problem, related works have proposed nonlinear
extensions of CCA, such as kernel CCA [20–23] and deep CCA [24]. Kernel CCA, as a typi-
cal nonlinear CCA algorithm, mainly maps low-dimensional data to a high-dimensional
kernel function space, and performs correlation analysis in the high-dimensional space
through the kernel function. However, although the kernel CCA solves the nonlinear
problem, the model is complex and the training cost is large, so Andrew et al. [24] propose
the deep CCA. Specifically, deep CCA learns nonlinear correlations between different views
by combining DNN(Deep Neural Networks) and CCA. Based on it, Wang et al. [25] pro-
pose DCCAE(deep canonically correlated autoencoders) in combination with autoencoders,
which consists of two autoencoders and optimizes the combination of canonical correlations
between the learned representation and the reconstruction errors of the autoencoders.

Although the above methods have achieved multi-view classification, they do not
consider the reliability of the classification results. Han et al. [26,27] propose a trustworthy
multi-view classification method that provides interpretability for multi-view classification
results. However, the proposed method does not analyze the correlation between differ-
ent views, which may ignore some important information or introduce some redundant
information. The correlation analysis between different views refers to evaluating the inter-
relationship between the information provided by different views, such as whether there
are complementarity, conflict or duplication. This can help select the most useful views
or adjust their weights, thereby improving the classification performance. In this paper,
we introduce Grey Relational Analysis to dynamically adjust the weights between views,
which can speed up model convergence and increase accuracy. Meanwhile, after combining
Grey Relational Analysis, we can quantify the weights between views and further evaluate
the credibility of multi-view learning.

Therefore, on this basis, we implement a trusted multi-view security patch identi-
fication system called TMVDPatch. In our work, we use the fused evidence to assign
weights to the original evidence of different views, thereby guiding reliable and credible
identification results.

2.3. Uncertainty and the Theory of Evidence

At present, in the work of realizing security patch identification based on neural
network, the softmax output is often used as the classification result. However, this method
leads to high over-confidence even for false identification [28,29]. Dempster Shafer theory
provides a solution to this problem, as a theory on belief functions, which allows beliefs
from different sources to be combined with various fusion operators to obtain a new belief
that considers all available evidence. In addition, Tang [30] proposes a fuzzy soft set
approach in decision making based on Grey Relational Analysis and Dempster–Shafer
theory of evidence. They use the Grey Relational Analysis to determine the uncertain
degrees of various parameters. Moreover, subjective logic proposes a solution to the
quantification and consolidation of multi-view.

Grey Relational Analysis [31–33] is an approach for multi-criteria decision making
that measures the similarity or dissimilarity between variables of a process. It can help
assess the impact of different factors on the outcome. Evidence theory is a mathematical
framework for handling uncertain information. It can be used to fuse data from multiple
views. Based on the above analysis, this paper believes that the advantages of combining
Grey Relational Analysis and evidence theory for multi-view learning can be summarized
as follows:

• Grey Relational Analysis can preprocess multi-view data, reducing data dimensional-
ity and noise.

• Evidence theory can dynamically integrate multi-view data, considering the uncer-
tainty and weight of each view.
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• The performance and robustness of multi-view classification can be enhanced, as well
as the confidence and interpretability of the decision.

Therefore, based on subjective logic, this paper obtains identification evidence from
the multi-view, and combines the Dirichlet distribution to obtain the belief quality and
uncertainty quality of security patch identification, and then solves the problem of softmax
over-confidence. At the same time, this paper uses the Dirichlet distribution to give the
neural network classification results a probability distribution density, and then realizes
the second-order probability and uncertainty of the simulated output. Unlike [30], we
determine the relationship of different views as the weight of evidence input according
to the Grey Relational Analysis method, and make self-learning correction. The specific
details are discussed in detail in the Section 4.5.

Subjective Logic [34–38] provides a theoretical framework for the relationship between
Dirichlet distribution parameters and belief and uncertainty. The framework formalizes the
concept of belief distribution of DST (Dempster–Shafer Theory of Evidence) [39] as Dirichlet
distribution [40,41] in the identification framework. Specifically, subjective logic provides a
framework that provides each category with a belief quality bk and an overall uncertainty
quality u. Intuitively, the belief quality bk is the probability of different categories based
on the collected evidence, and the uncertainty quality u is the overall uncertainty of the
probability of a specific category, where k = 1, 2, · · · , K represents the category in the
K classification. Moreover, the belief quality and uncertainty quality are both positive
numbers, and the sum is 1. The formula is satisfied [42]:

u +
K

∑
k=1

bk = 1 (1)

3. Motivation

Based on the previous analysis, in supply chain attacks, it is crucial to quickly iden-
tify security patches for vulnerability fixes in a large number of code change submis-
sions. At present, related work has been carried out in this field, but it mainly has the
following problems:

1. Related work mainly regards commit messages and code changes as ordinary text,
and conducts research based on text classification technology in natural language
processing. Although these methods have been proved their effectiveness to a certain
extent through experiments, they have not really learned the essential information of
security patches. As described in Section 2.1, we may reasonably come to the conclu-
sion that the key of source code patch analysis is to learn the syntax and semantics of
code patches, rather than simply treating them as ordinary text. Intuitively, how to
learn the control dependency and data dependency in the source code is crucial for
learning the essential information of security patches.

2. In recent years, the methods of code2vec and seq2vec have provided a new direction
for this field. They build an AST abstract syntax tree by parsing the source code,
and convert it into a text sequence by expanding the paths between the leaf nodes.
The related work [10] is carried out on this basis, and conducts experiments in the JAVA
datasets. However, in the experiment of C source code, we find that the generated
AST syntax tree is too large, and this method has certain limitations. This means that
the AST abstract syntax tree parsing of C source code will obtain a large number of
text sequences after expansion. Moreover, it is difficult to learn the patch information
completely and effectively from the results of sampling randomly(extracting a small
number of text sequences from a large number of sequences). Meanwhile, it is difficult
to directly learn the changes of the data dependencies and control dependencies via
the path of the child nodes of the AST abstract syntax tree.

3. Currently in the work of security patch identification, the main ensemble methods
are vector concatenation and voting algorithms. However, these ensemble methods
are too subjective and do not take into account consistency and complementarity
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between different features. Therefore, they do not have the interpretability of the
identification results. In the field of patch analysis, how to make use of consistency and
complementarity between different views, to find the inherent pattern of patch commit
to improve the effectiveness of security patch identification is deemed scientific in this
paper. Therefore, we may reasonably come to the conclusion that, in addition to the
identification results, what should be known is the confidence and interpretability of
the identification results.

4. Design and Implementation
4.1. Overall Design

This paper proposes an efficient and reliable security patch identification system called
TMVDPatch. The system adopts a multi-view evidence fusion strategy, including control de-
pendency information, data dependency information and commit message, so as to compre-
hensively represent the semantic and syntax information of security patches. The method
provides credible and interpretable decisions based on subjective uncertainty learned from
each view, enabling efficient and scientific security patch identification. Figure 1 shows
the specific architecture of the model, which is mainly composed of four modules: data
collection and preprocessing, code parsing, evidence obtained and trusted multi-view
decision rule.

Patch 

Commit

Step1: 

Data Collection and 

Prepocessing

Step2:

Code 

Parsing

Step3:

Evidence Obtained

Step4:

Trusted Multi-View Decision

Decision 

Result

Figure 1. The overall architecture of TMVDPatch.

4.2. Data Collection and Prepocessing

It is well known that the key to security patch identification work is dataset collection
and ground truth labeling. To ensure the authenticity of the dataset, this paper adopts the
public dataset called PatchDB [16], the labels in this dataset are finally manually verified
by three security experts. The dataset provides patch submission files for security patches
and non-security patches, which contain commit hashes, commit message text, and code
difference information.

On this basis, we preprocess the patch submission files. First, we download the modi-
fied source files according to the hash value and code difference information. During the
process, some code repository are lost and the source files cannot be downloaded. On this
basis, we parse the hunk information and locate the function name modified by the patch.
It should be noted that, because the source code needs to be parsed later to generate the
control dependency graph and data dependency graph, and feature extraction is performed
according to the differences in the dependency graphs. Therefore, in order to avoid the
problem of function calls between multiple files, this paper only considers patches involving
single-file patches, and filters out patches that modify multiple source files. The PatchDB
dataset we obtained contains 23 k non-security patch samples and 12 k security patch
samples. In our work, we filtered 5 k non-security patch samples, and 2 K security patch
samples. Finally, the relative percentage of security and non-security decreased from 1.9 to
1.8. Since the proportion of samples before and after filtering is slightly different, and the
experiments in this paper are carried out on the same dataset, we have reason to believe
that this limitation will not affect the results.

Next, we preprocess the submission information text in the patch file, only retains the
information text related to the patch description, and filters out irrelevant information such
as the subject, date, and reporter email.
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Through preprocessing, the source codes before the patch Codepre, the source codes
after the patch Codepost, and the descriptions of the submission information called ComMes
can be obtained.

4.3. Code Parsing

As described in Section 3, currently in the field of security patch identification, there
are two main methods for learning code differences: parsing the source code to build an
AST syntax tree and parsing the difference as ordinary text. However, we find the generated
AST abstract syntax tree is too large in the experiments of C source code. At the same time,
security patches are closely related to data dependencies and control dependencies. It is
difficult to directly learn the changes of the data dependencies and control dependencies
via the path of the child nodes of the AST abstract syntax tree. Currently, using control
dependency graph and data dependency graph to represent semantics are widely used
in program analysis. However, how to apply it to the field of source code patch analysis
remains to be further studied. Inspired by it, we build the data dependency graph and
control dependency graph by parsing the source code, so as to capture more information.

To build the data dependency graph and control dependency graph of a function,
the following concepts need to be introduced.

Definition 1. Control Flow Graph (CFG) : Consider a function, the CFG of the function is
a graph G = (V, E), where V = {n1, n2, ..., ni} is a set of nodes with each node representing
a statement or control predicate, and E = {e1, e2, ..., ei} is a set of direct edges with each edge
representing the possible flow of control between a pair of nodes.

Definition 2. Control Dependency: Consider a function, the CFG of the function is a graph
G = (V, E) , and two nodes ni, nj in V where i 6= æ and nj is the latter node. If all paths from ni
to the end node in the CFG pass through nj , then it is said that nj post-dominate ni. If there exist a
path from ni to nj in the CFG, and satisfy nj post-dominate all nodes on this path except ni and nj,
and nj does not post-dominate ni. Then it is said that nj is control-dependent on ni.

Definition 3. Data Dependency: Consider a function, the CFG of the function is a graph
G = (V, E) , and two nodes ni, nj in V where i 6= æ and nj is the latter node. If there exist a
path from ni to nj in the CFG, and a value computed at ni is used at nj, then it is said that nj is
data-dependent on ni.

In order to clearly illustrate, this paper takes the quicksort program as an example
to generate CDG, the details are attached in the Appendix A. In contrast to other tools,
the CDG and DDG generated by Joern [43] are not in the unit of statement nodes, but in
more fine-grained units of nodes similar to AST nodes. As shown in Appendix A, the 18th
line of the source code (”i f (destra > jj)quick_sort(a, jj, destra); ”) is parsed into two nodes:
(< operator > .greaterThan, destra > jj) and (quick_sort, quick_sort(a, jj, destra)). This fine-
grained node representation is more effective for subsequent semantic extraction, as it
captures more details. Additionally, the CDG generated by Joern is composed of multiple
subgraphs. In this paper, a virtual node (ENTRY, ENTRY) is constructed as the starting
node, and all subgraphs are merged to obtain a new CDG.

It should be noted that when we use Joern to parse the code, we found that some
functions had recognition problems, and some samples could not show patch differences
in the generated CDG and DDG (https://github.com/joernio/joern/issues/1420 (accessed
on 1 May 2022)). After verification, the problem is due to the existence of i f de f macro
definitions in the source code. Although tools can print a comma-separated list of all
preprocessor i f de f and i f statements. However, the real-world C/C++ programs tend to
have contradicting defines, setting them all at once may lead to code that does not make any
sense at all. This issue can be manually reviewed for macro definitions for different patches.

Our method uses the CDG and DDG to represent semantic and syntactic information
of the code diff. After obtaining the Codepre and Codepost, we extract all the methods that

https://github.com/joernio/joern/issues/1420
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are changed and extract a set of paths over the CDG and DDG. As shown in Figure 1,
differently from the AST, CDG and DDG mainly represent dependencies according to
the path context. Therefore, different with Code2Vec [17], we do not extract the start-
token and the end-token, only keep the path context from the root-node to leaf-node.
Next, we discard the contexts that are identical in the code before and after the patch,
and use the remaining paths as the basis for the patch code representation. For exam-
ple, (METHOD) ↓ (i_warning) ↓ (chmod) ↓ (METHOD_RETURN). This is an expanded
path. We discard any path that is identical in both Codepre and Codepost, we will discard it.

Moreover, a single-file modification patch may involve multiple modification func-
tions, which have been positioned in Section 4.2. Therefore, given the patch code, we can
extract the CDGpre and DDGpre from the Codepre, witch represents the path context. Simi-
larly, we can extract the CDGpost and DDGpost from the Codepost. Efficiency saving is that
we only do the path extraction for the modification functions positioned. We then define
the set of contexts called DC describing the semantic and syntactic difference between
Codepre and Codepost. In our work, we use DC to represent the difference in semantic and
syntactic information between Codepre and Codepost. Relevant definitions are as follows:

DC =
(
CDGpre∆CDGpost

)
∪
(

DDGpre∆DDGpost
)

(2)

CDGpre∆CDGpost = {c|(c ∈ CDGpre ∪ CDGpost)∧
(c /∈ CDGpre ∩ CDGpost)}

(3)

DDGpre∆DDGpost = {d|(d ∈ DDGpre ∪ DDGpost)∧
(d /∈ DDGpre ∩ DDGpost)}

(4)

Intuitively, the set of contexts DC contains the semantic and syntactic difference
between before and after code revision.

4.4. Evidence Obtained

Neural network is used as evidence extractor to capture evidence from input. There-
fore, we obtained evidence from code diff view and commit message view respectively
based on neural network. Figure 2 shows the neural network structure for evidence
obtained from the code diff view.

In the code diff view, we extract evidence based on the CDG and DDG difference
sequences obtained in parsing of the code diff. In our work, we use a neural network
embedding layer to vectorize each node, and then use the final state of a bidirectional
LSTM(Long Short Term Memory) with self-attention to encode the entire sequence, thereby
representing each path as a fixed-length vector.

Next, we take all the path-vectors as the sequence input, using the self-attention
mechanism and the fully connected layer as the evidence extractor to obatin evidence.
In the network, we replace the softmax layer in the classical classifier with the softplus
layer to ensure that the neural network output is non-negative. Finally, we get evidence
from the code diff view.

For the message commit view, we use a bidirectional LSTM with self-attention mecha-
nism and a softplus layer as the evidence extractor. The message commit view is treated as
the natural language input text.

4.5. Trusted Multi-View Decision Rule

In this subsection, we mainly elaborate on trusted multi-view decision rules based on
the evidence obtained. As described in Section 2.3, using a softmax output as confidence for
predictions often leads to high confidence values, even for erroneous predictions since the
largest softmax output is used for the final prediction. In addition, subjective logic associates
the parameters of Dirichlet distribution with belief distribution. Related work [26,27] first
apply this work to the field of multi-view learning in the framework of deep learning.
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They introduce a new paradigm theory in multi-view classification to provide credible and
interpretable decisions based on the uncertainty of each view.

Blstm+Attention

… …

… …

…
Path 

vetors

…

Global-Self-Attention

FC Layer

Softplus Layer

Figure 2. The neural network structure for evidence obtained from the code diff view.

Taking into account all factors, how to fully utilize the patch submission information
in an interpretable way is crucial to the identification of security patches. In cutting edge
research [26,27], they propose a new multi-view classification algorithm, which aims to
integrate multi-view information for trusted decision-making. This coincides with our
motivation. Therefore, we obtain multi-view evidence, including control dependency infor-
mation, data dependency information and description information, to comprehensively
represent the semantic and syntax information of security patches.

In our work ,we first learn the patch information based on the neural network model
proposed in Section 4.4, and takes the results as evidence in the multi-view learning
framework. And then, this paper uses the theoretical framework to observe the possibilities
(believe masses) of different views and overall uncertainty (uncertainty mass) based on the
evidence collected from patch commit. Note that the evidence refers to the metrics collected
from the input to support the classification and is closely related to the concentration
parameters of Dirichlet distribution.

Based on the original framework, this paper determines the relevance of different
views as the weight of evidence input according to the Grey Relational Analysis method,
and makes self-learning correction. In this way, we can improve the ability of trusted multi-
view decision-making. Figure 3 shows the methods of trusted multi-view decision rule.

Code Evidence

 Message Evidence

Dirichlet Distribution

Dirichlet Distribution

Uncertainty

Uncertainty

Uncertainty

 New Evidence

Grey Relational 

Analysis

Evidence Obtained

Figure 3. The process of trusted multi-view decision.
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In our work, for the view v, according to Step¬ in the Figure 3, the subjective logic
associates
ev = [ev

1, ev
2, · · · , ev

K] with the parameters of the Dirichlet distribution αv = [αv
1, αv

2, · · · , αv
K].

Especially, e1 represents the evidence from the code diff view and e2 represents the commit
message evidence. Its subjective opinion corresponds to a Dirichlet distribution with
parameter αv

k = ev
k + 1.

Then, this paper calculates the belief quality bv
k and uncertainty quality uv according to

Step in the Figure 3. For the category k under the view v, its belief quality bv
k is calculated

from its corresponding evidence ev
k , and the calculation formula is as follows:

bv
k =

ev
k

Sv and uv =
K
Sv (5)

Sv = ∑K
i=1 αv

i = ∑K
i=1
(
ev

i + 1
)

is Dirichlet strength. Therefore, uncertainty uv is in-
versely proportional to the totality of evidence Sv.

Next, this paper calculates the joint probability mass assignment setM = {{bk}K
k=1, u}

according to Step® in the Figure 3. It is obtained by combining the sets of probability
mass assignmentsMv = {{bv

k}
K
k=1, uv} from different views v. In this paper, the specific

calculation formula is as follows.

M =M1 ⊕M2 and M = {bk}K
k=1, u

bk =
1

1− C
(b1

k b2
k + b1

k u2 + b2
k u1)

u =
1

1− C
u1u2

(6)

C = ∑i 6=j b1
i b2

j is a measure of the conflicting values of the two views, and 1/(1− C)
is the normalization factor.

On the basis of the joint probability mass assignment set, according to Step ¯ in the
Figure 3, calculate the new evidence e = [e1, e2, · · · , eK]. It uses bk and u, and calculates the
new Dirichlet distribution parameters according to the formulas in Step ¬ and  to obtain
new evidence e.

Next, according to the Grey Relational Analysis method in Step ° in the Figure 3, this
paper calculates the correlation between the new evidence e and the original evidence e1, e2.
Grey Relational Analysis a multi-factor statistical analysis method, which can be used to
evaluate the correlation between the parent sequence and other subsequences. Intuitively,
it provides a way to measure the distance between vectors. In our work, we implement
the measurement of the contribution of evidence from different views to the final evidence
based on the Grey Relational Analysis method. The specific method is as follows:

First, the fused evidence e = [e1, e2, · · · , eK] is used as the parent sequence, and the
original evidence from different views ev = [ev

1, ev
2, · · · , ev

K] is used as the subsequence,
and the data is normalized.

Next, calculate the grey correlation coefficient using the formula [31]:

ζv(k) =
minv mink|e(k)− ev(k)|+ ρ ·maxv maxk|e(k)− ev(k)|

|e(k)− ev(k)|+ ρ ·maxv maxk|e(k)− ev(k)| (7)

ρ is the resolution coefficient. ζv(k) represents the correlation coefficient between the
evidence in the kth dimension of the view v and the evidence after fusion. In our work, we
sets ρ as 0.5. And then, the correlation coefficient corresponding to the view v is obtained by
calculating the mean value of the correlation coefficient γv under each view v. The specific
calculation formula is as follows:

γv =
1
K

K

∑
k=1

ζv(k) (8)
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Finally, this paper obtains the correction weight wv under the corresponding view
v according to the correlation γv, and then corrects the evidence under different views
ev = [ev

1, ev
2, · · · , ev

K], and obtains the corrected evidence evnew. Furthermore, we set the
initial value of correction weight wv to 1, so that the model can get evidence correction at
the beginning of the second epoch. The specific calculation formula is as follows:

wv =
γv

maxv(γv)

evnew =
ev + wvev

2

(9)

4.6. Model Training

In the work of neural network-based security patch identification, we use cross-
entropy [44] as the loss function:

Lce = −
K

∑
j=1

yij log(pi j) (10)

yij is the labeling situation where the true label of the sample i is j, and pij is the
probability that the sample i is predicted by the model as j. In this paper, the Dirichlet dis-
tribution is used to give the neural network classification results a probability distribution
density, so the adjusted cross-entropy loss function [42] is:

Lace(αi) =
∫ [ K

∑
j=1
−yij log

(
pij
)] 1

B(αi)

K

∏
j=1

p
αij−1
ij dpi

=
K

∑
j=1

yij
(
ψ(Si)− ψ

(
αij
)) (11)

ψ(·) is the digamma function. Although this loss function enables the model to obtain
more correct label evidence, it cannot guarantee that the wrong label evidence is as small
as possible. Therefore, this paper introduces the KL (Kullback-Leibler) divergence term to
regularize the evidence to expect the misplaced label evidence to become 0. The specific
formula is as follows [26]:

KL[D(pi|α̃i)‖D(pi|1)] = log

 Γ
(

∑K
k=1 α̃ik

)
Γ(K)∏K

k=1 Γ(α̃ik)


+ ∑K

k=1 (α̃ik − 1)
[
ψ(α̃ik)− ψ

(
∑K

j=1 α̃ij

)] (12)

The loss value under single view is:

L(αi) = Lace(αi) + λtKL[D(pi|α̃i)‖D(pi|1)] (13)

Under the multi-view framework, the total loss is as follows:

Loverall =
N

∑
i=1

[L(αi) +
V

∑
v=1
L(αv

i )] (14)

5. Experiments and Results
5.1. Dataset and Experimental Environment

As mentioned in Section 2.1, the key to machine learning-based security patch identi-
fication work is a modest dataset labelled with ground truth. Therefore, to increase code
reliability and reproducibility, we employ PatchDB datasets to conduct experiments. More-
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over, we will use PatchRNN on the same dataset to conduct experiments as a comparison
model. The dataset contains a large number of security patches and non-security patches
written in C/C++ language, not only the security patches with vulnerability numbers
indexed by the National Vulnerability Database (NVD), but also a large number of security
patches obtained from the wild. Among them, the security patch dataset obtained from the
wild is collected from commits on GitHub. The dataset is manually validated by three secu-
rity experts on the labels of security patches and non-security patches, and the authenticity
of labels is ensured by cross-checking. Therefore, this paper has reason to believe that the
labels of this dataset are convincing, and conduct relevant experiments on this dataset.

Our experiment is conducted using Python 3.9.6, while the TMVDPatch is designed
based on Pytorch 1.9.1. Our model is carried out in the Ubuntu 20.04.1 LTS environment
running in AMD Ryzen Threadripper 3960X 24-Core Processor CPU with 125-GB RAM. We
realize the neural network training by employing the CUDA 11.4 toolkit with 2 NVIDIA
GeForce RTX 3090 GPUs.

We use the classical parameter optimizer as the SGD optimizer. For other hyperpa-
rameter settings, the batch size is set to 64, and the number of epochs is set to 20.

5.2. Evaluation Metrics

In this paper, the accuracy, precision, recall and F1 score are used as evaluation metrics
to evaluate the security patch identification effect of TMVDPatch. In the evaluation, we
consider four statistical types, namely true positive (TP ), true negative (TN), false positive
(FP) and false negative (FN). If the sample is actually a security patch and is identified as a
security patch, we count this test case as TP. If the sample is actually a non-security patch
and is identified as a non-security patch, we count this test case as TN. If the sample is
actually a security patch and is identified as a non-security patch, we count this test case as
FN. If the sample is actually a non-security patch and is identified as a security patch, we
count this test case as FP.

Accuracy measures the number of patches identified accurately as a proportion of all
samples. This metric can measure the overall identification effect of the model on security
patches and non-security patches. The formula is as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(15)

Precision measures the proportion of actually security patches among samples identi-
fied by the model as security patches. This metric can measure the false positive rate of the
model for the identification of security patches. The specific formula is as follows:

Precision =
TP

TP + FP
(16)

Recall measures the proportion of security patch samples identified by the model
among all actual security patch samples. The specific formula is as follows:

Recall =
TP

TP + FN
(17)

F1 Score comprehensively measures the precision and recall of the model. This metric
is calculated by weighting the two. The calculation formula is as follows:

F1 =
2× Precision× Recall

Precision + Recall
(18)

5.3. Hyperparameters Tuning

This subsection mainly discusses the problem of hyperparameter setting in the model.
In order to achieve better tuning parameters, we use Optuna for hyperparameter search.
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Optuna [45] is a hyperparameter optimization tool that optimizes tree-based hyperparameter
search and relies on Bayesian probability to iteratively adjust the search for hyperparameters.

The specific details are shown in Table 2. This subsection mainly adjusts the 8 hyper-
parameters listed in the Table 2. Except the learning rate is sampled by logarithmic uniform
distribution, other hyperparameters are sampled by step. At the same time, we maps
the 200 trials to the state points in the three-dimensional space in the form of “X-Recall,
Y-Precision, Z-Accuracy”, and the red series of points are the trials that are judged be
the best trials. The color of the points only represents the trials ID. The specific results
are shown in Figure 4, where values represent the accuracy, precision and recall values
respectively, and params is the parameter setting of the current best trial.

Table 2. The hyperparameters tuning details.

View Hyper-Parameter Search Space Best Value

Code
Diff

codediff_embedding [40,120] 100
codediff_global_dropout [0.1,0.5] 0.2

codediff_lstm [32,128] 128
codediff_lstm_dropout [0.1,0.5] 0.4

Commit
Message

commit_dropout [0.1,0.5] 0.3
commit_embedding [40,120] 120

commit_lstm [32,128] 64

Overall lr [0.00001, 0.1] 0.000557

In addition, Figure 5 draws a parallel coordinate graph based on the F1 evaluation
metric to highlight the relationship between hyperparameters in the search space.

Among them, the vector dimension may affect the security patch identification perfor-
mance of the model. If the dimensions are too large, the model may be so complex that
become overfit. However, too small dimension will also lead to poor model learning ability.
Therefore, how to select the optimal parameter combination in the hyperparameter search
space is critical to the model performance.

Figure 4. The hyperparameters tuning trials in the three-dimensional space.

As shown in the Figure 5, for the code diff view, both the LSTM hidden layer and the
embedding layer require a higher vector dimension to achieve better model performance.
But for the message commit view, it needs to achieve better patch identification results
by keeping the embedding layer dimension high and the LSTM hidden layer dimension
low. The main reason is that the model is more complicated in the message commit view.
Because of this, the dropout layer parameter in the LSTM self-attention mechanism is
set to 0.3, thereby improving the generalization ability of the model and preventing the
model from overfitting. In the same way, in the code diff view, the global dropout layer
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parameters are set lower than the dropout layer parameters in the LSTM self-attention
mechanism. Moreover, the F1 scores of the 200 trials in Figure 5 are mostly concentrated
between 0.8 and 0.9, which further indicates that the model has strong robustness to
hyperparameter settings.

Figure 5. The parallel coordinate graph based on the F1 evaluation metric to highlight the relationship
between hyperparameters in the search space.

In order to more intuitively explain the influence of parameters on each evaluation
metric, we evaluate the importance of hyperparameters based on Optuna. The specific
results are shown in Figure 6, where the sum of the importance of each parameter is 1
under each metric. It is not difficult to see that for all evaluation metrics, the learning rate
setting is extremely critical. At the same time, the hyperparameters in the code diff view
are slightly more important to accuracy and F1 than the message commit view. Moreover,
the F1 score is used as a comprehensive measure of the precision and recall of the model,
and the importance of each parameter is distributed evenly.

Figure 6. The importance of hyperparameters to evaluation metrics.
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5.4. Model Comparison

For the problem of security patch identification, TMVDPatch fully considers the
relevant data submitted by the patch (including control dependency information, data
dependency information and submission message). In order to evaluate the effectiveness
of the TMVDPatch proposed in this paper, different classification models are selected for
comparative experiments in this subsection.

In our work, we use SV-CMS and SV-CDP to represent single-view classification
models using message commits and code changes alone, respectively. Since PatchRNN
uses the same dataset as this paper for security patch identification, and also considers all
source code information before and after patch submission, we choose PatchRNN as the
comparison model. In addition, we treat code changes as normal text, and build a security
patch identification model based on BLSTM(Bi-directional Long Short-Term Memory) called
SQ-CDP. On this basis, we combine the SQ-CDP with the SV-CMS(single-view classification
models using message commits) to construct a new model called SQ-A.

The comparative experimental results are shown in Table 3. Compared with single-
view SV-CMS and SV-CDP, multi-view learning can effectively improve the identification
ability of the model, which shows that the evidence between different views can be com-
plementary. At the same time, SV-CDP can achieve a higher recall, because only using
single-view learning will lead to better identification of non-security patches by the model,
resulting in the phenomenon of model bias. Under the multi-view, the problem can be
effectively solved based on comprehensive evidence. Compared with SQ-CDP and SQ-A,
TMVDPatch can learn control dependency and data dependency information from code
patches. It further illustrates the effectiveness of the representation method of security
patches proposed in this paper. Moreover, compared with PatchRNN, TMVDPatch can
achieve better identification effect in the same dataset.

5.5. Ensemble Methods

In our work, the TMVDPatch combines the evidence of the commit message view
and the code diff view. It should be noted that the credible and interpretable decisions
discussed in this paper are essentially an ensemble strategy. In order to fully evaluate the
effectiveness of the ensemble method proposed in this paper, this subsection conducts
comparative experiments on different ensemble methods. Based on the single-view clas-
sification models SV-CMS and SV-CDP, we use three different feature fusion methods
(vector summation, vector concatenation and vector averaging) to obtain MVsum, MVcat
and MVavg, respectively. Since the parameter settings of the LSTM hidden layer between
different views are inconsistent, we set them to 64 and 128, respectively, to obtain the
corresponding MVsum_64, MVsum_128, MVavg_64 and MVavg_128. In order to further evaluate
the TMVDPatch, we use TMVD-NG to represent a trusted multi-view decision model
without Grey Relational Analysis feedback to conduct related experiments.

Table 3. The results of model comparison.

Model Accuracy Precision Recall F1

SV-CMS 0.7391 0.7617 0.9099 0.8293
SV-CDP 0.7013 0.7020 0.9922 0.8222
SQ-CDP 0.6954 0.7012 0.9803 0.8176
SQ-A 0.7798 0.7909 0.9296 0.8546
PatchRNN 0.8357 0.7572 0.7366 0.7468
TMVDPatch 0.8529 0.8542 0.9511 0.9001

The experimental results are shown in Table 4. The trusted multi-view decision system
proposed in this paper outperforms other ensemble models in all four metrics, achieving
an accuracy of 0.8529 and a F1 score of 0.9001. In addition, by comparing the experimental
results of TMVD-NG, it is confirmed that adding Grey Relational Analysis feedback can
effectively improve the identification ability of the model.
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Table 4. The results of different ensemble methods.

Model Accuracy Precision Recall F1

MVcat 0.7798 0.7877 0.9362 0.8555
MVsum_64 0.7329 0.8409 0.7601 0.7985
MVsum_128 0.7574 0.8100 0.8520 0.8302
MVavg_64 0.7736 0.8503 0.8109 0.8301
MVavg_128 0.7615 0.7783 0.9195 0.8430
TMVD-NG 0.8400 0.8502 0.9350 0.8906
TMVDPatch 0.8529 0.8542 0.9511 0.9001

6. Discussion and Future Work

At present, the identification of security patches based on neural networks is often
not interpretable and cannot fully capture patch information. To solve this problem, this
paper proposes an efficient and reliable security patch identification system called TMVD-
Patch. The system obtains evidence from message commit and code diff views respectively,
and models the uncertainty of each view based on the D-S evidence theory, thereby pro-
viding credible and interpretable security patch identification results. On this basis, this
paper performs weighted training on the original evidence based on the Grey Relational
Analysis method to improve the credible multi-view decision-making ability. Experimental
results show that the multi-view learning method exhibits excellent capabilities in terms
of control-dependent and data-dependent complementary information, and the model
exhibits strong robustness against hyperparameter settings. TMVDPatch outperforms
other models in all evaluation metrics, achieving an accuracy of 85.29% and a F1 score of
0.9001, clearly verifying the superiority of TMVDPatch in terms of accuracy, scientificity,
and reliability.

One of the limitation of our proposed method is that it depends on the analytical
results obtained by the Joern tool, which may not be accurate or complete for some code
structures. A possible direction for future work is to incorporate evidence from other
views, such as syntactic, semantic or structural features of the code, into our framework
to enhance the robustness and generalization ability of our model. Another limitation of
our method is that it only handles patches that involve single file changes. This may miss
some important information or introduce some errors when dealing with patches that span
multiple files and have function calls between them. To overcome this challenge, future
work can improve the analysis tool to capture the dependencies and interactions between
multiple files and handle multi-file patches more effectively.

The main problem we address is how to provide credible and interpretable decisions
for security patch identification. Therefore, we do not discuss neural network models
in detail in this paper. In our work, we only use an attention-based BLSTM model to
obtain evidence and we do not compare it with other neural network models. Future
work can explore neural network model design for this task. For example, different neural
network models can be used as multiple views and then investigate their complementarity
or conflict situations.

In addition to security patch identification, the framework proposed in this paper also
offers potential implications for code analysis in other domains. Our framework can be
extended to new solutions for other applications, such as malware detection.
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Appendix A. Control Dependence Graph

Listing A1. An example of quick sort.

1 #include <stdio.h>
2 #include <stdlib.h>
3 void quick_sort(int *a, int sinistra , int destra)
4 {
5 int ii,jj;
6 int pivot;
7 printf("-");
8 pivot = a[sinistra ];
9 jj = sinistra + 1;

10 ii = destra;
11 while( ii > jj ){
12 while ((a[jj]<=pivot)&&(jj <= destra)) jj++;
13 while ((a[ii]>pivot)||(ii==jj)) ii --;
14 if(ii >jj) scambia (&a[ii],&a[jj]);
15 }
16 if((ii!= sinistra)&&(a[ii]<a[sinistra ])) scambia (&a[ii],&a[sinistra ]);
17 if(sinistra <(ii -1)) quick_sort(a,sinistra ,ii -1);
18 if(destra >jj) quick_sort(a,jj ,destra);
19 }

Figure A1. The initial control dependency graph of quick sort.

https://sunlab-gmu.github.io/PatchDB/
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Figure A2. The processed control dependency graph of quick sort.
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