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Abstract: In this paper, a parallel mechanism with two rotational degrees of freedom is proposed.
It could rotate freely and continuously around the two coordinate axes at the fixed origin of the
coordinate frame. The structure of the mechanism is a second-order over constraint parallel structure
and the moving platform and base platform are connected by five kinematic chains. The motion
characteristics of this structure are analyzed by reciprocal screw equation. Then, the kinematics and
dynamics modelling are carried out systematically in a unified way. The kinematics of the mechanism
is established by means of screws, the displacements and accelerations of each joint and any point on
a link could be calculated by the kinematic screw equation directly. The analysis of acceleration and
its mathematical expression in screw form are given, and the acceleration matrix could be applied
into the dynamic analysis based on the Newton–Euler equation. All the constraint forces and torques
could be obtained by a single set of Newton–Euler equations.

Keywords: kinematics; screw dynamics; closed kinematic chain; numerical algorithm

1. Introduction

Compared with its serial counterparts, a parallel mechanism provides higher load-
bearing capability and can be precisely controlled with a quick response and adjustment [1].
Hence, parallel mechanisms have been commonly applied in equipment and mechanisms
with large scalar and mission requirements to be heavy duty, which requires higher dynamic
performance, higher structural stability and robustness and also accurate positioning and
lower complexity in control.

For parallel mechanisms with serial kinematic subchains, the motion characteristics,
such as degrees of freedom, workspace and singularities, are fundamental to the design
of the kinematic subchains [2–4]. These motion parameters can be suggested for the
optimization of the design and dynamic properties of the parallel mechanisms [5]. Some
researchers have disclosed the influence of the arrangement of the joints. Especially for the
universal joints, the motion of the moving platform of the parallel mechanism is relevant to
the layout of the joints and the direction of the rotary axes [6]. Then, the kinematic analysis
is the basis for gaining the kinematic information of the structure and its controlling and
correcting posture [7]. Many researchers have proposed various methods for analyzing the
kinematics of parallel mechanisms [8–11]. As one of those common methods, kinematics
and as well as dynamics of mechanism can be studied systematically through the theory of
screw. Screw theory is known as a computational, supremely efficient approach to analyze
the kinematics, statics and dynamics of mechanisms [12]. The velocities, accelerations of
each movable joints on sub chains and any point on moving platform can be obtained,
which form the groundwork for further dynamic modelling [13].

Dynamic analysis is one of the kernels of mechanism control [14]. Methods of dynamic
modelling have been widely studied, in that it is necessary for determining the forces and
moment of joints and actuators. Traditionally, the dynamic analysis is carried out via two
kinds of methods: methods based on vectors, such as the Newton–Euler method [15] and
on energy, such as methods using Lagrangian equations [16–19]. The dynamic modelling

Appl. Sci. 2023, 13, 3912. https://doi.org/10.3390/app13063912 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13063912
https://doi.org/10.3390/app13063912
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4444-4805
https://doi.org/10.3390/app13063912
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13063912?type=check_update&version=2


Appl. Sci. 2023, 13, 3912 2 of 18

of parallel mechanisms is often complex and difficult, because it is based on the kinematic
information of the mechanisms and dynamic parameters [20]. Conventional dynamics
analysis through the Newton–Euler method relies on motion equations of each part of the
mechanism. Describing the dynamics with Lagrangian equations is practical in solving
the inverse dynamics, but it also requires as much large computation time as the Newton–
Euler method does. Ren and Cao obtained the position information of a 3− PSS parallel
mechanism through a Jacobian matrix and established the dynamic model using Lagrangian
equations [21]. Through the principle of virtual work, the dynamics is expressed by
building the energy equations in a generalized coordinate framework and the complexity
of analyzing the inverse dynamics can be reduced [22–25]. Some other methods have also
been explored and applied in dynamic analysis such as the recursive matrix method [26], the
influence coefficient method, which is separate to the velocity and acceleration variables [27]
and the Kane equation [28–30]. Jiao et al. established a dynamic model of the Stewart
platform through a combination of Kane equation and the principle of virtual works [31].
Considering that screw theory has already been extensively used in dynamic analysis, based
on the kinematic formulations through screw theory, dynamics modelling of mechanisms
can be established more efficiently [32–34]. Garcia-Murillo solved the inverse dynamics of
a translational parallel mechanism via screw theory and the virtual work principle [35].

The existing methods of kinematic analysis often start from displacement and the
second order numerical differential interpolation is required to calculate the accelera-
tion. Compared with existing methods, the main contributions of this paper are that a
novel 3UPS-UPU-S over a constraint parallel mechanism is proposed to satisfy the mo-
tion demands of two rotational degrees of freedom and the displacements, velocities and
accelerations are calculated by the velocity screw equation directly. This mathematical
expression could simplify the calculation and analysis of dynamics.

2. A Novel 2-Rotational-DoF Parallel Mechanism (3UPS-UPU-S) and Its DoF

As is shown in Figure 1, a novel 2-rotational-DoF parallel mechanism as a simulator
is proposed. This mechanism includes one moving platform, one base platform, and
five kinematic chains. Three UPS kinematic chains consist of one universal joint, U, one
intermediate prismatic joint, P, as the actuator, and one spherical joint, S. The fourth
UPU kinematic chain consists of two universal joints, U, which are connected by one
prismatic joint, P. The fifth S kinematic chain includes only one spherical joint, S, and the
revolute center of spherical joint, S, and the geometrical center of the base coincide. The
moving platform is directly built into the one with the S chain. Four kinematic subchains
of 3UPS-UPU are distributed around the spherical joint uniformly. Their primary universal
joints are installed along the edge of the base, and the last four joints (universal joint or
spherical joints) are assembled on the middle ring of the moving platform. The radii of the
circumcircle of A1 A2 A3 A4 and C1C2C3C4 are R and r, respectively.

For further analysis, the absolute coordinate O− xyz is set as shown in Figure 1. The
origin O is chosen at the center of the base, and the z-axis is perpendicular to the base and
points to the moving platform; the x-axis is along SA1 and then through the right-hand
rule, the y-axis can be settled.

2.1. Fundamentals of Screw Theory

In the following, N
N−1V is defined to denote the relative velocity screw of joint JN in

the screw coordinate. It consists of the dual 3-dimensional vectors N
N−1ω and N

N−1v, which
represent the relative angular velocity and linear velocity, respectively. The velocity screw
of joint JN can be written as

N
N−1V =

[ N
N−1ω

N
0 r × N

N−1ω

]
(1)



Appl. Sci. 2023, 13, 3912 3 of 18Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 20 
 

 
Figure 1. Geometry of the 3UPS- UPU-S  parallel mechanism: (a) front view; (b) top view of the 
parallel mechanism. 
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Figure 1. Geometry of the 3UPS-UPU-S parallel mechanism: (a) front view; (b) top view of the
parallel mechanism.

Equation (1) can also be expressed through the unit vector as

N
N−1V = N

N−1ω

[
eN

rN × eN

]
= N

N−1ω$N (2)

where N
N−1ω presents the magnitude of the relative angular velocity of the joint JN with

respect to the joint JN−1, and $N =

[
eN

rN × eN

]
is defined as the unit velocity screw and

expressed by the unit vector along the joint axis eN , whose norm is ‖eN‖ = 1.
The kinematics of a joint in a serial kinematic chain is relative to the kinematics of the

fore joints, and the kinematics information of the Nth joint JN can be obtained through the
linear combination: {

N
0 ω = 1

0ω + 2
1ω + 3

2ω + · · ·+ N−1
N−2ω + N

N−1ω
N
0 v = 1

0v + 2
1v + 3

2v + · · ·+ N−1
N−2v + N

N−1v
(3)

Therefore, based on the kinematic expressions of every joint in a single serial chain
through Equation (3), the forward kinematics of the chain can be gained through

N
0 VN =

N

∑
i=0

iVi+1 = Sω (4)

where S represents the unit velocity screw matrix of a series linkage with N joints and is
formed by uniting the unit velocity screws of each joint in turns,

S =
[
$1 $2 · · · $N

]
(5)

and ω =
[1

0ω 2
1ω · · · N

N−1ω
]T is an angular velocity vector consisting of all relative

angular velocities of each joint relative to its previous link in the linkage.

2.2. Reciprocal Screws of Moving Platform and Its DOF

To analyze the DoFs of a parallel mechanism with various kinematic chains, firstly, the
mechanism should be divided into chains, and then the constraints of each chain acting
on the moving platform should be explained [30,31]. Foremost, the Plücker coordinates of
each joint of each chain are carried out based on the absolute coordinate frame as shown in
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Figure 1a. Therefore, the Plücker coordinates of joints in the UPUchain can be written as
follows:

$1
UPU =

[
1 0 0 0 0 0

]T

$2
UPU =

[
0 1 0 0 0 R

]T

$3
UPU =

[
0 0 0 − sin θ 0 cos θ

]T

$4
UPU =

[
cos θ 0 sin θ 0 −R sin θ + L 0

]T

$5
UPU =

[
0 1 0 −L cos θ 0 R− L sin θ

]T

(6)

where L is the length of the kinematic chain, and θ is angle between the UPU chain and the
z-axis. Therefore, the screws of the chain are now expressed by

S =
[
$1

UPU $2
UPU $3

UPU $4
UPU $5

UPU
]

(7)

According to the reciprocal screw theory, the inverse screw $r can be obtained through

STℵ$r = 0 (8)

where ℵ =

[
0 I3×3

I3×3 0

]
and I3×3 =

1 0 0
0 1 0
0 0 1

.

Therefore, the inverse screw of the UPU chain is

$r
UPU =

[
0 1 0 0 0 R− L

sin θ

]T (9)

Based on screw theory, $r
UPU can be expressed in a wrench form as $r

UPU =

[
F

r× F

]
,

and as shown in Equation (9), $r
UPU is expressed as a force vector parallel to the y-axis

passing through point (R− L
sin θ b 0), where b can be any value.

Using the same procedure, the inverse screws of the UPS and S chains can be obtained

$r
UPS =

[
0 0 0 0 0 0

]T (10)

$r
S =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

T

(11)

Therefore, all the inverse screws provide the terminal constraints to the moving
platform:

SC
P =



0 1 0 0
1 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

R− L
sin θ 0 0 0

 (12)

According to the reciprocal screw Equation (8), the free velocity screws of the moving
platform $P demonstrate that (

SC
P

)T
ℵ$P = 0 (13)

Therefore,

$P =

[
1 0 0 0 0 0
0 1 0 0 0 0

]T

(14)
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3. The Velocity and Displacement Analysis of the 3UPS-UPU-S Parallel Mechanism

This section gives the kinematic analysis of the 3UPS-UPU-S. As shown in Figure 2b,
with the definition of the twist matrix, the kinematic screw equation of a multi-rigid-body
system can be obtained through

Sω = V (15)

with
S = diag

[[
S1
]

6×5

[
S2
]

6×6
· · ·

[
S5
]

6×3

]
30×26

(16)

and
ω =

[[
ω1]T

5×1

[
ω2]T

6×1 · · ·
[
ω5]T

3×1

]T

26×1
(17)

where ωN is the relative angular velocity vector of each joint of each kinematic chain
looP(N).
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SN in Equation (16) is the unit screw matrix of the single kinematic chain looP(N),
and diag[] means a diagonal matrix with S1, S2, · · · , S5. As shown in Figure 2a, according
to Equation (5), the kinematic unit screw matrix S1 of the UPU chain can be expressed as

S1 =

[
e1

1
r1

A × e1
1

e1
2

r1
A × e1

2

0
e1

3

e1
4

r1
C × e1

4

e1
5

r1
C × e1

5

]
(18)

where
[

0
e1

3

]
gives the unit velocity screw of a prismatic joint.

In a similar way, as shown in Figure 2c, the kinematic screw matrix SK of the Kth UPS
chain is

SK =

[
eK

1 eK
2 0 eK

4 eK
5 eK

6
rK

A × eK
1 rK

A × eK
2 eK

3 rK
C × eK

4 rK
C × eK

5 rK
C × eK

6

]
, (K = 2, 3, 4) (19)

S5 =

[
e5

1 e5
2 e5

3
r5
O × e5

1 r5
O × e5

2 r5
O × e5

3

]
(20)
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The velocity matrix in Equation (15) can be expressed as

V =
[[C

0 V1]T
6×1

[C
0 V2]T

6×1 · · ·
[C

0 V5]T
6×1

]T

30×1
(21)

where C
0 VK contains all the absolute velocity screw of the joints in Kth kinematic chain.

In addition, the absolute velocity in Equation (19) can be calculated through

C
0 VK = P

0 V − P
CVK (22)

where P
0 V is the velocity screw of the mass center, P, on moving platform which is given in

solving the inverse kinematics, and P
CVK is the relative velocity screw of joint P in regard to

joint C, which can be gained through

P
CVK =

[
0

C
0 ωK × rK

P

]
(23)

where C
0 ωK is the output absolute angular velocity of the Kth kinematic chain connected

with the moving part, while rK
P presents the absolute position of point P in the absolute

coordinate frame.
To obtain the required unit screws in Equation (18), the rotation matrix is applied to

calculate the unit joint axis, eK
n , and the absolute position vector, rK

n , of each joint in the
absolute coordinate frame: eK

N = RK
Z

(
∏

n=2
RK

N

)
eK

N(0)

rK
N = RK

Z
(

0rK
A(0) + RK

2 RK
3 RK

5 rK
AC
) ,
{
(N = 1, 2, · · · , 4)
(K = 1, 2, · · · , 6)

(24)

where RK
Z is the rotation matrix around the z-axis, which can be expressed as: Rk

Z =
RZ((p− 1)90◦). RK

N presents the rotation matrix from link LN to link LN−1. When it
rotates around x axis, then RK

N = Rx
(

N−1θK
N
)
, and when it rotates around the y axis,

RK
N = Ry

(
N−1θK

N
)
, and when it rotates around z axis, RK

N = Rz
(

N−1θK
N
)
.

From Equation (15), if the kinematics of the terminal link JN is given, the inverse
kinematics of the multi-rigid-body system can be derived as

STSω = STV (25)

As
∣∣∣STS

∣∣∣= 0, the multi-rigid-body system is either redundantly actuated or in singu-
larity configuration. In another configurations, multiplying both sides of Equation (23) by[
STS

]−1
yields

ω =
[
STS

]−1
STV (26)

where
[
STS

]−1
ST is called the pseudo inverse of the screw matrix, S. Equation (24) is used

to solve the inverse velocity of the linkage.
Obviously, the position r and posture e of each joint are the functions of the angles

θ. With the initial assembly conditions, represented through θ(0), the solution of ω(1)
can be derived through Equation (24) by substituting θ(0) into the unit screw matrix, S.
Then, through an iterative approach, the successive parameters of S(n) can be obtained by
updating the data in Equation (24),

θ(n+1) = θ(n) + ∆tω(n) (27)
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where θ(n) =
[

1
0θ(n) 2

1θ(n) · · · N−1
N−2θ(n) N

N−1θ(n)
]T

consists of the angular displace-

ments of all joints, and N
N−1θ is the relative angular displacement of joint JN with respect to

joint JN−1. n= 1, 2, · · · indicates the times of iteration.

4. The Analysis of Acceleration and Its Mathematical Expression

In this section, the analysis of acceleration and its mathematical expression is given. As
depicted in Figure 3, suppose that U, V and W are three rigid bodies in a serial kinematic
chain connected by a number of joints successively, and there is an arbitrary point, P,
attached to the link LW . Therefore, the velocities of P attached to these two frames observed
from frame U are {

V
UvP = V

Uω × rUP

W
V vP = W

V ω × rVP
(28)

where the V
Uω and W

V ω are the relative angular velocity of joint JU and JV , rUP and rVP is
the position vector in the absolute coordinate frame.
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Differentiating both sides of Equation (26) with respect to time, the acceleration of
point P rigidly attached to frame V and frame W observed in frame U could be derived as{

V
UaP = V

U β × rUP + V
Uω ×

(V
Uω × rUP

)
W
V aP = W

V β × rVP + W
V ω ×

(W
V ω × rVP

) (29)

where the V
U β and W

V β are the relative angular acceleration of the joints with respect to their
fore joints.

It is well known that the acceleration could not be expressed in screw form due to its
implicated motion. Therefore, to express the acceleration by one matrix, the implicated
motion is removed to satisfy the definition of a screw.

Suppose that V
UAP containing all acceleration information of the point P from coordi-

nate U to coordinate V in screw form can be expressed as

V
UAP =

[
V
U β

V
UaP − V

Uω × V
Uv

]
=

[
V
U β

V
UaP − V

Uω ×
(V

Uω × rUP
)] (30)
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Suppose that W
V AP containing all acceleration information of the point P from coordi-

nate V to coordinate W in screw form can be expressed as

W
V AP =

[
W
V β

W
V aP −W

V ω ×W
V v

]
=

[
W
V β

W
V aP −W

V ω ×
(W

V ω × rVP
)] (31)

Therefore, W
U AP, which contains all acceleration information of the point P from

coordinate U to coordinate W in screw form can be expressed as

W
U AP =

[
W
U β

W
U aP −W

U ω ×W
U v

]

=

[
V
U β

V
UaP − V

Uω ×
(V

Uω × rUP
) ]+ [ W

V β
W
V aP −W

V ω ×
(W

V ω × rVP
) ]+ [ V

l ω ×W
V ω

V
l ω ×

(W
V ω × rVP

)
−W

V ω ×
(V

l ω × rUP
) ] (32)

Substituting Equation (26) into Equation (28) yields

V
UAP =

[ V
U β

V
U β × rUP

]
(33)

Additionally, substituting Equation (26) into Equation (31) gives

W
V AP =

[ W
V β

W
V β × rVP

]
(34)

Let
V
ULP =

[V
Uω
V
UvP

]
, W

V LP =

[W
V ω
W
V vP

]
(35)

where V
UvP = V

Uω × rUP and W
V vP = W

V ω × rVP.
With the operation of Lie bracket on V

ULP and W
V LP defined by

[
V
ULP, W

V LP

]
=

[ V
Uω ×W

V ω
V
Uω ×W

V vP −W
V ω × V

UvP

]
(36)

and associating Equations (33)–(36), the acceleration in screw form could be expressed as

W
U AP = V

UAP + W
V AP +

[
V
ULP, W

V LP

]
(37)

Then, by expressing the accelerations from the coordinate frame, W − 2, to the coordi-
nate frame, W, by using Equation (37) in sequence presents

W
W−3AP = W−2

W−3AP + W
W−2AP +

[
W−2
W−3LP, W

W−2LP

]
W
W−2AP = W−1

W−2AP + W
W−1AP +

[
W−1
W−2LP, W

W−1LP

] (38a)

Therefore, to obtain

W
W−3AP = W−2

W−3AP + W−1
W−2AP + W

W−1AP +
[

W−1
W−2LP, W

W−1LP

]
+
[

W−2
W−3LP, W

W−2LP

]
(38b)

from Equation (38a), the acceleration of the point P from frame W − 4 to frame W in screw
form could be deduced as

W
W−4AP = W−3

W−4AP + W
W−3AP +

[
W−3
W−4LP, W

W−3LP

]
(39)

Substituting Equation (38b) into Equation (39) yields
W
W−4AP = W−3

W−4AP + W−2
W−3AP + W−1

W−2AP + W
W−1AP +

[
W−1
W−2LP, W

W−1LP

]
+
[

W−2
W−3LP, W

W−2LP

]
+
[

W−3
W−4LP, W

W−3LP

]
(40)



Appl. Sci. 2023, 13, 3912 9 of 18

Since W
W−2LP = W−1

W−2LP + W
W−1LP and W

W−3LP = W−2
W−3LP + W−1

W−2LP + W
W−1LP, Equa-

tion (35) can be expanded to

W
W−4AP = W−3

W−4AP + W−2
W−3AP + W−1

W−2AP + W
W−1AP +

[
W−1
W−2LP, W

W−1LP

]
+
[

W−2
W−3LP, W−1

W−2LP + W
W−1LP

]
+
[

W−3
W−4LP, W−2

W−3LP + W−1
W−2LP + W

W−1LP

] (41)

Through the same procedure, the acceleration of the point P from frame 0 to frame N
in screw form can be derived as

N
0 AP = 1

0AP + 2
1AP + · · ·+ N−1

N−2AP + N
N−1AP

+
[

1
0LP, 2

1LP + · · ·+ N−1
N−2LP + N

N−1LP

]
+
[

2
1LP, 3

2LP + · · ·+ N−1
N−2LP + N

N−1LP

]
+ · · ·

+
[

N−2
N−3LP, N−1

N−2LP + N
N−1LP

]
+
[

N−1
N−2LP, N

N−1LP

] (42)

When P is superimposed with the origin of the absolute coordinate frame at this time
instant, the acceleration in screw form in accordance with the definition of the unit screw
could be gained:

N
0 A = 1

0β$1 +
2
1β$2 + · · ·+ N−1

N−2β$N−1 +
N
N−1β$N

+
[

1
0ω$1, 2

1ω$2 +
3
2ω$3 + · · ·+ N−1

N−2ω$N−1 +
N
N−1ω$N

]
+
[

2
1ω$2, 3

2ω$3 + · · ·+ N−1
N−2ω$N−1 +

N
N−1ω$N

]
+ · · ·

+
[

N−2
N−3ω$N−2, N−1

N−2ω$N−1 +
N
N−1ω$N

]
+
[

N−1
N−2ω$N−1, N

N−1ω$N

] (43)

where N+1
N β =

dN+1
N ω

dt and N+1
N $i+1 =

[ N+1
N e

r0 × N+1
N e

]
.

To simplify the expression of Equation (43), N+1
N ω and N+1

N β can be denoted by ωN+1
and βN+1 to express the relative angular velocity and acceleration of the (N + 1)th frame
with respect to the Nth frame without any ambiguity.

Equation (43) can be written in a matrix multiplication form as

N
0 A = Sβ + ωTSLω (44)

where
S =

[
$1 $2 · · · $N

]
(45)

which is the unit screw matrix of the kinematic chain, and

ω =
[
ω1 ω2 · · · ωN

]T (46)

which consists of all relative angular velocities, and

β =
[
β1 β2 · · · βN

]T
=
[

dω1
dt

dω2
dt · · · dωN

dt

]T
(47)

which is a vector consisting of all relative angular accelerations, and

SL =



0 [$1, $2] [$1, $3] [$1, $3] · · · [$1, $N−1] [$1, $N ]
0 0 [$2, $3] [$2, $3] · · · [$2, $N−1] [$2, $N ]
0 0 0 [$3, $4] · · · [$3, $N−1] [$3, $N ]
...

...
...

. . .
...

...
...

0 0 0 0 0 [$N−2, $N−1] [$N−2, $N ]
0 0 0 0 0 0 [$N−1, $N ]
0 0 0 0 0 0 0


(48)

which is a matrix composed of the Lie brackets of the unit screws in accordance with
Equation (45). Equation (46) is the acceleration represented in the form of screws.
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The linear acceleration of the mass/geometry center of the end effector is

N
0 aC = N

0 a + N
0 β × rC + N

0 ω × N
0 vC (49)

where N
0 ω = ω1 + ω2 + · · ·+ ωN , N

0 β = β1 + β2 + · · ·+ βN , rC = rN + rNC, and N
0 vC =

N
0 ω × (rN + rNC).

Accordingly, the absolute acceleration in screw form of the center point of the end
effector is expressed as

N
0 AC =

[ N
0 β
N
0 aC

]
=

[ N
0 β

N
0 a + N

0 β × rC + N
0 ω × N

0 vC

]
(50)

5. The Analysis of Dynamics of the 3UPS-UPU-S Parallel Mechanism

For the 3UPS-UPU-S parallel mechanism, there are four actuators at the prismatic
joints to drive the moving legs, fixed legs and moving platform. As aforementioned in
Section 2, the 3UPS-UPU-S has two rotational degrees of freedom. When it rotates, the
inertia force would be generated, and in order to give accurate control, this section will yield
the dynamic analysis based on the Newton–Euler equation. The Newton–Euler equation
can group all the forces and torques into a single equation. Hence, the three constraint
forces and three constraint torques can be calculated in a straightforward way. When the
external loads, constraint forces and self-weights of all rigid bodies are considered in the
calculation of wrenches, the equation of the balance conditions for a single-rigid-body
system is [

F
T

]
=

[
mI 0
0 J

][
a
β

]
+

[
mg

ω× Jω

]
(51)

where T is the resultant torque vector, F is the resultant force vector of a single-rigid-body, I
is the 3rd-order identity matrix, and m is the mass of a single-rigid-body at its mass center.
{a, β} in Equation (51) is the absolute linear acceleration and absolute angular acceleration
vector at the mass center according to the absolute coordinate frame, and ω is the absolute
angular velocity vector at the mass center in the absolute coordinate frame. The acceleration
{a, β} can be calculated by Equation (50), and the angular velocity ω can be obtained using
Equation (24).

The moments of inertia J of a single-rigid-body at its mass center in the absolute
coordinate frame (0-coordinate frame) can be obtained through

J = R0nJnRT
0n (52)

where Jn is the moments of inertia of a single-rigid-body at its mass center in the relative
coordinate (n-coordinate frame), and R0n is the rotation matrix from the n-coordinate frame
to the 0-coordinate frame, which could be calculated by Equation (22).

The fixed leg, LAB, has one universal joint and one prismatic joint, which is shown in
Figure 4a, and the Newton–Euler equations for the fixed leg, LAB, can be derived as[

FA − FB

ArD × FA − DrB × FB + TA − TB

]
=

[
mDI 0

0 JD

][
aD
βD

]
+

[
mDg

ωD × JDωD

]
(53)

The moving leg, LBC, consists of universal joint (or spherical joint) and one prismatic
joint, which is shown in Figure 4b, and the Newton–Euler equations for the fixed leg, LBC,
can be deduced as[

FB − FC

BrE × FB − ErC × FC + TB − TC

]
=

[
mEI 0

0 JE

][
aE
βE

]
+

[
mEg

ωE × JEωE

]
(54)

When the moving leg, LBC, is PU, the TC is zero.
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BC, (K = 1, 2, 3, 4); (c) dynamics of the S chain;

(d) dynamics of the moving platform.

The moving platform, LP, consists of one universal joint and four spherical joints,
which is shown in Figure 4d. The Newton–Euler equations for the moving platform, LP,
can be expressed as

4
∑

k=1
FC + FS

4
∑

k=1

(
CrP × FC

)
+

4
∑

k=2
TC

 =

[
mPI 0

0 JP

][
aP
βP

]
+

[
mPg

ωP × JPωP

]
+

[
FP
TP

]
(55)

Additionally, the spherical joint at the center has one dimensional constraint equation,

FS = FSrS (56)

By associating Equations (53)–(56), the dynamics equation of the 3UPS-UPU-S parallel
mechanism can be derived based on Equation (47):

cQ = mA + W + FE (57)

In Equation (57), c is the displacement coefficient matrix for the wrench, Q is the
wrench vector consisting of all constraint forces and torques, m is the mass matrix containing
mass information of all rigid bodies, A is the acceleration matrix with all acceleration
information of each mass center, W is the Coriolis wrench matrix, and FE is the external
wrench matrix exerted on the 3UPS-UPU-S parallel mechanism that is given, which also
includes gravity.

As shown in Figure 4, the parallel mechanism with the 3UPS chain, 1UPU chain and 1
S chain has four fixed legs, four moving legs and one moving platform in total. Every single
rigid body could establish six equations based on the Newton–Euler equation; therefore,
there are 54 equations that could be established.

The universal joint, U, can provide three forces and one torque, the spherical joint
can provide three forces and no torque and the prismatic joint can supply three forces
and three torques. Therefore, there are 56 unknown constraint forces and torques in the
3UPS-UPU-S parallel mechanism. As analyzed in Section 2, the 3UPS-UPU-S is an over
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constraint parallel mechanism, and a one-dimensional constraint equation at the spherical
joint S is added to solve this problem.

The number of constraint wrenches in the 3UPS-UPU-S parallel mechanism is 56. It is
identical to the sum of nonlinear equations in Equations (37)–(39). Therefore, the constraint
wrenches can be calculated with Equation (45):

Q =
(

ccT
)−1

(mA + W + FE) (58)

6. Simulation and Result Analysis

In order to demonstrate the kinematic and dynamic analysis method of the parallel
mechanism proposed in this paper, a numerical case is given in this section, and the
simulation is carried out by MATLAB software.

6.1. The Inverse Kinematics of the 3UPS-UPU-S Parallel Mechanism

Suppose that the moving platform follows a spatial rotation motion, and the parameter
equation of the trajectory for the moving platform is defined as{

x(t) = −0.2 cos(t) + 0.2
y(t) = 0.1 sin(t)

(59)

With the trajectory, the displacement vector, DP, velocity screw, VP and acceleration
vector, AP, of the moving platform are

DP =
[
−0.2 cos(t) + 0.2 0.1 sin(t) 0 0 0 3

√
3/10

]T

VP =
[

0.2 sin(t) 0.1 cos(t) 0 0 0 0
]T

AP =
[

0.2 cos(t) + 0.2 0.1 sin(t) 0 0 0 0
]T

(60)

where t is the time of the trajectory.
The step length for simulation is ∆t = 0.001, and the total number of iterations is

n = 10000. As illustrated in Figure 5, H(m) is the initial height between the mass center,
S, on the base platform and the mass center, P, of the moving platform, L(m) is the initial
length between joint A and joint C. R(m) is the distance between the mass center S and
joint A, r(m) is the distance between the mass center P and joint C, and both are constant.
θ and P give the initial assembly configuration of four surrounding kinematic chains. The
initial configuration conditions of the 3UPS-UPU-S parallel mechanism for kinematics
analysis is given in Tables 1 and 2.
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Table 1. Structure parameters of the 3UPS-UPU-S.

H(m), (t = 0) R(m) r(m) L(m), (t = 0)

3
√

3
10

0.8 0.5 0.6

Table 2. Initial conditions of the 3UPS-UPU-S.

θi
1(0)(rad) θi

2(0)(rad) pi
3(0)(m) θi

4(0)(rad) θi
5(0)(rad) θi

6(0)(rad){
θ1

1
}
= {0}

{
θ1

2
}
=
{
−π

6
} {

p1
3
}
= {0.3}

{
θ1

4
}
= {0}

{
θ1

5
}
=
{
−π

3
} {

θ1
6
}
= {0}

Starting from the initial configuration, the kinematics of the 3UPS-UPU-S 3UPS-UPU-S
parallel mechanism could be calculated, the angular velocities could be derived by Equa-
tion (24), the postures and positions could be derived by Equation (22) and the accelerations
could be derived by Equations (44) and (50). The inverse kinematics of the 3UPS-UPU-S
parallel mechanism is carried out and plotted by MATLAB based on the given trajectory,
and the curves of the kinematics are shown in Figures 6–10. In Figures 8–10, the subscripts
x, y, z represent the components around the coordinate axis, respectively.
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Figure 6 shows the relative angular displacements and relative linear displacements of
all the joints in each kinematic chain. Figure 6a illustrates the relative angular displacement
θ of all the revolute joints of each kinematic chain, and Figure 6b illustrates the relative
linear displacements d of all prismatic joints.

Figure 7 represents the relative angular velocities and relative linear velocities of all
the joints in each kinematic chain. Figure 7a shows the relative angular velocities ω of each
rotational joint, and Figure 7b shows the relative linear velocities v3 of each prismatic joint.

Figure 8 depicts the absolute angular accelerations and absolute angular accelerations
of the mass center D of the fixed leg LK

AB, (K = 1, 2, 3, 4) in each kinematic chain; the β is
the absolute angular accelerations and the a is the absolute linear acceleration.

Figure 9 shows the absolute angular accelerations and absolute angular accelerations
of the moving legs, LK

BC, (K = 1, 2, 3, 4), at their individual mass centers E. Figure 9a shows
the absolute angular accelerations, and Figure 9b shows the absolute linear acceleration.

Figure 10 illustrates the absolute angular velocities of all chains. Figure 10a shows
the absolute angular velocities of the fixed legs at their mass center D of each chain and
Figure 10b shows the absolute angular velocities of the mass center E of each moving leg.

6.2. The Inverse Dynamics of the 3UPS-UPU-S Parallel Mechanism

Assume that there are external loads exerting on the moving platform at its mass center
P given the external force FP =

[
0 0 1

]
(KN) and the torque TP =

[
1 0 0

]
(KN ·m).

With the kinematics information calculated in Section 6.1, and the identified inertial pa-
rameters at mass’ center and moving platform in Table 3, the dynamics analysis of the
3UPS-UPU-S parallel mechanism could be carried out, and the driving force of the prismatic
joint could be derived using Equation (56).

Table 3. The identified inertial parameters at mass center and moving platform.

Mass (m)(K = 1, 2 · · · 4) Moments of inertia
(
kg ·m2)(K = 1, 2 · · · 4)


mK

D = 1.42 kg
mK

E = 1.42 kg
mP = 2.87 kg


JK

D0
=

 5.56e−4 0 0
0 1.14e−2 0
0 0 1.16e−2

 = JK
E0

JP0
=

 6.87e−1 0 0
0 6.87e−1 0
0 0 9.21e−1



Figure 11 depicts the resultant driving forces at all prismatic joints of the four kinematic
chains. In addition, the component forces along three coordinate frames can be derived
with the direction of each chain, and the curves indicate that the resulting driving forces
are varied as the motion of the moving platform changes.
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7. Conclusions

This paper proposes an 3UPS-UPU-S over constraint parallel mechanism to satisfy the
motion demands of two rotational degrees of freedom. The kinematics and dynamics based
on screw theory are investigated. Different to the existing methods, the most prominent
merits of this method are that the displacements, velocities, position and postures are
calculated by the velocity screw equation directly and the acceleration in screw form is
given; therefore, this mathematical expression could simplify the calculation and analysis
of the dynamics. Both forces and torques could be taken into account in the equilibrium of
the parallel mechanism, and all the constraint forces and torques could be calculated in the
absolute coordinate system. The kinematics and dynamics could be united by using the
unit screw matrix. This method could also be applied to develop the program to analyze
the kinematics and dynamics of any other multi-rigid-body system. The workspace and
trajectory planning could be discussed for application in future work.
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Nomenclature

Notation Parameter
N
0 A Acceleration
N
0 a Linear acceleration
c Displacement coefficient matrix
N
0 d Linear displacement
N
0 D Displacement
eN Orientation vector
F Force
H Initial distance between base platform and middle ring of moving platform
I 3rd-order identity matrix
Ji ith joint
J Moment of inertia of a single-rigid-body in the absolute coordinate frame

Jn
Matrix of mass moment of inertia of a single-rigid-body
at its principal coordinate frame of the mass center

K Kth kinematic chain in parallel mechanism
L Initial length of kinematic chains
Li ith link[V

ULP, W
V LP

]
Operation of Lie Brackets

m Mass matrix
n Number of iterations
N Nth joint in one kinematic chain
Q Wrench vector consisting of constraint forces and torques
r Radius of the middle ring of the moving platform
rN Position vector
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R Radius of circumcircle of four U joints on the base platform
Ri Rotation transformation matrix around i axis
S Screw matrix
SC Constraint space
SF Free motion space
SL Lie brackets of the unit screws
$r Inverse screw
$N Unit screw
Ti Translation in i direction
T Torque
N
0 v Linear velocity
N
0 V Velocity screw
W Coriolis wrench matrix
N
0 ω Angular velocity
N
0 β Angular acceleration
N
0 θ Angular displacement
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