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Abstract: In this article, a new modification of the Weibull model with three parameters, the new
exponential Weibull distribution (E-WD), is defined. The new model has many statistical advantages,
the heavy-tailed behavior and the regular variation property were offered. Many of the important
statistical functions of the modified model are presented in closed forms. The flexibility of E-WD
has been improved. The proposed model can be used to fit data with different shapes, it can be
right-skewed, left-skewed, decreasing, curved and symmetric. Some distribution properties of the
proposed model, including moment generating function, characteristic function, moment, quantile
and identifiability property, have been derived. In addition to the information generating function,
the Shannon entropy and information energy are also discussed. The maximum likelihood approach
and Bayesian estimation are used to estimate the distribution parameters. In the Bayesian method,
three different loss functions are used. The calculations show the biases and estimated risks to
obtain the best estimator. The bootstrap confidence intervals, the asymptotic confidence intervals and
the observed variance-covariance matrix are obtained. Metropolis Hastings’ MCMC procedure is
used for the calculations. We apply the composite distribution to stock data for four variables. The
goodness-of-fit results show that the model performs well compared to its competitors. The proposed
model can be used for forecasting and decision making.

Keywords: Weibull distribution; stock market; statistical modeling; bayesian estimation; maximum
likelihood estimation

1. Introduction

In this article, we present a new statistical distribution with three parameters that has
some desirable properties. There are many previous studies and researches on the topic of
composite distributions and the study of their properties, as well as methods for estimating
the parameters and the reliability function. Here are some related researches and studies
on this topic. Nadarajah and KOT [1] introduced a composite probability model, as he
derived some of the characteristics of the proposed model represented by the probability
distribution function, moments, mode, median, and the study of property measures of
dispersion such as variance, average deviation, torsion, and flattening, and the parameters
of the proposed model and the reliability function were estimated. Lingji et al. [2] develop a
new composite statistical model Beta-Gamma, investigated the model properties, estimated
the parameters and the risk function in different ways, and applied the model to real
data in the health field. Akinsete et al. [3] discussed construction of a new composite
statistical model for the Beta-Pareto distribution with four parameters and the study
of the properties of the model, such as the arithmetic mean, mode, median, standard
deviation, variance, skewness, and flatness, as well as the parameters and reliability
of the model. Barreto et al. [4] discussed the study of a complex statistical model Beta-
Generalised Exponential in terms of its mathematical properties and the derivation of rth
degree moments.
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A study on the complex distribution beta-Burr XII was published, in which the charac-
teristics were derived by Paranaiba et al. [5]. A study on the construction of a composite
statistical model for the Beta-Half Cauchy distribution was presented by Cardeior and
Lemonts [6], such as the arithmetic mean and mode, and some properties of the dispersion
measures. ALkadim and Boshi [7] published a paper that combined the exponential-Pareto
distribution with two independent distributions, the Exponential and the Pareto distri-
bution. The properties of the new distribution were studied in terms of the probability
density function, the reliability function, the cumulative function, the risk function, and the
use of the method of greatest likelihood to estimate the parameters. Gupta and Kundu [8]
proposed the generalized exponential distribution and Nasiri [9] estimated the parameters
via using different method in person of outlier.

Many literatures researched the issue of new statistical models based on the Weibull
distribution. For example, Martinez et al. [10] developed the generalized modified Weibull
distribution. Lee et al. [11] developed a beta Weibull model. Tahir et al. [12] developed a
new Weibull-Pareto distribution. Emam developed the generalised Weibull-Weibull distri-
bution [13]. Emam and Tashkandy [14] developed the generalised Arcsine-Kumaraswamy-
X family of distributions by incorporating a trigonometric function, the Weibull claim
model [15] using a class of claim distributions, the modified alpha-power Weibull-Weibull
model [16], the generalised modified Weibull model [17] and the Khalil generalized Weibull
distribution based on ranked set samples [18]. The exponential probability density function is:

f (χ; ψ) = ψe−χψ, χ ≥ 0, ψ > 0. (1)

Here ψ > 0 is the inverse scale parameter. The exponential is:

F(χ; ψ) = 1− e−χψ, χ ≥ 0, ψ > 0. (2)

Next, the Weibull cumulative distribution function with two parameters takes the
following form:

G(χ; λ, θ) = 1− e−λχθ
, χ ≥ 0; λ, θ > 0. (3)

where χ ≥ 0, λ > 0 is the scale parameter and θ > 0 is the shape parameter.

2. The E-WD

In this section we introduce a new combined statistical model and study its behavior. It
is the E-WD with three agency parameters, which also consists of an exponential family and
a Weibull distribution. The proposed model is superior to many previous distributions and
proves its efficiency in modeling stock movement data in the stock market. The cumulative
distribution function (CDF) of the new combined statistical model is as follows:

F(χ; ψ, λ, θ) =
∫ G(χ;λ,θ)

0 f (x; ψ)dx

=
∫ 1−eλχθ

0 ψe−xψdx

=
[
e−xψ

]1−eλχθ

0

= 1− e−
(

1−e−λχθ
)

ψ.

(4)

The probability density function (PDF) of the complex statistical model gives as follows:

f (χ; ψ, λ, θ) = ∂F(χ;ψ,λ,θ)
∂χ

= e
(

e−χθ λ−1
)

ψe−χθ λχθ−1ψλθ.
(5)
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∀χ; λ, θ, and ψ, the function in the aforementioned Equation (5) f (χ; ψ, λ, θ) > 0, but

∫ ∞
0 f (χ; ψ, λ, θ)dχ =

∫ ∞
0 e

(
e−χθ λ−1

)
ψe−χθ λχθ−1ψλθdχ

=

[
−e

(
e−χθ λ−1

)
ψ
]∞

0

= 1− e−ψ.

(6)

The function in Equation (5) is a non-probability PDF because its integral is not equal
to one, so the appropriate method to convert it into a probability density function is to
multiply it by the reciprocal of integration. The PDF of the proposed E-WD is:

f (χ; ψ, λ, θ) =
e
(

e−χθ λ−1
)

ψ−χθ λ
χθ−1ψλθ

1− e−ψ , χ ≥ 0; ψ, λ, θ > 0. (7)

The corresponding CDF gives as follows:

F(χ; ψ, λ, θ) =
∫ χ

0 f (u; ψ, λ, θ)dχ

= ψλθ

1−e−ψ

∫ χ
0 e

(
−1+e−uθ λ

)
ψ−uθ λuθ−1dχ

= 1
1−e−ψ

[
−e

(
−1+e−uθ λ

)
ψ
]χ

0
.

(8)

The CDF of E-WD is

F(χ; ψ, λ, θ) =
1

1− e−ψ

[
1− e

(
e−χθ λ−1

)
ψ
]

, χ ≥ 0; ψ, λ, θ > 0. (9)

Furthermore, the survival function, hazard function, cumulative hazard function,
and reverse hazard function of E-WD are given, respectively, by

S(χ; ψ, λ, θ) = 1− F(χ; ψ, λ, θ) =
ee−χθ λψ − 1

eψ − 1
, (10)

h(χ; ψ, λ, θ) =
f (χ; ψ, λ, θ)

S(χ; ψ, λ, θ)
=

ee−χθ λψ−χθ λχθ−1ψλθ

ee−χθ λψ − 1
, (11)

H(χ; ψ, λ, θ) = −Log[F] = −Log

 eψ − ee−χθ λψ

eψ − 1

, (12)

r(χ; ψ, λ, θ) =
f (χ; ψ, λ, θ)

F(χ; ψ, λ, θ)
=

ee−χθ λψ−χθ λχθ−1ψλθ

eψ − ee−χθ λψ
. (13)

The importance and main motivation for the proposed modification E-WD:

(i) To improve the flexibility and distribution properties of Weibull model.
(ii) The proposed model can take several forms: a right-skewed form, a left-skewed form,

a decreasing form, a curved form, and a symmetric form.
(iii) A simple way to add an additional parameter that gives an extended distribution

with “heavy tail” properties and is very useful in modeling stock movement data and
financial data.



Appl. Sci. 2023, 13, 3909 4 of 22

(iv) The important statistical functions of the modified E-WD are presented in closed forms.
(v) The new version has many special statistical features. Now we present the visual

representation of the PDF of the E-WD.

Various visual representations of the E-WD PDF are shown in Figure 1. The represen-
tations of f(x) are obtained for 0 ≤ χ ≤ 2 and for; (i) λ = 0.2, θ = 0.8, ψ = 2.4 (blue-line),
(ii) λ = 0.2, θ = 1.8, ψ = 2.4 (green-line), (iii) λ = 0.2, θ = 0.8, ψ = 1.5 (orange-line),
(vi) λ = 1.2, θ = 0.8, ψ = 1.5 (red-line). In Figure 1, the representations of f(x) are obtained
for 0 ≤ χ ≤ 2 and for; (i) λ = 0.5, θ = 0.5, ψ = 3.8 (blue-line), (ii) λ = 0.5, θ = 0.5, ψ = 3.8
(green-line), (iii) λ = 2.3, θ = 0.5, ψ = 3.8 (orange-line), (vi) λ = 0.05, θ = 0.06, ψ = 3.8
(red-line). In left banal of Figure 1 we can observe the different shapes of the PDF of the
E-WD. These include a right-skewed shape (green line), a decreasing shape (orange line),
a curved shape (red line), zero skewness and a symmetrical shape (blue line). In right banal
of Figure 1 we can observe the different shapes of the PDF of the E-WD. These include
a left-skewed shape (red line), a decreasing shape (green line), and a symmetrical shape
(blue line and orange line). From Figure 1, we can see that the E-WD PDF is very flexible
and therefore can be used to cover datasets with indicated, decreasing, right-skewed, left-
skewed or symmetric behaviour. Figure 2 presents the CDF of the corresponding casses
of Figure 1.
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Figure 1. Different PDF for the E-WD.
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Figure 2. Different CDF for the E-WD.

3. The Heavy-Tailed Characteristic

This section offers the heavy-tailed behavior and regular variational results of the
E-WD. Probability distributions that are right-skewed and possess heavy-tailed behavior
are very useful in providing the best description of the biomedical data sets. A probability
model is called a heavy tailed distribution, if it satisfies for every p

lim
y→∞

S(y, ψ, λ, θ)epχ → ∞. (14)
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Theorem 1. ∀p, ψ, λ, θ > 0, the probability distribution f (y, ψ, λ, θ) that given in Equation (5)
is heavy tailed distribution as y→ ∞.

Proof. Based on Equation (10), we can write that

lim
y→∞

S(y, ψ, λ, θ)epχ = lim
y→∞

epy
(

ee−yθ λψ−1
eψ−1

)

=
lim

y→∞
e
−
(

2−e−λyθ
)

ψ+py

1−e−ψ

= e−(2−0)ψ+p∞

1−e−ψ

= e∞

1−e−ψ → ∞.

(15)

An important property of the heavy-tailed probability distributions is called the
regular variational property. This property implies that the tail of the distribution decays in
a power-law fashion, with an exponent ∆ that determines how fast it decays. The larger
the value of ∆, the slower the decay of the tail. The regular variational property has
important implications for many areas of science and engineering, including finance,
telecommunications, and network science. It allows us to model extreme events and rare
occurrences more accurately and to estimate their probabilities more reliably. Here, we
derive the regular variational property of the E-WD. According to Karamata’s theorem
(see, Seneta [19]), the E-WD in terms of SF S(y, ψ, λ, θ) is regularly varying, if it satisfies for
every p

lim
y→∞

S(py, ψ, λ, θ)

S(y, ψ, λ, θ)
= p∆, ∀p, ∆ > 0. (16)

where ∆ represents an index of regular variation.

Theorem 2. ∀p, θ > 0, non-zero and finite, the probability distribution f (y, ψ, λ, θ) that given in
Equation (5) is regularly varying model.

Proof. Using Equation (10), we can write that

S(py,ψ,λ,θ)
S(y,ψ,λ,θ) =

1− 1−e
−
(

1−e−λ(py)θ
)

ψ

1−e−ψ

1− 1−e
−
(

1−e−λyθ
)

ψ

1−e−ψ

= 1−e

(
e−yθ λψ

)pδ2

1−ee−yθ λψ
.

(17)

Now, we can write

lim
y→∞

1− e
(

e−yθ λψ
)pθ

1− ee−yδ2 λψ
= lim

x→1

1− xpθ

1− x
= pθ . (18)
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The expression in Equation (18) is non-zero and finite ∀p, θ > 0. Thus, f (y, ψ, λ, θ) that
given in Equation (5) is a regular varying distribution and θ is the index of regular variation.

4. Distributional Properties

Here we derive some distribution properties of the E-WD. These distribution proper-
ties include the quantile function, the rth moment, the moment generating function (MG-F),
the characteristic function (C-F), and the identifiability property (I-P).

4.1. The Quantile Function

By inverting Equation (9), we get the form of the quantile function of the E-WD
expressed as

χp =

(
− λ

Z

)−1/θ

, (19)

where Z = Log
[

Log[eψ+u−eψu]
ψ

]
. These quartiles can be used to derive further properties of

the E-WD such as (i) skewness (see Bowley [20]) and (ii) kurtosis (See, Moor [21]). Figure 3
plots the skewness and kurtosis of the model E−WD (1.2, 0.6, 0.9). The skewness and
kurtosis formulas are, respectively, given by

SK =
2χ1/2 − χ3/4 − χ1/4

χ1/4 − χ3/4
,

and,

K =
χ1/8 − χ3/8 + χ5/8 − χ7/8

χ2/8 − χ6/8
.

Figure 3. Plots for the skewness and kurtosis of E-WD.

4.2. The rth Moment

Suppose χ is a random vaiable follows the E-WD, then, its rth moment is obtained as

µ′r = E(χr) =
∫ ∞

0 χr f (y, ψ, λ, θ)dχ

= ψλθ

eψ−1

∫ ∞
0 ee−χθ λψe−χθ λχ−1+θ+rdχ.

(20)



Appl. Sci. 2023, 13, 3909 7 of 22

By using Maclaurin series expansion for ee−χθ λψ = ∑∞
δ=0

ψδ

δ! e−χθλδ, we can write

µ′r = ψλθ

eψ−1

∫ ∞
0

∞
∑

δ=0

ψδ

δ! e−χθ λδe−χθ λχθ+r−1dχ

= ψλθ

eψ−1

∞
∑

δ=0

ψδ

δ!

∫ ∞
0 e−χθ λ(δ+1)χθ+r−1dχ

= ψλ

eψ−1

∞
∑

δ=0

ψδ

δ! I(δ),

(21)

where I(δ) = ((1 + δ)λ)−
r+θ

θ Γ
[

r+θ
θ

]
.

4.3. The MG-F

The MG-F of the E-WD is derived as

Mt(χ) = E
(
etx) = ∫ ∞

0 etx f (χ; ψ, λ, θ)dχ

= ψλθ

eψ−1

∫ ∞
0 ee−χθ λψetx−χθ λχθ−1dχ

= ψλθ

eψ−1

∞
∑

δ=0

ψδ

δ!

∫ ∞
0 e−χθ λδetx−χθ λχθ−1dχ.

(22)

And by expanding etx = ∑∞
ζ=0

tζ

ζ! xζ , we can write

Mt(χ) = ψλθ

eψ−1

∞
∑

δ=0

ψδ

δ!

∞
∑

ζ=0

tζ

ζ!

∫ ∞
0 e−χθλ(1+δ)x−1+θ+ζ dχ

= ψλ

eψ−1

∞
∑

δ=0

ψδ

δ!

∞
∑

ζ=0

tζ

ζ! ((1 + δ)λ)−
ζ+θ

θ Γ
[

ζ+θ
δ2

]
,

(23)

where Γ is a gamma constant.

4.4. The C-F

The C-F φit(χ) is another useful approach for obtaining the basic moments of a proba-
bility model. Here, we can write

φit(χ) = E
(
eitχ)

=
∫ ∞

0 eitχ ee−χθ λψ−χθ λχθ−1ψλθ

eψ−1 dχ.
(24)

The C-F of the E-WD can take the form

φit(χ) = E
(

eitχ
)
=

ψλ

eψ − 1

∞

∑
δ=0

ψδ

δ!

∞

∑
ζ=0

(it)ζ

ζ!
((1 + δ)λ)−

ζ+θ
θ Γ
[

ζ + θ

δ2

]
. (25)

4.5. The I-P

This subsection offers proof of the I-P of the E-WD for the parameters.

4.5.1. The I-P Using λ

Here, we provide complete proof of the IP of the E-WD for λ. Suppose λ1 and λ2 be
the parameters of the E-WD with CDFs

F1(y) =
1− e−

(
1−e−λ1χθ

)
ψ

1− e−ψ , and F2(y) =
1− e−

(
1−e−λ2χθ

)
ψ

1− e−ψ . (26)
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respectively. The parameter λ of the E-WD is called identifiable, if λ1 = λ2. To prove the
I-P of the E-WD for λ, we start with

1−e
−
(

1−e−λ1χθ
)

ψ

1−e−ψ = 1−e
−
(

1−e−λ2χδ2
)

ψ

1−e−ψ ,

−
(

1− e−λ1χθ
)

ψ = −
(

1− e−λ2χθ
)

ψ,

e−λ1χθ
= e−λ2χθ

,

λ1 = λ2.

(27)

4.5.2. The I-P Using θ

Let θ1 and θ2 be the parameters of the E-WD with CDFs

F1(y) =
1− e

−
(

1−e−λ(χ)θ1
)

ψ

1− e−ψ , and F2(y) =
1− e

−
(

1−e−λ(χ)θ2
)

ψ

1− e−ψ . (28)

respectively. The parameter θ of the E-WD is called identifiable, if θ1 = θ2. To prove the I-P
of the E-WD for a1, we start with

1−e
−
(

1−e−λ(χ)θ1
)

ψ

1−e−ψ = 1−e
−
(

1−e−λ(χ)δ22)
ψ

1−e−ψ ,

−
(

1− e−λ(χ)θ1
)

ψ = −
(

1− e−λ(χ)θ2
)

ψ,

θ1 = θ2.

(29)

4.5.3. The IP Using ψ

Let ψ1 and ψ2 be the parameters of the E-WD with CDFs

F1(y) =
1− e−

(
1−e−λχθ

)
ψ1

1− e−ψ1
, and F2(y) =

1− e−
(

1−e−λχθ
)

ψ2

1− e−ψ2
. (30)

respectively. The parameter ψ of the E-WD is called identifiable, if ψ1 = ψ2. To prove the
I-P of the E-WD for a1, we start with

1−e
−
(

1−e−λχθ
)

ψ1

1−e−ψ = 1−e
−
(

1−e−λχδ2
)

ψ2

1−e−ψ ,(
1− e−λχθ

)
ψ1 =

(
1− e−λχθ

)
ψ2,

ψ1 = ψ2.

(31)

5. The Information Generating Measure

In addition to the moment generating function, information generating functions
(IGF) have also been used in information theory, to generate some well-known information
measures such as Shannon entropy and Kullback–Leibler divergence. For more details
about the IGF and its extensions one may see López-Ruiz et al. [22].
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5.1. The Information Generating Function

Let X∼ f (χ), the information generating function Ωγ(χ), for any γ > 0 (see, Golomb [23]),
is defined as

Ωγ(χ) =
∫ ∞

0 f γ(χ; ψ, λ, θ)dχ

=
∫ ∞

0

(
ee−χθ λψ−χθ λχθ−1ψθδ1

eψ−1

)γ

dχ

=
(

ψλθ

eψ−1

)γ ∫ ∞
0 eγe−χθ λψ e−χθ λγx(−1+θ)γdχ

=
(

ψλθ

eψ−1

)γ ∞
∑

δ=0

(γψ)δ

δ!

∫ ∞
0 e−χθ λ(γ+δ)x(−1+θ)γdχ

=
(

ψλθ

eψ−1

)γ ∞
∑

δ=0

(γψ)δ

δ!θ ((γ + δ)λ)
−1+γ−γθ

θ Γ
[

1+γ(−1+θ)
θ

]
.

(32)

5.2. The Shannon Entropy (H)

The Shannon entropy, or Information entropy was introduced by Claude Shannon [24],
and is defined as

H = −
∫

X
f (χ) log( f (χ))dχ. (33)

H can obtain from Ωγ(χ) as

H = −
∂Ωγ(χ)

∂γ

∣∣∣∣
γ=1

. (34)

H = −
(

Log
[

ψλθ

eψ−1

]
+ 1

γ

)
Ωγ(χ) +

(
ψλθ

eψ−1

)γ ∞
∑

δ=0

(ψγ)δ

θδ! Γ
[

1+γ(−1+θ)
δ2

]
×

(
−λ((γ + δ)λ)−1+−1+γ−γθ

θ

(
γ + 1+γ

θ

)
−

(
1 + 1

θ

)
(λ(γ + δ))

−1+γ−γθ
θ Log[(γ + δ)λ]

+
(ψγ)δ(−1+θ)((γ+δ)λ)

−1+γ−γδ2
θ Γ′

[
1+γ(−1+δ2)

θ

]
θ2δ! .

(35)

5.3. The Informational Energy (IE)

The IE for any X∼ f (x), is given by

IE = −
∫

X
f 2(χ; ψ, λ, θ)dχ. (36)

In particular, Ωγ(χ) is simply IE when γ = 2, and is given by

IE = θ

(
ψλ

eψ − 1

)2 ∞

∑
δ=0

2δψδ

δ!
((2 + δ)λ)

1−2θ
θ Γ

[
1 + 2(−1 + θ)

θ

]
. (37)

For some discussions on the usefulness and applications of the IE, see, Cataron and
Andonie [25].



Appl. Sci. 2023, 13, 3909 10 of 22

6. Maximum Likelihood Estimation (MLE)

Let χ1, χ2, . . . , χn are observed values of X1:n, X2:n, . . . Xn:n that is an ordered random
sample from the E-WD. The E-WD likelihood is

l =
(

ψλθ

eψ − 1

)n
(

n

∏
i=1

χ−1+θ
i

)
e

∑n
i=1

(
e−χθ

i λ
ψ−χθ

i λ

)
, (38)

and the corresponding log-likelihood function (L) is

L = nLog
[

ψλθ

eψ − 1

]
+

n

∑
i=1

Log
[
χ−1+θ

i

]
+

n

∑
i=1

(
e−χθ

i λψ− χθ
i δ1

)
, (39)

Taking the first partial derivatives of log-likelihood (39) with respect to ψ, λ, θ and
equating each to zero.

∂

∂ψ
L =

n
(
eψ − 1

)
ψλθ

(
δ2λ

eψ − 1
− eψψλθ

(eψ − 1)2

)
+

n

∑
i=1

e−λχθ
i = 0, (40)

∂

∂θ
L =

n
θ
+

n

∑
i=1

Log[χi] +
n

∑
i=1

(
−λLog[χi]χ

θ
i − e−λχθ

i ψλLog[χi]χ
δ2
i

)
= 0, (41)

∂

∂λ
L =

n
λ
+

n

∑
i=1

(
−χθ

i − e−λχθ
i ψχθ

i

)
= 0. (42)

Solving Equation (42) for ψ, we have

ψ =
n
λ −∑n

i=1 χθ
i

∑n
i=1 e−λχθ

i χθ
i

. (43)

Solving Equations (40) and (41) after substituting Equation (43), we get the maximum
likelihood estimators ψ̂ML, λ̂ML, θ̂ML of the E−WD (ψ, λ, θ) parameters.

The asymptotic confidence intervals of the parameters ψ, λ and θ. Then
V̂ = V(ψ̂ML, λ̂ML, θ̂ML) = [σi,j], i, j = 1, 2, 3 is the observed variance covariance matrix,
such that

V(ψ, λ, θ) = −



∂2L
∂ψ2

∂2L
∂ψ∂λ

∂2L
∂ψ∂θ

∂2L
∂λ∂ψ

∂2L
∂λ2

∂2L
∂λ∂θ

∂2L
∂θ∂ψ

∂2L
∂θ∂λ

∂2L
∂θ2



−1

, (44)

A 100(1− ε)% two-sided approximate confidence intervals for the parameters ψ, λ,
and θ are then given by

ψ̂± zε/2

√
V(ψ̂), (45)

λ̂± zε/2

√
V(λ̂), (46)

and
θ̂ ± zε/2

√
V(θ̂), (47)
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respectively, where V(ψ̂), V(λ̂), andV(θ̂), are the estimated variances of ψ̂ML, λ̂ML, and
θ̂ML, which are given by the diagonal elements of V̂, and zε/2 is the upper

(
ε
2
)

percentile of
the standard normal distribution.

Next, obtain the bootstrap confidence intervals for boot-p for the unknown parameters
δ = (ψ, λ, θ), we apply the following algorithms

1. Generate sample {χi} of size n from the E−WD (ψ, λ, θ) and estimate a δ̂.
2. Generate another sample {χ∗i } of size n using δ̂. Then estimate δ̂∗.
3. Repeat step 2 B times.
4. Via F̂(x) = P(δ̂∗ ≤ x), that is, the CDF of δ̂∗, the 100(1− ε)% C.I. of δ is given by(

δ̂Boot−p(
ε

2
), δ̂Boot−p(1−

ε

2
)
)

,

where δ̂Boot−p(κ) = F̂−1(κ) and x is prefixed.

For more details about the bootstrap confidence intervals, one may refer to Kundu
and Joarder [26].

7. Bayesian Estimation

Bayesian inference is a convenient method to be used with the complete samples
from E−WD(ψ, λ, θ). We assume that ψ, λ, and θ are random variables that follow the
prior PDFs Gamma(ψ; a1, b1), Gamma(λ; a2, b2), and Gamma(θ; a3, b3), respectively, are
given by

π1(ψ) =
bα1

1
Γ(a1)

ψa1−1 exp[−b1ψ], ψ, a1, b1 > 0, (48)

π2(λ) =
ba2

2
Γ(a2)

λa2−1 exp[−b2λ], λ, a2, b2 > 0, (49)

and

π3(θ) =
ba3

3
Γ(a3)

θa3−1 exp[−b3θ], θ, a3, b3 > 0. (50)

Then, the posterior density of ψ, λ, θ and the data is given by

π∗(ψ, λ, θ|x) = J−1 ψn+a1−1λn+a2−1θn+a3−1

(1− e−ψ)
n e

∑n
i=1

(
e−χθ

i λ−1
)

ψ−χθ
i λ n

∏
i=1

χθ−1
i , (51)

where J is the normalizing constant.

MCMC Method

We use Metropolis Hastings procedure as:

1. Set start values ψ(0), λ(0), and θ(0). Then, simulate sample of size n from
E-WD (ψ(0), λ(0), θ(0)), next set l = 1.

2. Simulate ψ(∗), λ(∗), and θ(∗). using the proposal distributions N(ψ(l−1),
V(ψ̂)), N(λ(l−1), V(λ̂)) , N(θ(l−1) and V(θ̂)).

3. Calculate r = min
(

π∗(ψ(∗),λ(∗),θ(∗))
π∗(ψ(l−1),λ(l−1),θ(l−1))

, 1
)

.

4. Simulate U from Uniform(0, 1).
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5. If U < r, then
(

ψ(l), λ(l), θ(l)
)
=
(

ψ(∗), λ(∗), θ(∗)
)

.

If U ≥ r, then
(

ψ(l−1), λ(l−1), θ(l−1)
)
=
(

ψ(∗), λ(∗), θ(∗)
)

.

6. Set l = l + 1.
7. Iterate Steps 2–6, M repetitions, and get ψ(l), λ(l) and θ(l) for l = 1, . . . , M.

Suppose the squared error loss function, given by LSE(δ, δ̂) = (δ− δ̂)2. By using the
generated random samples from the M-H technique and for N is the nburn. Then, the Bayes
estimator of δ against the squared error loss function, is given by

δ̂SE = Eδ[δ|x] =
1

M− N

M

∑
l=N+1

δ(l). (52)

Next, suppose the LINEX (LE) loss function, given by

LLE
(
δ, δ̂
)
= exp

[
ρ
(
δ− δ̂

)]
− ρ
(
δ− δ̂

)
− 1, ρ 6= 0. (53)

The approximate Bayes estimate of δ under LE loss function, is given by

δ̂LE =
−1
ρ

log(Eδ[exp(−ρδ)|x]) = −1
ρ

log

∑M
l=N+1 exp

(
−ρδ(l)

)
M− N

, (54)

Finally, suppose the general entropy (GE) loss function, given by

LGE
(
δ, δ̂
)
=

(
δ̂

δ

)ε

− ε log

(
δ̂

δ

)
− 1. (55)

The approximate Bayes estimate of the parameters, given by

δ̂GE =
(
Eδ

[
δ−ε
∣∣x])−1

ε =

(
1

M− N

M

∑
l=N+1

(
δ(l)
)−ε

)−1
ε

, (56)

MCMC HPD credible interval Algorithm:

1. Arrange ψ(∗), λ(∗) and θ(∗) in rising values.
2. The lower bounds of ψ(∗), λ(∗) and θ(∗) is in the rank (M− N) ∗ ε/2.
3. The Upper bounds of ψ(∗), λ(∗) and θ(∗) is in the rank (M− N) ∗ (1− ε/2).
4. Iterate the previous steps M times. Get the average value of the lower and upper

bounds of ψ, λ, and θ.

8. Simulation Study

In this section, we show the usefulness of the theatrical findings in this paper by
conducting series of simulation experiments. The simulations show the bias and estimated
risk of bayesian and the maximum likelihood estimates. The biases and ERs are given,
respectively, by

Bias
(
ϑ̂
)
=

1
1000

1000

∑
i=1

(
ϑ̂i − ϑ

)
,

and

ER
(
ϑ̂
)
=

1
1000

1000

∑
i=1

(
ϑ̂i − ϑ

)2
,
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Coverage probabilities (CPs) are also calculated at the 95% and 90% HPD credible
intervals. Point and Interval estimation of the parameters ψ, λ, and θ for n = 25, 50, and 100
are presented in Table 1. Table 2 represents the simulation results for the parameters ψ, λ
and θ, respectively for n = 200, 300, and 400. The bayesian estimate are calculated based
on GE, LINEX and SE loss functions. In addition, 95% and 90% the confidence, Bootstrap
and HPD credible intervals are calculated with the corresponding width. The simulation
experiments can be explained though the following steps:

1. We generate sample of sizes n = 25, 50, 100, 200, 300, 400 from the E−WD(ψ, λ, θ)

via initial parameter values are ψ(0) = 2.5, λ(0) = 0.9 and θ(0) = 0.89.
2. Again use each of the cases in step (1) for calculating the Bayesian estimates for both

cases of GE, LINEX and SE loss functions. The parameter ρ in LINEX is chosen as −3
and 7. The parameter ε in general entropy is chosen as 0.5.

3. For the Bayesian analysis, we take random values for the hyper-parameters as
ai, bi∼U(0, 1), ∀i = 1, 2, 3.

4. The steeps (1)–(3) are repeated M = 10,000 times, then the estimate, bias and estimated
risk (ER) in each cases are calculated in Table 1 for n = 25, 50, and 100 and in Table 2
for n = 200, 300, and 400. Obtain the point Estimation of the parameter ψ, and θ using
MLE and MCMC methods (with 10,000 repetitions and zero burns).

5. The 90% and 95% approximate confidence, bootstrap HPD credible intervals with
their width are calculated.

6. The bais and ER shows that the Bayesian approach gives better estimates. Also, in most
cases the Bayesain estimate based Linex with positive ρ = 0.7 shows good performance.

7. In most cases the estimation of ψ and θ in over estimated, while in some cases it is
under estimated.

8. In most cases the estimation of λ in under estimated, while in some cases it is
over estimated.

9. The interval length increases as the confidence level increases as expected.
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Table 1. Point and Interval estimation of the parameters ψ, λ, and θ for n = 25, 50 and 100.

n Par.
Point Intrval

ML SE LE1 LE2 GE ML Bootstrap HPDSE HPDLE1 HPDLE2 HPDGE

25 ψ 1.7182 2.8685 2.8712 2.8616 2.8631 0.0001 7.4805 1.718 1.718 2.751 2.98 2.7558 2.9802 2.7374 2.9802 2.7394 2.9802
−0.7958 0.3545 0.3572 0.3477 0.3492 7.4804 0.0001 0.229 0.2244 0.2428 0.2408
8.6434 0.1297 0.1315 0.125 0.1261 0.0001 6.5692 1.718 1.718 2.758 2.969 2.7587 2.9701 2.7522 2.9671 2.7535 2.9677

6.5691 0.0001 0.211 0.2114 0.2149 0.2142
λ 0.7875 0.5116 0.5131 0.5083 0.5014 0.0001 2.1925 0.788 0.788 0.442 0.59 0.4426 0.5943 0.4415 0.5799 0.4386 0.5688

−0.1327 −0.4086 −0.4071 −0.4119 −0.4187 2.1924 0.0001 0.148 0.1517 0.1384 0.1302
0.5139 0.1684 0.1672 0.171 0.1766 0.0001 1.9703 0.788 0.788 0.451 0.579 0.4528 0.5819 0.4496 0.5721 0.4466 0.564

1.9702 0.0001 0.128 0.1291 0.1224 0.1174
θ 1.0298 0.7875 0.7905 0.7804 0.7689 0.6307 1.4289 1.03 1.03 0.531 1.071 0.5325 1.0725 0.529 1.0661 0.5214 1.0606

0.1398 −0.1025 −0.0994 −0.1096 −0.121 0.7982 0.0001 0.54 0.54 0.5371 0.5391
0.0415 0.0332 0.0327 0.0344 0.0371 0.6938 1.3657 1.03 1.03 0.554 1.052 0.5549 1.0524 0.5494 1.0498 0.5419 1.0372

0.672 0.0001 0.498 0.4975 0.5005 0.4953

50 ψ 3.2776 3.0715 3.074 3.0656 3.0674 0.0001 8.768 3.278 3.278 2.875 3.278 2.8764 3.2776 2.8711 3.2776 2.872 3.2776
0.7636 0.5575 0.56 0.5517 0.5534 8.7679 0.0001 0.403 0.4012 0.4065 0.4056
7.8468 0.3239 0.3266 0.3176 0.3194 0.0001 7.8996 3.278 3.278 2.9 3.278 2.9036 3.2776 2.8934 3.2776 2.8953 3.2776

7.8995 0.0001 0.378 0.374 0.3842 0.3823
λ 0.6828 0.5477 0.5487 0.5452 0.5383 0.0001 1.749 0.683 0.683 0.431 0.683 0.4315 0.6828 0.4306 0.6828 0.4289 0.6828

−0.2374 −0.3725 −0.3715 −0.375 −0.3819 1.7489 0.0001 0.252 0.2513 0.2522 0.2539
0.2959 0.1441 0.1433 0.146 0.1513 0.0001 1.5804 0.683 0.683 0.446 0.683 0.4467 0.6828 0.4458 0.6828 0.4444 0.6828

1.5803 0.0001 0.237 0.2361 0.2369 0.2384
θ 0.9157 0.9022 0.9024 0.9014 0.9004 0.7125 1.1189 0.916 0.916 0.689 1.034 0.6895 1.035 0.6888 1.0318 0.6879 1.0293

0.0258 0.0122 0.0125 0.0115 0.0105 0.4063 0.0001 0.345 0.3455 0.343 0.3413
0.0107 0.0049 0.0049 0.0049 0.005 0.7447 1.0867 0.916 0.916 0.755 1.001 0.7559 1.0023 0.7533 0.9989 0.7505 0.9974

0.3421 0.0001 0.246 0.2464 0.2456 0.247

100 ψ 1.6214 2.8856 2.8877 2.8799 2.8812 0.0001 6.0073 1.621 1.621 2.773 2.983 2.7737 2.9844 2.7577 2.9805 2.7607 2.9813
−0.8925 0.3716 0.3737 0.3659 0.3672 6.0072 0.0001 0.21 0.2107 0.2229 0.2206
5.0072 0.1411 0.1426 0.137 0.138 0.0001 5.3136 1.621 1.621 2.795 2.971 2.7967 2.971 2.7908 2.9695 2.7917 2.9698

5.3135 0.0001 0.176 0.1742 0.1787 0.178
λ 1.0059 0.5048 0.5065 0.5015 0.4949 0.0001 2.3296 1.006 1.006 0.443 0.587 0.4427 0.5926 0.4407 0.5787 0.4384 0.5691

0.0857 −0.4154 −0.4137 −0.4186 −0.4253 2.3295 0.0001 0.144 0.1499 0.138 0.1307
0.4561 0.174 0.1727 0.1766 0.1821 0.0001 2.1202 1.006 1.006 0.448 0.577 0.4487 0.5804 0.445 0.571 0.4411 0.5583

2.1201 0.0001 0.129 0.1318 0.126 0.1172
θ 0.9367 0.9151 0.9158 0.9135 0.9112 0.7008 1.1726 0.937 0.937 0.625 1.185 0.6258 1.1878 0.6233 1.1773 0.6194 1.1709

0.0468 0.0252 0.0258 0.0235 0.0213 0.4718 0.0001 0.56 0.562 0.554 0.5515
0.0145 0.0214 0.0215 0.0213 0.0213 0.7381 1.1353 0.937 0.937 0.688 1.15 0.6888 1.1508 0.6867 1.1485 0.6842 1.1473

0.3971 0.0001 0.462 0.462 0.4618 0.4631
Point estimate: first, second, and third lines represent estimate, baises and ER, respectively. Interval estimate: 95% and 90% interval estimate, respectively. The first and second lines
show the credible HPD interval and the corresponding width of the parameter, respectively.
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Table 2. Point and Interval estimation of the parameters ψ, λ, and θ for n = 200, 300 and 400.

n Par.
Point Intrval

ML SE LE1 LE2 GE ML Bootstrap HPDSE HPDLE1 HPDLE2 HPDGE

200 ψ 3.6899 3.69 3.6899 3.6899 3.6899 0.2158 7.1641 3.69 3.69 2.773 2.983 3.6899 3.6899 3.6899 3.6899 3.6899 3.6899
1.1759 1.176 1.1759 1.1759 1.1759 6.9483 0.0001 0.21 0.0001 0.0001 0.0001
3.1418 1.383 1.3829 1.3829 1.3829 0.7653 6.6146 3.69 3.69 2.795 2.971 3.6899 3.6899 3.6899 3.6899 3.6899 3.6899

5.8493 0.0001 0.176 0.0001 0.0001 0.0001
λ 0.6899 0.69 0.6899 0.6899 0.6899 0.025 1.3548 0.69 0.69 0.69 0.69 0.6899 0.6899 0.6899 0.6899 0.6899 0.6899

−0.2302 −0.2302 −0.2302 −0.2302 −0.2302 1.3298 0.0001 0.0001 0.0001 0.0001 0.0001
0.1151 0.053 0.053 0.053 0.053 0.1302 1.2497 0.69 0.69 0.69 0.69 0.6899 0.6899 0.6899 0.6899 0.6899 0.6899

1.1195 0.0001 0.0001 0.0001 0.0001 0.0001
θ 0.9122 0.912 0.9122 0.9122 0.9122 0.7735 1.0508 0.912 0.912 0.912 0.912 0.9122 0.9122 0.9122 0.9122 0.9122 0.9122

0.0222 0.0221 0.0222 0.0222 0.0222 0.2773 0.0001 0.0001 0.0001 0.0001 0.0001
0.005 0.0005 0.0005 0.0005 0.0005 0.7955 1.0289 0.912 0.912 0.912 0.912 0.9122 0.9122 0.9122 0.9122 0.9122 0.9122

0.2334 0.0001 0.0001 0.0001 0.0001 0.0001

300 ψ 3.6899 3.69 3.6899 3.6899 3.6899 0.2158 7.1641 3.69 3.69 2.773 2.983 3.6899 3.6899 3.6899 3.6899 3.6899 3.6899
1.1759 1.176 1.1759 1.1759 1.1759 6.9483 0.0001 0.21 0.0001 0.0001 0.0001
3.1418 1.383 1.3829 1.3829 1.3829 0.7653 6.6146 3.69 3.69 2.795 2.971 3.6899 3.6899 3.6899 3.6899 3.6899 3.6899

5.8493 0.0001 0.176 0.0001 0.0001 0.0001
λ 0.6899 0.69 0.6899 0.6899 0.6899 0.025 1.3548 0.69 0.69 0.69 0.69 0.6899 0.6899 0.6899 0.6899 0.6899 0.6899

−0.2302 −0.2302 −0.2302 −0.2302 −0.2302 1.3298 0.0001 0.0001 0.0001 0.0001 0.0001
0.1151 0.053 0.053 0.053 0.053 0.1302 1.2497 0.69 0.69 0.69 0.69 0.6899 0.6899 0.6899 0.6899 0.6899 0.6899

1.1195 0.0001 0.0001 0.0001 0.0001 0.0001
θ 0.9122 0.912 0.9122 0.9122 0.9122 0.7735 1.0508 0.912 0.912 0.912 0.912 0.9122 0.9122 0.9122 0.9122 0.9122 0.9122

0.0222 0.0221 0.0222 0.0222 0.0222 0.2773 0.0001 0.0001 0.0001 0.0001 0.0001
0.005 0.0005 0.0005 0.0005 0.0005 0.7955 1.0289 0.912 0.912 0.912 0.912 0.9122 0.9122 0.9122 0.9122 0.9122 0.9122

0.2334 0.0001 0.0001 0.0001 0.0001 0.0001

400 ψ 3.6899 3.69 3.6899 3.6899 3.6899 0.2158 7.1641 3.69 3.69 2.773 2.983 3.6899 3.6899 3.6899 3.6899 3.6899 3.6899
1.1759 1.176 1.1759 1.1759 1.1759 6.9483 0.0001 0.21 0.0001 0.0001 0.0001
3.1418 1.383 1.3829 1.3829 1.3829 0.7653 6.6146 3.69 3.69 2.795 2.971 3.6899 3.6899 3.6899 3.6899 3.6899 3.6899

5.8493 0.0001 0.176 0.0001 0.0001 0.0001
λ 0.6899 0.69 0.6899 0.6899 0.6899 0.025 1.3548 0.69 0.69 0.69 0.69 0.6899 0.6899 0.6899 0.6899 0.6899 0.6899

−0.2302 −0.2302 −0.2302 −0.2302 −0.2302 1.3298 0.0001 0.0001 0.0001 0.0001 0.0001
0.1151 0.053 0.053 0.053 0.053 0.1302 1.2497 0.69 0.69 0.69 0.69 0.6899 0.6899 0.6899 0.6899 0.6899 0.6899

1.1195 0.0001 0.0001 0.0001 0.0001 0.0001
θ 0.9122 0.912 0.9122 0.9122 0.9122 0.7735 1.0508 0.912 0.912 0.912 0.912 0.9122 0.9122 0.9122 0.9122 0.9122 0.9122

0.0222 0.0221 0.0222 0.0222 0.0222 0.2773 0.0001 0.0001 0.0001 0.0001 0.0001
0.005 0.0005 0.0005 0.0005 0.0005 0.7955 1.0289 0.912 0.912 0.912 0.912 0.9122 0.9122 0.9122 0.9122 0.9122 0.9122

0.2334 0.0001 0.0001 0.0001 0.0001 0.0001
Point estimate: first, second, and third lines represent estimate, baises and ER, respectively. Interval estimate: 95% and 90% interval estimate, respectively. The first and second lines
show the credible HPD interval and the corresponding width of the parameter, respectively.
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9. Application of the E-WD to the Stock Price Data

In this section, we apply the composite distribution E-WD to Sarhad stock exchange
market transactions data for four variables especially: the open price, the high price, the low
price, and the close price. Table 3 shows the descriptive statistics of the proposed stock price
data. The data is analyzed and the maximum likelihood and the bayesian estimate results
for the parameters ψ, λ and θ, respectively, are obtained. Tables 4–7 represent the estimate
result for the opening price, the high price, the low price, and the Closing price, respectively.
The stimated PDF and stimated PDF of the proposed data based on E-WD are ploted in
Figures 4 and 5, respectively. The PP plot are shown in Figure 6. The Kaplan–Meier survival
function the Q-Q normality plot are shown in Figures 7 and 8, respectively.

Table 3. Descriptive statistics of the stock data.

Min. 1st Qu. Median Mean 3rd Qu. Max

open 0.120 2.000 2.925 3.024 3.550 9.000
high 0.120 2.000 3.000 3.066 3.600 9.450
low 0.100 2.000 2.800 2.948 3.500 8.500

close 0.120 2.000 2.925 3.021 3.550 9.000
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Figure 4. The estimated PDF of E-WD for the stock data.
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Figure 5. The estimated CDF of E-WD for the stock data.
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Table 4. The estimation of the parameters ψ, λ, and θ for the open price.

Par.
Point Intrval

ML SE LE1 LE2 GE ML Bootstrap HPDSE HPDLE1 HPDLE2 HPDGE

ψ 3.8947 12.855 13.0734 10.5614 12.6217 0.0001 12.2312 3.895 3.895 11.462 13.532 11.8166 13.6513 7.8851 13.0101 11.0536 13.4601
0.0001 8.9603 9.1788 6.6668 8.7271 12.2311 0.0001 2.07 1.8347 5.1251 2.4064

18.0908 80.5011 84.405 46.6288 76.4783 0.0001 10.9126 3.895 3.895 12.053 13.508 12.327 13.5948 8.2023 12.8546 11.5841 13.3678
10.9125 0.0001 1.455 1.2678 4.6523 1.7838

λ 0.038 0.0157 0.0157 0.0156 0.0076 0.0001 0.0989 0.038 0.038 0.002 0.043 0.0023 0.0434 0.0023 0.0429 0.0002 0.025
0.0001 −0.0223 −0.0223 −0.0225 −0.0304 0.0988 0.0001 0.041 0.0411 0.0406 0.0248
0.001 0.0008 0.0008 0.0008 0.0011 0.0001 0.0893 0.038 0.038 0.003 0.038 0.0031 0.0386 0.003 0.0379 0.0004 0.0196

0.0893 0.0001 0.035 0.0355 0.0348 0.0193
θ 2.5367 2.4031 2.4293 2.3418 2.3408 1.5157 3.5577 2.537 2.537 0.789 4.185 0.8483 4.2091 0.7391 4.1237 0.67 4.1535

0.0001 −0.1335 −0.1074 −0.1949 −0.1959 2.042 0.0001 3.396 3.3607 3.3846 3.4835
0.2714 0.6965 0.6992 0.6895 0.7395 1.6771 3.3962 2.537 2.537 1.134 3.9 1.1745 3.9337 1.0536 3.8236 1.0004 3.8574

1.7191 0.0001 2.766 2.7592 2.7701 2.857
Point estimate: first, second, and third lines represent estimate, baises and ER, respectively. Interval estimate: 95% and 90% interval estimate, respectively. The first and second lines
show the credible HPD interval and the corresponding width of the parameter, respectively.

Table 5. The estimation of the parameters ψ, λ, and θ for the high price.

Par.
Point Intrval

ML SE LE1 LE2 GE ML Bootstrap HPDSE HPDLE1 HPDLE2 HPDGE

ψ 3.7182 12.6251 12.857 10.1805 12.3686 0.0001 11.64 3.718 3.718 11.208 13.334 11.8499 13.4116 7.8044 13.0673 10.5549 13.3113
0.0001 8.907 9.1388 6.4623 8.6504 11.64 0.0001 2.126 1.5618 5.2629 2.7564

16.3359 79.5739 83.6844 43.7904 75.1822 0.0001 10.3871 3.718 3.718 11.515 13.323 12.0091 13.3645 8.3692 12.9181 11.0959 13.1982
10.387 0.0001 1.808 1.3555 4.5489 2.1023

λ 0.0613 0.0217 0.0219 0.0215 0.01 0.0001 0.1684 0.061 0.061 0.004 0.053 0.0038 0.0529 0.0037 0.0517 0.0003 0.0326
0.0001 −0.0395 −0.0394 −0.0398 −0.0513 0.1683 0.0001 0.049 0.0492 0.048 0.0323
0.003 0.0017 0.0017 0.0017 0.0027 0.0001 0.1514 0.061 0.061 0.006 0.048 0.0065 0.0488 0.0065 0.0467 0.0007 0.0292

0.1513 0.0001 0.042 0.0424 0.0403 0.0284
θ 2.3468 2.0994 2.1242 2.0423 2.0258 1.3802 3.3133 2.347 2.347 0.962 3.359 0.9883 3.399 0.8624 3.3061 0.7511 3.3117

0.0001 −0.2474 −0.2226 −0.3044 −0.321 1.9331 0.0001 2.397 2.4108 2.4437 2.5606
0.2432 0.5003 0.4872 0.5372 0.5811 1.5331 3.1604 2.347 2.347 1.082 3.318 1.1103 3.3238 1.029 3.2558 0.9913 3.2904

1.6274 0.0001 2.236 2.2135 2.2268 2.2991
Point estimate: first, second, and third lines represent estimate, baises and ER, respectively. Interval estimate: 95% and 90% interval estimate, respectively. The first and second lines
show the credible HPD interval and the corresponding width of the parameter, respectively.
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Table 6. The estimation of the parameters ψ, λ, and θ for the low price.

Par.
Point Intrval

ML SE LE1 LE2 GE ML Bootstrap HPDSE HPDLE1 HPDLE2 HPDGE

ψ 4.1453 13.0821 13.2876 10.8332 12.8701 0.0001 13.6226 4.145 4.145 12.039 13.732 12.4743 13.8153 8.4427 13.5265 11.8154 13.7112
0.0001 8.9368 9.1423 6.6879 8.7248 13.6225 0.0001 1.693 1.341 5.0838 1.8958

23.3806 80.041 83.7041 46.8603 76.384 0.0001 12.1236 4.145 4.145 12.359 13.719 12.6369 13.7619 8.691 13.3334 11.9073 13.6286
12.1235 0.0001 1.36 1.1249 4.6424 1.7213

λ 0.0789 0.0262 0.0264 0.0259 0.0135 0.0001 0.2428 0.079 0.079 0.005 0.08 0.0052 0.0812 0.0052 0.0776 0.0001 0.0445
0.0001 −0.0527 −0.0525 −0.0531 −0.0655 0.2427 0.0001 0.075 0.0759 0.0724 0.0445
0.007 0.0032 0.0032 0.0032 0.0044 0.0001 0.2169 0.079 0.079 0.006 0.077 0.0058 0.0775 0.0057 0.0756 0.001 0.0374

0.2168 0.0001 0.071 0.0717 0.0698 0.0364
θ 2.0955 2.0352 2.051 1.9997 1.9919 1.2789 2.912 2.095 2.095 0.911 3.724 0.9199 3.7368 0.8708 3.6693 0.8191 3.6952

0.0001 −0.0603 −0.0445 −0.0958 −0.1036 1.6331 0.0001 2.813 2.8169 2.7986 2.8761
0.1736 0.4671 0.4638 0.4722 0.497 1.4081 2.7829 2.095 2.095 1.078 3.133 1.0929 3.1381 1.0531 3.1177 1.0151 3.122

1.3748 0.0001 2.055 2.0452 2.0646 2.1069
Point estimate: first, second, and third lines represent estimate, baises and ER, respectively. Interval estimate: 95% and 90% interval estimate, respectively. The first and second lines
show the credible HPD interval and the corresponding width of the parameter, respectively.

Table 7. The estimation of the parameters ψ, λ, and θ for the close price.

Par.
Point Intrval

ML SE LE1 LE2 GE ML Bootstrap HPDSE HPDLE1 HPDLE2 HPDGE

ψ 3.7182 13.2606 13.5253 10.3696 12.9543 0.0001 11.64 3.718 3.718 12.012 13.896 12.4455 14.0626 7.6376 13.3544 11.0057 13.7725
−0.7464 8.796 9.0607 5.905 8.4897 11.64 0.0001 1.884 1.6171 5.7169 2.7668
16.3359 77.6101 82.2579 37.6209 72.499 0.0001 10.3871 3.718 3.718 12.365 13.876 12.8813 14.0202 8.0144 13.2467 11.6669 13.769

10.387 0.0001 1.511 1.1389 5.2323 2.1022
λ 0.0613 0.0228 0.0229 0.0225 0.0102 0.0001 0.1684 0.061 0.061 0.005 0.072 0.0047 0.0729 0.0046 0.0705 0.0007 0.0353

0.0208 −0.0177 −0.0175 −0.018 −0.0303 0.1683 0.0001 0.067 0.0682 0.0658 0.0347
0.003 0.0007 0.0007 0.0006 0.001 0.0001 0.1514 0.061 0.061 0.005 0.053 0.005 0.0536 0.005 0.0531 0.001 0.0291

0.1803 0.0001 0.048 0.0487 0.0481 0.0281
θ 2.3468 2.1782 2.2014 2.1252 2.1113 1.3802 3.3133 2.347 2.347 0.918 3.698 0.9596 3.7082 0.9063 3.672 0.8759 3.6827

−0.2766 −0.4452 −0.422 −0.4981 −0.5121 1.9331 0.0001 2.78 2.7486 2.7657 2.8067
0.2432 0.7981 0.7708 0.8602 0.9124 1.5331 3.1604 2.347 2.347 1.012 3.45 1.0156 3.5294 0.9907 3.4175 0.9417 3.4204

1.6274 0.0001 2.438 2.5138 2.4268 2.4787
Point estimate: first, second, and third lines represent estimate, baises and ER, respectively. Interval estimate: 95% and 90% interval estimate, respectively. The first and second lines
show the credible HPD interval and the corresponding width of the parameter, respectively.
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Figure 6. The PP plot of the E-WD.
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Figure 7. The Kaplan–Meier survival function of the E-WD.
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Figure 8. The Q-Q normality plot of the E-WD.

The goodness-of-fit results of the E-WD model are compared with some other models,
including the Mudholkar exponintiated Weibull distribution [27] (MEWD), the generalized
Weibull Modified Weibull distribution (GWMWD), the generalized Weibull-Rayleigh dis-
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tribution (GWRD), the exponentiated distribution (EXP-CD). The CDF of the competing
probability models are, respectively, given by

F(y; β, ι, σ) =
(

1− e−(ιy)
σ
)β

, (57)

F(y; α, β, ω, δ, ν) = 1− e−α(ωy+δyν)β

, (58)

F(y; τ, δ, µ) = 1− e−τ(µy2)
δ

, (59)

and

F(τ; ι) = 1− e−ιτ . (60)

Table 8 compare the E-WD via some recognition criterion, such as The: Akaike infor-
mation criterion (AIC), Bayesian information criterion (BIC), Hannan–Quinn information
criterion (HQIC) and consistent Akaike information Criterion (CAIC). Table 9 compares
the E-WD based on one-sample Kolmogorov-Smirnov test.

Table 8. Relative quality of the E-WD vs. competing models.

Model AIC CAIC BIC HQIC

E-WD 1278.283 1278.349 1290.007 1282.94
ZEWD 1301.776 1301.842 1313.500 1306.43

GWMW 1320.852 1320.918 1332.577 1325.51
Exp-D 1552.449 1552.459 1556.357 1554.01
GWRD 1307.332 1307.398 1319.056 1311.99

Table 9. One-sample Kolmogorov-Smirnov test for the E-WD and the competing models.

Model KS p-Value

E-WD 0.06257 0.112
OEWD 0.11489 0.0001

GWMW 0.10643 0.0004
EXP-D 0.31722 2.2e-16
GWRD 0.09666 0.0021

Table 9 compares the E-WD and the competing models with the Kolmogorov-Smirnov
test for one sample. The results in Tables 8 and 9 suggest that the E-WD model provides
a better fit than other competing models and could be chosen as a suitable model for
analyzing stock price data.

From the results in Tables 8 and 9, it can be seen that the model E-WD could be selected
as the best model among the fitted models because the proposed model has the lowest
values for AIC, BIC, HQC, and CAIC and the highest values for Kolmogorov-Smirnov
p-value.

10. Conclusions

Financial markets play basic role through financial operations, from issuing securi-
ties and offering them to investors to making them available for trading. The name of a
share is derived from the concept of participation, because the share represents a certain
part, a share or a piece of the capital of a listed company, and its owner is considered a
shareholder of this company. Shares, for example—These are usually tradable through
the trading methods prescribed in the money market regulations. In this study, we intro-
duce a new three-parameter modification of the Weibull model, called the exponentiated
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Weibull distribution. We proofed that, the new model has many statistical advantages,
the flexibility, the heavy-tailed behavior and the regular variation property were offered.
We presented many of the important statistical functions including the quantile function,
rth-moment, moment generating function, characteristic function, identifiability property,
the information generating function, the Shannon entropy and the information energy
have been derived in closed forms. The distribution parameters are estimated using the
maximum likelihood approach and Bayesian estimation. The squared error loss function,
the LINEX loss function, and the general entropy loss function are used for the Bayesian
procedure. The simulation result shows that the Bayesian approach gives better estimates
and specially Linex loss function with positive constant shows good performance. 95% and
90% interval estimate of each parameter and the corresponding width are obtained. The in-
terval length increases as the confidence level increases as expected. We apply the new
composite exponentiated Weibull distribution to the real stock exchange transaction data
over four variables, the opening price, the high price, the low price, and the closing price.
The goodness of fit results are compared with some other models. The comparisons are
made using the Kolmogorov-Smirnov test for one sample and some recognition criterion,
such as, the Akaike information criterion, Bayesian information criterion, Hannan-Quinn
information criterion and consistent Akaike information criterion. The results indicate that
the proposed model provides better fits than other competing models and could be chosen
as an adequate model.

Author Contributions: Data curation, W.E.; Funding acquisition, Y.T.; Investigation, W.E.; Methodol-
ogy, W.E.; Resources, W.E.; Supervision, W.E.; Writing—review & editing, Y.T. All authors have read
and agreed to the published version of the manuscript.

Funding: The study was funded by Researchers Supporting Project number (RSP2023R488), King
Saud University, Riyadh, Saudi Arabia.

Data Availability Statement: Data available on request.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Nadarajah, S.; Kot, S. The beta Gumbel distribution. Math. Probab. Eng. 2002, 10, 323–332. [CrossRef]
2. Lingji, K.; Catl, L.; Sepanski, J.H. On the Properties of beta–gamma Distribution. J. Mod. Appl. Stat. Methods 2007, 6, 187–211.
3. Akinsete, A.; Famoy, F.; Lee, C. The beta–pareto distribution. Statistics 2009, 42, 547–563. [CrossRef]
4. Barreto-Souza, W.; Santos, A.H.S.; Cordeiro, G.M. The beta generalized exponential distribution. Statistics 2009, 42, 547–563.

[CrossRef]
5. Paranaiba, P.F.; Ortega, M.M.E.; Cordeiro, G.M.; Pescim, R.R. The beta Burr XII distribution with application to lifetime data.

Comput. Stat. Data Anal. 2010, 55, 1118–1136. [CrossRef]
6. Cordeiro, G.M.; Lemonte, A.J. The beta-half-Cauchy Distribution. J. Probab. Stat. 2011, 2011, 904705. [CrossRef]
7. AL-Kadim, k.A.; Boshi, M.A. Exponential-Pareto Distribution. Math. Theory Model. 2013, 3, 135–146.
8. Gupta, R.D.; Kundu, D. Generalized Exponential Distribution: Different method of estimation. J. Stat. Simul. 2000, 30, 315–338.

[CrossRef]
9. Nasiri, P. Estimation of Parameters of Generalized Exponential Distribution in Person of Outlier. 2006. Available online:

http://www.m-hikari.com/ams/ams-2010/ams-45-48-2010/nasiriAMS45-48-2010.pdf (accessed on 13 March 2023).
10. Martinez, E.Z.; Achcar, J.A.; Jacome, A.A.A.; Santos, J.S. Mixture and non-mixture cure fraction models based on the generalized

modified Weibull distribution with an application to gastric cancer data. Comput. Methods Programs Biomed. 2013, 112, 343–355.
[CrossRef]

11. Carl, L.; Felix, F.; Olugbenga, O. Beta-Weibull Distribution: Some Properties and Applications to Censored Data. J. Mod. Appl.
Stat. Methods 2007, 6, 173–186.

12. Tahir, H.; Cordeiro, G.M.; Ayman, A.; Mansoor, M.; Zubair, M. A New Weibull–Pareto Distribution: Properties and Applications.
Commun. Stat. Simul. Comput. 2011, 45, 3548–3567. [CrossRef]

13. Emam, W. On Statistical Modeling Using a New Version of the Flexible Weibull Model: Bayesian, Maximum Likelihood Estimates,
and Distributional Properties with Applications in the Actuarial and Engineering Fields. Symmetry 2023, 15, 560. [CrossRef]

14. Emam, W.; Tashkandy Y. The Arcsine Kumaraswamy-Generalized Family: MLE and Classical Estimates and Application.
Symmetry 2022, 14, 2311. [CrossRef]

15. Emam, W.; Tashkandy Y. The Weibull Claim Model: Bivariate Extension, Bayesian, and Maximum Likelihood Estimations. Math.
Probl. Eng. 2022, 2022, 8729529. [CrossRef]

http://doi.org/10.1155/S1024123X04403068
http://dx.doi.org/10.1080/02331880801983876
http://dx.doi.org/10.1080/00949650802552402
http://dx.doi.org/10.1016/j.csda.2010.09.009
http://dx.doi.org/10.1155/2011/904705
http://dx.doi.org/10.1080/00949650108812098
http://www.m-hikari.com/ams/ams-2010/ams-45-48-2010/nasiriAMS45-48-2010.pdf
http://dx.doi.org/10.1016/j.cmpb.2013.07.021
http://dx.doi.org/10.1080/03610918.2014.948190
http://dx.doi.org/10.3390/sym15020560
http://dx.doi.org/10.3390/sym14112311
http://dx.doi.org/10.1155/2022/8729529


Appl. Sci. 2023, 13, 3909 22 of 22

16. Emam, W.; Tashkandy Y.; Modeling the Amount of Carbon Dioxide Emissions Application: New Modified Alpha Power
Weibull-X Family of Distributions. Symmetry 2023, 15, 366. [CrossRef]

17. Emam, W.; Tashkandy, Y. A New Generalized Modified Weibull Model: Simulating and Modeling the Dynamics of the COVID-19
Pandemic in Saudi Arabia and Egypt. Math. Probl. Eng. 2022, 2022, 1947098. [CrossRef]

18. Emam, W.; Tashkandy Y.; Khalil New Generalized Weibull Distribution Based on Ranked Samples: Estimation, Mathematical
Properties, and Application to COVID-19 Data. Symmetry 2022, 14, 853. [CrossRef]

19. Seneta, E. Karamata’s characterization theorem, feller and regular variation in probability theory, Publ. Inst. Math. 2002, 71, 79–89.
[CrossRef]

20. Bowley A.L. Elements of Statistics, 4th ed.; Charles Scribner’s Sons: New York, NY, USA, 1920.
21. Moors, J.J.A. The meaning of kurtosis: Darlington re-examined. Am. Stat. 1986, 40, 283–284.
22. López-Ruiz, R.; Mancini, H.L.; Calbet, X. A statistical measure of complexity. Phys. Lett. 1995, 209, 321–326. [CrossRef]
23. Golomb, S. The IGF of a probability distribution. IEEE Trans. Inf. Theory 1966, 12, 75–77. [CrossRef]
24. Shannon, C. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
25. Cataron, A.; Andonie, R. How To Infer The Informational Energy from Small Datasets. In Proceedings of the 2012 13th

International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, Romania, 24–26 May 2012;
IEEE: Piscatawaj, NJ, USA, 2012; pp. 1065–1070.

26. Kundu, D.; Joarder, A. Analysis of Type-II progressively hybrid censored data. Comput. Stat. Data Anal. 2006, 50, 2509–2528.
[CrossRef]

27. Mudholkar, G.S.; Srivastava, D.K. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans. Reliab. 1993,
42, 299–302. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/sym15020366
http://dx.doi.org/10.1155/2022/1947098
http://dx.doi.org/10.3390/sym14050853
http://dx.doi.org/10.2298/PIM0271079S
http://dx.doi.org/10.1016/0375-9601(95)00867-5
http://dx.doi.org/10.1109/TIT.1966.1053843
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1016/j.csda.2005.05.002
http://dx.doi.org/10.1109/24.229504

	Introduction
	The E-WD
	The Heavy-Tailed Characteristic
	Distributional Properties
	 The Quantile Function
	 The rth Moment
	 The MG-F
	 The C-F
	 The I-P
	The I-P Using  
	The I-P Using  
	The IP Using  


	The Information Generating Measure
	 The Information Generating Function
	 The Shannon Entropy (H)
	 The Informational Energy (IE)

	Maximum Likelihood Estimation (MLE) 
	Bayesian Estimation
	Simulation Study
	Application of the E-WD to the Stock Price Data
	Conclusions
	References

