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Abstract: Scoliosis is a common spinal deformity that seriously affects patients’ physical and mental
health. An accurate Lenke classification is greatly significant for evaluating and treating scoliosis.
Currently, the clinical diagnosis mainly relies on manual measurement; however, using computer
vision assists with an intelligent diagnosis. Due to the complex rules of Lenke classification and
the characteristics of medical imaging, the fully automated Lenke classification of scoliosis remains
a considerable challenge. Herein, a novel Lenke classification method for scoliosis using X-rays
based on segmentation networks and adaptive shape descriptors is proposed. Three aspects of
our method should be noted in comparison with the previous approaches. We used Unet++ to
segment the vertebrae and designed a post-processing operation to improve the segmentation effect.
Then, we proposed a new shape descriptor to extract the shape features for segmented vertebrae
in greater detail. Finally, we proposed a new Lenke classification framework for scoliosis that
contains two schemes based on Cobb angle measurement and shape classification, respectively. After
rigorous experimental evaluations on a public dataset, our method achieved the best performance
and outperformed other sophisticated approaches.

Keywords: Lenke classification; image segmentation; deep learning; scoliosis; shape descriptor;
medical image analysis; X-ray

1. Introduction

Scoliosis is a spinal deformity where one or more spinal segments deviate from the
center line of the body and curve laterally; it can also be accompanied by spinal rotation [1].
Scoliosis can occur in any age group, especially during adolescence, which is known as
adolescent idiopathic scoliosis (AIS). The worldwide prevalence of AIS is approximately
0.5–5.2%, causing it to be the most common spinal deformity in adolescents [2]. Scoliosis
not only changes in the spine’s shape and function, but can, in severe cases, lead to a range
of diseases, such as nerve damage, arrhythmia, cardiopulmonary dysfunction, pulmonary
failure, and even paralysis.

Whole spine X-rays are the most common imaging examination for diagnosing, treat-
ing, and prognosis of scoliosis. Evaluating the Cobb angle (a type of measurement of
the lateral curvature of the spine), vertebral rotation, and other parameters in X-rays can
effectively reflect scoliosis severity and provide a basis for establishing the best treatment
plan [3]. Lenke et al. [4] proposed a new classification system for assessing scoliosis severity,
which is known as the Lenke classification criteria, and this has since been the standard
guideline for evaluating scoliosis in clinical practice. As shown in Figure 1, the Lenke
classification criteria divide scoliosis into six types, from Lenke type 1 to type 6. Obtaining
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an accurate Lenke classification of scoliosis is integral for selecting the treatment modality,
especially the surgical strategy.
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literature survey, three key visual techniques were identified as being involved in the 
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The first is segmenting the spine image, that is, segmenting each vertebra from the 
spine image. Unet [5] is a remarkable deep learning model that employs an “encoder‒
decoder” architecture based on fully convolutional networks (FCN) [6]. Since then, nu-
merous variants of Unet, such as UNet++ [7], MAnet [8], RMS-Unet [9], X-Net [10], and 
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tation [12]. For example, Sunetra et al. [13] proposed an SIUNet with an improvised in-
ception block and new dense skip pathways, which achieved promising performance in 
spine image segmentation. Christian et al. [14] developed a coarse-to-fine approach for 
vertebrae localization and segmentation in CT images based on Unet, which achieved the 
best results in the MICCAI 2019 Vertebrae Segmentation Challenge [15]. Recently, another 
deep learning method, transformers and their variants, has gained great attention and 
achieved significant success in image segmentation [16]. Segmenter [17] is a superior 
transformer model for segmentation that is built on top of the recent vision transformer 
[18], which achieved state of the art in two scene image datasets. Recently, Rong et al. [19] 
proposed a new transformer for labeling and segmenting of 3D vertebrae for arbitrary 

Figure 1. The normal spine and six Lenke types of scoliosis: (a) Lenke 1; (b) Lenke 2; (c) Lenke 3;
(d) Lenke 4; (e) Lenke 5; (f) Lenke 6; and (g) normal.

The key steps for the Lenke classification of scoliosis include determining the loca-
tion of each vertebra, computing the Cobb angle, and extracting the characteristic of the
curve. In traditional methods, the key anatomical features of the spine are located and
manually measured on the X-ray image using a ruler, protractor, and marker; then, us-
ing the Lenke classification criteria, the Lenke type is further determined by professional
radiologists. However, manual measurement has many disadvantages, such as being
time-consuming and having a large amount of errors, strong subjectivity, and high reliance
on physician experience.

With the rapid development of artificial intelligence, computer vision application
provides a more efficient way of diagnosing spinal diseases. Based on a comprehensive
literature survey, three key visual techniques were identified as being involved in the Lenke
classification of scoliosis.

The first is segmenting the spine image, that is, segmenting each vertebra from the
spine image. Unet [5] is a remarkable deep learning model that employs an “encoder–
decoder” architecture based on fully convolutional networks (FCN) [6]. Since then, nu-
merous variants of Unet, such as UNet++ [7], MAnet [8], RMS-Unet [9], X-Net [10], and
MQANet [11], have been developed for use in medical image segmentation and other
scenarios. Many researchers have also attempted to improve Unet for spinal image seg-
mentation [12]. For example, Sunetra et al. [13] proposed an SIUNet with an improvised
inception block and new dense skip pathways, which achieved promising performance
in spine image segmentation. Christian et al. [14] developed a coarse-to-fine approach for
vertebrae localization and segmentation in CT images based on Unet, which achieved the
best results in the MICCAI 2019 Vertebrae Segmentation Challenge [15]. Recently, another
deep learning method, transformers and their variants, has gained great attention and
achieved significant success in image segmentation [16]. Segmenter [17] is a superior trans-
former model for segmentation that is built on top of the recent vision transformer [18],
which achieved state of the art in two scene image datasets. Recently, Rong et al. [19]
proposed a new transformer for labeling and segmenting of 3D vertebrae for arbitrary
field-of-view CT images, thus demonstrating the great potential of transformer methods in
spine image segmentation.

The second is Cobb angle measurement or spinal curvature estimation with geometric
calculation, which is generally based on the segmentation results [20]. Cheng et al. [21]
proposed a novel method to compute the Cobb angles monitoring the connection rela-
tionships among the segmented vertebrae in the X-ray images. Yi et al. [22] proposed a
spinal curvature estimation method built on top of the segmentation model. Kang et al. [23]
developed a spine curve assessment method by using a confidence map and vertebral tilt
field, which also provided local and global spine structural information. Although these
methods provide an excellent means to automatically compute the Cobb angle, there is still
room for improvement as they heavily rely on the segmentation results. However, accu-
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rately segmenting vertebra is extremely difficult owing to the unclear vertebral boundary
in the X-ray images. In addition, these methods are difficult to directly apply to the Lenke
classification of scoliosis, as they have high requirements for the Cobb angle accuracy and
need more additional features.

The third is feature representation for spinal images, which are beneficial for evaluating
scoliosis severity. These features include the shape, texture, spatial relationship, and others.
For example, Bayat et al. [24] proposed a label method for the cervical, thoracic, and lumbar
vertebrae using both texture and inter vertebral spatial information. Zhi et al. [25] proposed
to describe the spine using curve fitting, with the parameters of the fitted curve used for
shape classification.

Recently, some work has focused on the classifying scoliosis using the above visual
techniques. For example, Yang et al. [26] proposed a classification scheme of mild AIS by
using the bending asymmetry index (BAI) based on 3D ultrasound imaging. In [27], another
Lenke classification system based on BAI and cobb angle measurement was designed and
achieved promising performance in X-ray images. However, in the above method, the BAI
calculations were semi-automatic and relied on manual annotation. Gardner et al. [28]
proposed an effective method for the cluster analysis of Lenke types based on spinal and
torso shape representation, but only Lenke type 1 was involved in this study. Rothstock
et al. [29] designed a semi-automatic classification framework for 3D surface trunk data
by analyzing the asymmetry distance of the complete trunk as a predictor for scoliosis
severity. Zhang et al. [30] proposed a computerized Lenke classification approach based
on Cobb angle measurement, which required the user to click the mouse to locate the
vertebrae. To sum up, although various approaches have been proposed for classifying
scoliosis with spine images, these methods still face many problems. First, most methods
mainly provide some characteristics of the scoliosis as the output, such as the Cobb angle
and most tilted vertebra [31,32]. Some recent work has focused on complete classification
systems, but most are semi-automatic or rely on three-dimensional data; a fully automatic
Lenke classification system with only X-ray images is rarely reported. In addition, the
accuracy of Lenke classification greatly depends on the segmentation performance, and the
design and selection of segmentation networks is challenging. Finally, the visual feature
representation of scoliosis is another issue that must be carefully considered, as scoliosis has
visually similar shapes and is difficult to distinguish in X-ray images. Therefore, it would
be necessary to develop a complete automatic Lenke classification system that provides an
accurate and efficient Lenke diagnosis in a visually interpretable manner.

To this end, we propose an automatic Lenke classification algorithm for scoliosis based
on a segmentation network and an adaptive shape descriptor. Specifically, four important
steps should be noted. First, a deep network based on Unet++ is employed to segment
each vertebra in the spine X-ray images, and a post-processing approach is further used
to enhance the segmentation effect. Thereafter, an automatic measurement system of the
Cobb angle is designed, and then, an alternative Lenke classification solution for scoliosis
is obtained. In addition, we propose an adaptive shape descriptor for segmented spine
images to capture the discriminating shape features. Finally, a new Lenke classification
algorithm for scoliosis is proposed by using the shape description and a KNN classifier.
Performing rigorous experimental evaluations on a public dataset demonstrated that the
proposed method achieved an accurate and robust performance for the Lenke classification
of scoliosis. In summary, our contributions are fourfold:

(1) A novel clinician-friendly automatic Lenke classification framework for scoliosis
based on a segmentation network and shape feature description is proposed.

(2) A new shape descriptor will be designed for segmented vertebrae, which can effec-
tively describe the microscopic shape distribution of the vertebrae and adaptively
adjust the matching weights.

(3) A simple and efficient post-processing approach for spinal image segmentation is
proposed to avoid segmentation errors.
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(4) A comprehensive evaluation will be performed for scoliosis, such as evaluating the
impact of segmentation networks on Lenke classification and comparing of the Lenke
classification frameworks based on the Cobb angle measurement and shape feature
extraction, respectively.

The remainder of this paper is structured as follows: Section 2 describes the pro-
posed Lenke classification method of scoliosis and the implementation detail, Section 3
presents the experimental evaluation and results, and Section 4 presents the conclusion and
future perspectives.

2. Methods

In this section, we present the proposed method in detail. Section 2.1 introduces
our overall research framework for the Lenke classification of scoliosis, and Section 2.2
presents the spinal image segmentation. In Sections 2.3 and 2.4, we introduce an automatic
measurement of the Cobb angle and describe the proposed shape descriptor. Finally, we
introduce the Lenke classification algorithms of scoliosis in Section 2.5.

2.1. The Overall Framework for Lenke Classification of Scoliosis

In this section, we propose an overall framework for the Lenke classification of scolio-
sis, which can mainly be divided into four parts as shown in Figure 2.
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Figure 2. An overview of the proposed method.

First, we used deep neural networks to segment each vertebra from the spinal X-ray
images. In practice, original spinal X-rays have complex imaging characteristics and are
difficult to directly use for automatic Cobb angle measurement and Lenke classification.
The segmentation networks can help with this process, providing the basis for the auxiliary
diagnosis. Specifically, Unet++ [7] was selected for this purpose based on a comprehensive
evaluation, and a novel post-processing strategy was proposed to improve the segmenta-
tion performance. Subsequently, an automatic Cobb angle measurement algorithm was
designed, which can effectively recognize the vertebrae with maximum scoliotic tilt based
on the segmented spinal image. Third, we proposed an adaptive shape descriptor to
describe the spine’s overall and local curvature, in which four shape representation and
matching strategies are fused to capture the discriminative features. Finally, two alternative
methods to achieve the Lenke classification of scoliosis are proposed, i.e., using inference
rules based on Cobb angles and using shape features based on the K-nearest neighbor
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(KNN) classifier [33]. In the following sections, each part of the proposed method will
be elaborated.

2.2. Segmentation of Vertebrae
2.2.1. Segmentation Networks

In this section, we introduce Unet and Unet++ as the backbone segmentation networks.
As shown in Figure 3a, the basic Unet architecture consists of two parts: the convo-

lutional encoder and decoder. The encoder part has a classical convolutional network
architecture in which the ReLU activation function and 2 × 2 max pooling operations are
performed for downsampling. Downsampling is beneficial for networks to improve their
robustness to deal with image translation and rotation. In the decoder part, the deconvolu-
tion operations are performed to upsample the feature maps. More specifically, through
the 3 × 3 deconvolution in two layers with the ReLU activation function, the final layer is
computed using the convolution of 1 × 1 to obtain the segmentation results. Upsampling
can retain the profile features and decode them to the original image’s size, and the skip
connection between the encoder and decoder prompts Unet to preserve the full context
of the input images. This particular connection pattern provides U-net with an edge in
medical image segmentation. Unet++ is an improved Unet model that combines long and
short connections. As shown in Figure 3b, the Unet++ architecture consists of an encoder
and a decoder connected with nested dense convolutional blocks. Unet++ redesigns the
skip connections and provides the flexible feature fusion in the decoders. In addition, the
deep supervision process of Unet++ can achieve a significant speedup with only a modest
drop in performance. Two key technical details of Unet++ are introduced as follows.
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1. Connected domain. Suppose xi,j denotes the output of the node X i,j, where i represents
the down-sampling layer along the encoder, while j represents the convolution layer
of the dense block along the skip connection. Then, the feature maps denoted by xi,j

are calculated as follows:

xi,j = {Φ(D(xi−1,j)), j=0

Φ([[xi,k ]
j−1
k=0, U(xi+1,j−1)], j>0

(1)

where function Φ(·) is a combination of the convolution layer and an activation
function, D(·) and U(·) represent a downsampling layer and an up-sampling layer,
respectively, and [] indicates the concatenation layer. In the Unet++ architecture, if
level j = 0, the nodes only receive one input from the previous layer of the encoder; if
level j = 1, the nodes receive two inputs from two consecutive levels of the encoder
sub-network; if level j > 1, the nodes receive j + 1 inputs, including j inputs from the
previous same skip connection, and one input from the lower skip connection.
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(2) Segmentation loss. The hybrid loss combined binary cross-entropy with a dice coeffi-
cient is employed as follows:

Γ (Y,
_
Y) = − 1

N

N

∑
b=1

(
1
2
·Yb · log

_
Yb +

2 ·Yb ·
_
Yb

Yb +
_
Yb

) (2)

where
_
Yb and Yb denote the flatten predicted probabilities and the flatten ground

truths of the bth image, respectively, and N is the batch size.

The proposed Lenke classification framework of scoliosis can be applied to more seg-
mentation networks, such as transformer-based models. We will perform a comprehensive
evaluation for different segmentation methods in the later experiments.

2.2.2. Automatic Post-Processing for Segmentation

Vertebrae tend to have low contrast in X-ray images, which may cause segmentation
errors with deep networks, such as adhesion and speckle. These errors will further affect
the Lenke classification performance. Therefore, we propose a simple post-processing
approach to reduce this segmentation error by using adaptive geometric calculation; the
computational flow is shown in Figure 4. Specifically, suppose I1 = Ib ∪ I f is the segmented
spine X-ray image created by segmentation networks, where Ib and If denote the back- and
foreground regions, respectively, then the post-processing can be divided into four steps.
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Step 1: performing the opening operation, i.e., erosion followed by dilation, for Ib and
If, respectively. Then, I2 can be obtained as follows.

I2 = ((Ib 	 Bb)⊕ Bb) ∪ ((I f 	 B f )⊕ B f ) (3)

where 	 and ⊕ denote the dilation and erosion operation, respectively; Bb and Bf denote
the convolution kernels. With this operation, some simple segmentation errors can be
effectively eliminated, such as holes in the foreground and speckles in the background.

Step 2: identifying the adhesive vertebrae and impurity vertebrae. Specifically, travers-
ing each vertebra from top to bottom, starting from the second vertebra, if the current
vertebra is C1 times larger than the previous one, then it is identified as an adhesive verte-
bra; if the current vertebra is C2 times less than the previous one, it can be considered as
an impurity vertebra. In case the first vertebra is abnormal, we repeat it again in the same
manner from bottom to top. During the processing, the adhesive vertebrae are separately



Appl. Sci. 2023, 13, 3905 7 of 30

extracted as I3, and the remaining vertebrae are marked as I4. Any impurity vertebrae in I4
are directly removed, and the output result is denoted as I5. Based on the analysis of the
segmentation effect, C1 and C2 were set as 1.8 and 0.5, respectively, in our experiments.

Step 3: segmenting the adhesive vertebrae, i.e., I3. We first traverse the left and right
boundaries of the adhesion vertebrae and search the left and right inflection points. If both
can be determined, then the two inflection points are connected as the segmenting line of
the two vertebrae; if one of them cannot be identified, then a parallel line is drawn as the
segmenting line through the only inflection point. This parallel line is the intermediate
result relative to the upper and lower boundaries of the adhesion vertebrae. If there is
no obvious inflection point, then the entire adhesion vertebrae are equally segmented
according to the size compared to its neighbors. In fact, in the experiments, we found that
obvious inflection points can be searched in the most original segmentation results by using
deep networks. The output of this step is denoted as I6.

Step 4. the final post-processing result can be obtained by combining I5 and I6 as
shown in Figure 4.

In fact, the post-processing is proposed in an unsupervised manner, which is simply
calculated and can be used to alleviate the influence of segmentation error on the Lenke
classification of scoliosis.

2.3. Automatic Measurement of Cobb Angle

The Cobb angle as an objective measure is used to quantify spinal curvature and is
important for the Lenke classification system. The Cobb angle is traditionally measured
manually by doctors on X-ray images using a pencil and protractor based on their experi-
ence. This type of traditional measurement could lead to some errors, and its inter- and
intra-observer variability is high. Moreover, the accuracy and consistency of the Cobb angle
measurement will affect the Lenk classification results and have significant implications for
treating and managing of patients. Therefore, in this section, an automatic and effective
Cobb angle measurement approach based on the segmented spinal block is proposed, as
explained in the next paragraph.

The key links for measuring the Cobb angle based on computer vision are to identify
the superior and inferior endplates of each spinal block. As shown in Figure 5, the Cobb
angle automatic measurement framework consists of four steps. First, each vertebra can be
segmented and locally separated by segmentation and using the post-processing algorithm.
Second, a canny operator [34] is employed to detect edge of the spinal block, which is
almost closed. Then, we traverse the upper and lower edges, respectively, and the sample
points at regular intervals and at the same time. These sample points on the upper and
lower edges are marked as green and yellow, respectively. As the segmented boundaries of
each vertebra have a slight bend, some noise points may exist that could affect the fitting
results. Therefore, a simple and effective strategy is employed to eliminate the noise and
optimize the distribution of the simple points. Mathematically, suppose (a0, a1, . . . , an−1)
are sampled n points, then we define the k-neighbors angle θi for each point ai, according
to Formula (4), where we describe the average fluctuation degree of ai. Subsequently, the
average angle θ of k-neighbors for the sequence of points can be obtained from Formula (5).
To better explain these two formulas, we use Figure 5 as an example that has nine sampled
points marked as (a0, a1, . . . , a9). If k is set as 2, then each point forms two angles with
its left and right neighbor points in turn. Specifically, for a3,

→
a3a2 and

→
a3a4 form an angle

denoted as θ1
3 ,
→

a3a1 and
→

a3a5 form an angle denoted as θ2
3 . Then, the average fluctuation

angle θ3 of a3 can be obtained by averaging θ1
3 and θ2

3 . The average fluctuation angle of
each point ai can be calculated in a similar way. Subsequently, the average fluctuation angle
of the point series (a0, a1, . . . , a9) can also be obtained by taking the average.
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Figure 5. An example for calculating average fluctuation angle of sampling points of the segmented
vertebra. (a0, a1, . . . , a9) are sampled points; θ

j
i denotes the angle between ai and its j-th neighbor on

the left and right; θi denotes the average fluctuation angle of ai.

Then, if point ai satisfies (θ − θi + π)modπ > δ, then ai is marked as noise points and
will be further eliminated, where δ is a threshold that reflects the noise factor. As shown in
Figure 5, the point marked as red is the noise point because its average fluctuation angle is
quite different from that of other points. Through the preliminary experiment, we found
that the noise points are mainly caused by the speckle error of the segmentation model,
and there is a large deviation from the real boundary. Therefore, we set k and δ to 3 and
π/6, respectively. After the optimized simple points have been obtained, the straight line
representing the superior and inferior endplates can be determined by least square fit.
Finally, as shown in Figure 6, we traverse each of the two vertebra and calculate the angle
between the superior and inferior endplates from the two different vertebrae. The largest
angle is defined as the Cobb angle. The pseudocode for automatically measuring the Cobb
angle is presented in Algorithm 1, where the key details are illustrated in Figure 6. It is
worth mentioning that if the Cobb angle is greater than 10◦, the scoliosis needs further
investigation, and, if the Cobb angle is >25◦, then surgical treatment may be inevitable.

θi =
1
k

k

∑
j=1

arccos
−−−−−−−−→aia(i−j+n)modn ·

−−−−−−−−→aia(i+j+n)modn∣∣∣∣−−−−−−−−→aia(i−j+n)modn

∣∣∣∣ · ∣∣∣∣−−−−−−−−→aia(i+j+n)modn

∣∣∣∣ , i = 0, 1, . . . , n− 1 (4)

θ =
1
n

n−1

∑
i=0

θi, i = 0, 1, . . . , n− 1 (5)

In the actual clinical diagnosis, the Cobb angle has two limitations: inter- and intra-
observer measurement variability of approximately 3–5 degrees, and high variability
regarding the definition of the end vertebra. Therefore, in the next section, we study the
scoliosis Lenke classification from the perspective of the shape description.
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Figure 6. Automatic measurement of Cobb angle. L1[i] denotes the slope of the straight line represent-
ing the superior endplate of the i-th vertebra; L2[i] denotes the slope of the straight line representing
the inferior endplate of the i-th vertebra; H(i,j) denotes the angle between the superior endplate of
the i-th vertebra and the the inferior endplate of the j-th vertebra.

Algorithm 1 Automatic measurement of Cobb angle.

Input: a segmented spinal image I
Output: The Cobb angle of I

1. Obtain the edge of the vertebra by canny operator.
2. Sample the points (a0, a1, . . . , an−1) from the upper and lower boundaries.
3. Perform the optimization for point sampling according to k-neighbors angle
(see formula (4) and (5)).
4. Perform least square fit for optimized points sequence and obtain slope sets L1 and L2 of the
straight line representing the superior and inferior endplates, respectively.
5. Initialize Cobb-angle(i) = 0 and variable H(i) = 0, i = 1,2, . . . , n.

For i = 1,2, . . . , n − 1 do
For j = i + 1, . . . , n do

H(i,j) = atan((L1[i] − L2[j])/(1 + L1[i] × L2[j]))
If Cobb-angle(i) > H(i,j) then Cobb-angle(i) = H(i,j)

End For
End For
Output = max(Cobb-angle)

2.4. Adaptive Shape Descriptor for Vertebrae
2.4.1. Outline Representation and Matching

To describe the bending strength of scoliosis that can cause irregular deformations to
develop, we propose codifying its shape in terms of a set of boundary points, which are



Appl. Sci. 2023, 13, 3905 10 of 30

selected from each vertebra’s outline. Considering these points, the direction-cycle-encoded
frame is employed to describe the shape changes. Then, the similarity matching based on
the shape encoded is defined and the descriptor features are obtained.

More formally, given a set of outline points forming shape S= {p0, p1, . . . , pm} of
the segmented spinal image, the fine grained direction of each point pi ∈ S and its next
neighboring point pi+1 ∈ S can be described by a circular template with n equal parti-
tions as shown in Figure 7. Then, we traverse all the points from top to bottom, and a
coding sequence CS= {x1, x2, . . . , xm} can be obtained. Finally, for two coded sequences
C1= {x1, x2, . . . , xm} and C2= {y1, y2, . . . , ym}, the dissimilarity is defined as follows:

DisSim1(C1, C2) =
m

∑
i=1
{min((xi − yi + n)modn, (yi − xi + n)modn)

}
(6)

where n denotes the partition number of the circular direction template, and m denotes the
number of spinal blocks.
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Figure 7. Outline representation using shape encoding. (a) Circular direction template; (b) outline
representation of vertebrae.

2.4.2. Adaptive Similarity Matching Weight Based on Key Segments

Since spinal parts with greater curvature have more influence on the Lenke classifi-
cation of scoliosis, an adaptive weighting mechanism is further proposed to improve the
similarity matching.

Mathematically, suppose s = {p0, p1, . . . , pm} and S′= {p′0, p′1, . . . , p′m
}

are the out-
line point sets of segmented spinal image X and Y, respectively, C1= {x1, x2, . . . , xm} and
C2= {y1, y2, . . . , ym} are corresponding coded sequences that need to be matched.

Firstly, for S or S′, we calculate the boundary segments with the largest local change
slope. Using the calculation for S as an example, we first compute the slope between
all adjacent points, i.e., pi−1 and pi are denoted as slopi. Then, the slope difference be-
tween the two adjacent boundary segments (pi, pi+1) and (pi−1, pi) can be calculated as
disslopi =|slopi+1 − slopi|. If (pi−1, pi) satisfy the following two restrictions: (1) slopi
and slopi+1 have opposite signs, or slopi and slopi−1 have opposite signs; (2) satisfying
disslopi = max(disslopj), i− r < j < i + r, where r is a local range parameter, pi(i > 0) is
called the key point and (pi−1, pi) is called the key segment. In fact, the first restriction
above indicates that the tilt angle occurring at (pi−1, pi) changes in direction. The second
restriction indicates that the local maximum slope change has been determined. An exam-
ple is shown in Figure 8; the key segments are marked as red, which often denote the most
curved part.
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Subsequently, suppose the key points of S and S′ are denoted as
{

kpj

}
, j = 1, . . . , k1

and
{

kpj
∗
}

, j = 1, . . . , k2, respectively, we can then calculate the similarity matching weight
wi for each point using Formula (5), where ‖·‖ operation denotes the interval distance
between two points in the outline point sets. Finally, the dissimilarity calculation between
X and Y can be improved using Formula (7).

wi =
k1

∑
j=1

exp(−
∥∥pi − kpj

∥∥)+ k2

∑
j=1

exp(−
∥∥p′ i − kpj∗

∥∥) (7)

DisSim2(X, Y) =
m

∑
i=1
{wi ·min((xi − yi + n)modn, (yi − xi + n)modn)

}
(8)

Since the key points and key segments of each segmented spine image are determined
by its own largest local change slope, different spine images may have different numbers
of key points, i.e., k1 and k2 in formula (7) are adaptively determined by their respective
segmentation results. As shown in Figure 8, both the two segmented spine images have
three key segments that reflect their respective conditions with a maximum local slope
change. In addition, to ensure a more robust match, the similarity matching weights
wi (i = 1,2, . . . , m) in Formula (8) are further normalized, i.e.,wi is updated to wi/∑m

i=1 wi
in the experiment. In general, with this intuitive weight assignment strategy, the shape
matching process pays more attention to the key parts of the spinal image, which will
further improve the Lenke classification performance.

2.4.3. Improving Shape Representation by Quantification of Tilt Angles

The above two strategies represent the shape of scoliosis in terms of the overall
contour and the local maximum curvature of the spine, respectively. In fact, the horizontal
inclination of each spine block, that is, the tilt angle of the upper and lower boundaries, also
plays an important role in the Lenke classification of scoliosis. An intuitive example can be
found in Figure 9, in which the two spinal sequences have similar overall profiles, but their
respective upper and lower boundaries have different tilt angles, which may result in them
belonging to different Lenke classifications. In this section, we further improve the shape
representation and matching based on the vertebra’s horizontal tilt angle.
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Figure 9. Examples of vertebrae with different tilt angles.

Specifically, suppose S= {p0, p1, . . . , pm} denotes the left outline point set of the seg-
mented spinal image X, and a horizontal line li is drawn through each pi, then use li as
the basis and calculate the angle θi of the upper or lower boundary corresponding to pi in
the clockwise direction. After that, we define Formula (9) to calculate the horizontal tilt
angle αi of each spinal block. It is worth noting that Formula (9) calculates the horizontal
angle inclination direction of the spinal block, i.e., if θi ≤ π

/
2, that means the angle αi is

determined by li intersecting the upper or lower boundaries in a clockwise direction, and
in this case, αi ≥ 0; if θi > π

/
2; that means αi is determined by li intersecting the upper or

lower boundaries in a counterclockwise direction, with αi in this case being <0.

αi =

{
θi, i f θi ≤ π

/
2

−(π − θi), i f θi > π
/

2
, i = 0, 1, . . . , m (9)

Suppose X and Y are two segmented spinal images to be matched, S= {p0, p1, . . . , pm}
and S′= {p′0, p′1, . . . , p′m

}
are their outline point sets, respectively; C1= {x1, x2, . . . , xm}

and C2= {y1, y2, . . . , ym} are their corresponding coded sequences, respectively.
α= {α0, α1, . . . , αm} and β= {β1, β2, . . . , βm} are the horizontal tilt angles of X and Y, re-
spectively. Then, the dissimilarity between α and β is defined as formula (10), and the
dissimilarity between X and Y can be further improved as formula (11).

DisTile_angles(X, Y) =
m

∑
i=0
{|αi − βi|} (10)

DisSim3(X, Y) =
m

∑
i=1
{wi ·min((xi − yi + n)modn, (yi − xi + n)modn)}+ DisTile_angles(X, Y) (11)

2.4.4. Improving Shape Representation by Symmetric Matching

In spinal shape matching, another important factor that needs to be considered is
symmetric mirror matching. For example, as shown in Figure 10, the left and the right are
the same spinal segmentation after flipping. If we only use the above formulas (such as (6),
(8), and (11)) to represent and match the two spinal sequences, they are going to be very
different, despite being the same. To address this issue, we designed a symmetric matching
description method to improve scoliosis shape representation.
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More formally, consider that X and Y are two segmented spinal images. First, we
separately calculate the minimum bounding rectangles (MBR) of X and Y. Then, the
distances from each left outline point of the spinal blocks of X to the right boundary of the
corresponding MBR can be calculated and denoted as hX = {h0, h1, . . . , hm}, as shown in
Figure 10. Using the same method, we can obtain the distances of Y to the right boundary
of its MBR, which is denoted as dy = {d0, d1, . . . , dm}. In addition, the max distances
hmax = max{h0, h1, . . . , hm} and dmax = max{d0, d1, . . . , dm} are further defined. Secondly,
we horizontally flip Y to obtain the mirror image Y’ of Y. Then, we calculate the same
distances from each left outline point of spinal blocks of Y’ to the right boundary of its
MBR, denoted as dy

′ = {d0
′, d1

′, . . . , dm
′} and d′max = max{d′0, d′1, . . . , d′m}. Finally, the

optimal symmetric matching distance between X and Y can be defined as sym_dis(X, Y):

sym_dis(X, Y) = min(

m
∑

i=0
|hi − di|

hmax + dmax
,

m
∑

i=0
|hi − di

′|

hmax + d′max
) (12)

Combining all the above analyse, we finally propose an adaptive shape description
and matching method for segmented vertebrae. To match the two segmented spinal images
X and Y, the dissimilarity between X and Y can be defined as:

DisSimilarity(X, Y) = ε
m
∑

i=1
{wi ·min((xi − yi + n)modn, (yi − xi + n)modn)}

+λ
m
∑

i=0
{|αi − βi|}+ δsym_dis(X, Y)

(13)

where ε,λ and δ are weight factors. DisSimilarity(X, Y) means that the smaller the value,
the more similar the shape of the segmented spinal image. In fact, compared with the
previous methods, we improved the shape representation in three aspects, i.e., adaptive
matching weight assignment, tilt angle quantification, and symmetric matching. These
technical improvements are designed to capture the spine’s microscopic changes that play
an important role in Lenke classification in greater detail. In the next section, we will
elaborate on the Lenke classification of scoliosis based on the proposed shape descriptor.

2.5. Lenke Classification of Scoliosis
2.5.1. Lenke Classification of Scoliosis Based on Cobb Angle

In clinical practice, the Lenke classification method [4] is currently recognized as one
of the authoritative classification systems in spinal surgery, which divides scoliosis into six
types according to the Cobb angle in radiographs.
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In the Lenke classification system, a complete spine can be divided into three areas [4]:
the proximal thoracic (PT), main thoracic (MT), and thoracolumbar/lumbar (TL/L) areas.
Three key characteristics need to be identified when performing Lenke classification. The
first is to determine the position (PT, MT, or TL/L) of the major curve, i.e., the curve
segment with the largest Cobb angle. If MT and TL/L have the same Cobb angle, the MT
will be considered as the position of the major curve. Second, it needs to be determined
whether the curve is structural. A curve is defined as structural if the Cobb angle is ≥25◦

in the coronal plane or the angle is >20◦ in the sagittal plane. Finally, the structural curves
for each PT, MT, and TL/L need to be calculated, and then, the Lenke type of scoliosis
can be determined according to the criteria shown in Table 1. More specifically, the major
curve is structural and occurs at the MT for the Lenke types from 1 to 4, while the major
curve is situated at the TL/L for Lenke type 5 and type 6. Furthermore, if the major curve
occurs at the MT and both PT and TL/L curves are nonstructural, then the scoliosis is
Lenke type 1. For Lenke type 2, the main difference from type 1 is that the PT curve is
also structural, i.e., the double thoracic curves are structural. Using the same method
to check the minor curves, the Lenke types from 3 to 6 can also be distinguished, and
more details are presented in Table 1. According to the above criteria, an automatic Lenke
classification algorithm based on Cobb angle measurement for scoliosis was designed as
shown in Figure 11. This algorithm can help radiologists directly obtain the Lenke type
from segmented X-ray spine images with an automatic measurement algorithm of the
Cobb angle (See Algorithm 1). Both the coronal and sagittal planes of the Cobb angle are
considered for determining the Lenke classification [30], but we only employ coronal X-ray
spine images, i.e., the Cobb angle is ≥25◦ in the coronal plane, in this paper.

Table 1. The criteria for determining the type of Lenke classification.

The Type of
Lenke

Proximal Thoracic
(PT) Main Thoracic (MT) Thoracolumbar/Lumbar

(TL/L) Major Characteristic

1 Nonstructural Structural (major curve) Nonstructural Main thoracic
2 Structural Structural (major curve) Nonstructural Double thoracic
3 Nonstructural Structural (major curve) Structural Double major
4 Structural Structural (major curve) Structural Triple major

5 Nonstructural Nonstructural Structural (major curve) Thoracolumbar/
lumbar

6 Nonstructural Structural Structural (major curve) Thoracolumbar/
lumbar–main thoracic

2.5.2. Lenke Classification of Scoliosis Based on Adaptive Shape Descriptor

In this section, we propose a new strategy to automatically classify the Lenke type of
the scoliosis based on adaptive shape description and matching.

Given a training dataset of X-ray spinal images for scoliosis D = {Y1 , Y2, . . . , Yn},
suppose f (Yi) denotes the function that returns the label of sample Yi; V = {0 , 1, . . . , 6} is
the label set, where from 1 to 6 represent the six Lenke types of scoliosis and 0 represents
the normal spinal image; and X is the X-ray spinal image from the testing set to be classified,
the calculation process of Lenke classification is presented in Figure 12. First, the deep
neural network and post-processing are employed to perform the segmentation for the
training and testing sets. Second, we use the proposed shape descriptor including three
strategies for improvement to describe and match the X and each sample in the training set,
and the most similar K samples from the training set can be found. Finally, the weighted
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KNN classifier is employed to predict the label X. Mathematically, the label of X can be
determined as follows:

f (X)← argmax
v∈V

(
k
∑

i=1
qi ϕ(v, f (Yi))),

ϕ(a, b) =
{

1, a = b
0, a 6= b

,

qi =
exp(d(X,Yi))

k
∑

j=1
exp(d(X,Yj))

(14)

where qi denotes the weights, indicating that the more similar the shape of the sample is to
X, the higher the weight assigned to it. The function d(X, Yi) denotes the similarity distance
of the two spinal images, which can be calculated from Formula (13).
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3. Experiments and Analysis
3.1. Experimental Datasets and Preprocessing

We employ a public dataset [35] for the experimental evaluation, which was collected
from the London Health Sciences Center in Canada that consists of 609 coronal spinal X-ray
images with sizes ranging from 359 × 973 to 1386 × 2678. To ensure the deep learning
framework’s effectiveness, we scale all images to a uniform size of 512 × 1536. Since the
cervical vertebrae are rarely involved in spinal deformity, 12 thoracic and 5 lumbar vertebrae
for each X-ray image are annotated by two professional radiologists. Each vertebra is
labeled by four landmarks with reference to four corners, resulting in 68 points per spine
image, which is also considered as the ground truth (GT) of vertebrae segmentation. With
the landmarks, the Cobb angles can be further calculated. After the Cobb angle of each
spine is determined, the Lenke type of scoliosis is annotated. For experimental data, we
randomly selected 80% for training, 10% for validation, and 10% for testing. Some original
image samples are shown in Figure 13.
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Figure 13. The examples of original image samples.

3.2. Experimental Setup and Evaluation

For the experimental environment, we used hardware platform with AMD R7-4800H
CPU, NVIDIA GeForce GTX1650 GPU and SAMSUNG 16 GB DDR4 memory. The open-
source PyTorch framework, the MMSegmentation toolkit [36], and Segmentation Model
PyTrorch toolkit [37] were employed as the software environment. For the experimental
parameter, the batch size and initial learning rate for the segmentation network were
assigned as 4 and 5× 10−5, respectively. The Adam optimizer was used to change the
learning rate. The number n of the circular direction template of the shape descriptor was
set as 24; the weight factors ε,λ, and δ were set as 0.4, 0.4, and 0.2, respectively; and the
parameter of the KNN classifier was set as 10.

Since our method involves two types of vision tasks, i.e., semantic segmentation and
image classification, we used two groups of objective evaluation metrics for different vision
tasks. For the semantic segmentation task, we employed five types of widely used metrics
for evaluation, i.e., accuracy, sensitivity, specificity, dice, and MIoU [38]. For the image
classification task, the accuracy, precision, recall, and F1-score were selected for quantitative
comparison. The equations of all the metrics are presented in Table 2. In addition, TP, TN,
FP, and FN were calculated at the pixel level for semantic segmentation, while they were
calculated at the image level for the image classification.

3.3. Evaluation of Vertebrae Segmentation

In this section, we mainly evaluated the performance of the deep networks for seg-
menting the vertebrae and the proposed post-processing method. Six popular and recent
methods were employed for this purpose, i.e., FPN [39], Unet [5], MAnet [8], PSPNet [40],
Unet++ [7], and Segmenter [17]. For a fair comparison, the open-source MM segmentation
toolkit was employed for all methods.
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Table 2. Formulas for each evaluation metric.

Evaluation Metrics Formula Note

Accuracy Acuracy = TP+TN
TP+FP+TN+FN (15)

TP : True Positive
TN : True Negative
FP : False Positive

FN : False Negative

Sensitivity Sensitivity = TP
TP+FN (16)

Specificity Speci f icity = TN
TN+FP (17)

Dice Dice = 2×TP
2×TP+FP+FN (18)

Precision Precision = TP
TP+FP (19)

Recall Recall = TP
TP+FN (20)

F1-score F1− score = 2∗TP
TP+FP+TP+FN (21)

The quantitative experimental results of the compared methods are presented in
Table 3, where ⊗ denotes that post-processing was not used for the segmentation results;√

denotes that post-processing was used; and + indicates the increase with the post
processing used. To intuitively present the visual comparison, the segmentation effects of
the different methods are shown in Figure 14, and some examples that illustrate the effects
of post-processing are presented in Figure 15.

Table 3. Segmentation results of the compared methods. ⊗: the post-processing was not used;
√

: the
post-processing was used; +: increase with post-processing used.

Methods
Accuracy Sensitivity Specificity Dice MIoU

⊗
√

⊗
√

⊗
√

⊗
√

⊗
√

FPN 0.930 +0.007 0.718 +0.115 0.983 +0.003 0.790 +0.074 0.659 +0.101
Unet 0.932 +0.006 0.728 +0.137 0.979 +0.008 0.791 +0.109 0.664 +0.154

MAnet 0.930 +0.004 0.756 +0.057 0.978 +0.004 0.802 +0.030 0.677 +0.035
PSPNet 0.912 +0.004 0.674 +0.122 0.967 +0.003 0.718 +0.044 0.574 +0.042
Unet++ 0.940 +0.008 0.743 +0.117 0.983 +0.007 0.805 +0.086 0.679 +0.124

Segmenter 0.946 +0.003 0.915 +0.010 0.997 +0.001 0.915 +0.017 0.848 +0.024

From the above results, the following conclusions can be drawn.
First, as shown in Table 3, the Segmenter achieved the best results with accuracy

(0.946), sensitivity (0.915), specificity (0.997), dice (0.915), and MIoU (0.848), while Unet++
achieved the second-best results with accuracy (0.940), sensitivity (0.743), specificity (0.983),
dice (0.805), and MIoU (0.679). In general, the accuracy and specificity are relatively
superior among these methods, but the sensitivity, dice, and MIoU could be improved.
This illustrates that the segmentation network approach is limited in terms of dealing with
the details of the segmented vertebrae. More intuitive examples can be found in Figure 14.

Second, by observing the visual comparison in Figure 14, various errors such speckles,
adhesions, and redundances exist in the segmentation results for different methods. For
example, PSPNet has more speckle errors, and MANet has more adhesion errors. However,
Unet++ achieved the best subjective results, which are reflected in the clearer segmentation
contour and less adhesion errors. Segmenter has more speckles and adhesions in the
subjective presentation than Unet++, even though Segmenter achieves high quantitative
evaluation values. This greatly affects the Lenke classification performance of scoliosis,
which partly why we use Unet++ as the recommended segmentation network.

Third, by observing the results in Table 3 on whether post-processing was used,
we note that the post-processing operation improved all methods under all indicators.
This demonstrates that post-processing can effectively improve segmentation. Moreover,
these improvements on quantitative segmentation indicators are not significant, as post-
processing is primarily designed for subjective adhesions and speckles. From the visual
comparison in Figure 15, each method can successfully remove some subjective segmenta-
tion errors, such as adhesions, speckles, and holes, which significantly contributes to the
Lenke classification of scoliosis. In addition, it is worth noting that the post-processing
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strategy improved Unet++ and Unet more significantly than the other approaches from
both objective indicator and subjective observation. This also causes Unet++ to be more
advantageous in the Lenke classification of scoliosis. In the next section, we conduct
more experiments to verify the performance of the segmentation networks involved in the
proposed Lenke classification framework.
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In summary, the Unet++ and Segmenter models achieved relatively superior segmen-
tation results with post-processing. In addition, in the next sections, we further test the
performance of these segmentation models that are incorporated into the proposed Lenke
classification framework of scoliosis.

3.4. Ablation Experiment for the Proposed Shape Descriptor

To examine the effectiveness of each module of the proposed adaptive shape descriptor,
we conducted a series of ablation experiments to evaluate each strategy’s contribution.
Specifically, we selected Unet++ as the segmentation network, and the segmentation results
are described according to the proposed shape descriptor and further used for the Lenke
classification (see Section 2.5.2). Four shape descriptors should be marked for ablation
evaluation: (1) S1 descriptor, which only used outline representation and matching (see
Section 2.4.1); (2) S2 descriptor, which employed adaptive similarity matching weight
based on S1 (see Section 2.4.2); (3) S3 descriptor, which improved the shape representation
by the upper and lower boundaries based on S2 (see Section 2.4.3); and (4) S4 descriptor,
which combined S3 and symmetric matching, i.e., the finally proposed shape descriptor
for the X-ray spinal images (see Section 2.4.4). The experimental results for the four shape
descriptors incorporated into the Lenke classification framework of scoliosis are listed in
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Table 4. Since the segmentation results generated by the different deep networks may affect
the Lenke classification’s performance, we also compared the Lenke classification results
based on different segmentation networks combined with the S4 descriptor; the results are
presented in Table 5.

Table 4. Lenke classification results for the compared methods based on segmentation by U-Net++. ⊗:
the post-processing was not used;

√
: the post-processing was used; the bold indicates the best results.

Shape
Descriptors

Accuracy Precision Recall F1-score

⊗
√

⊗
√

⊗
√

⊗
√

S1 0.618 0.644 0.370 0.396 0.615 0.638 0.530 0.555
S2 0.676 0.704 0.395 0.420 0.633 0.677 0.603 0.638
S3 0.755 0.776 0.707 0.737 0.717 0.745 0.712 0.741
S4 0.765 0.786 0.777 0.804 0.729 0.756 0.752 0.779

Table 5. Lenke classification results for the compared methods based on segmented results by
different deep networks. ⊗: the post-processing was not used;

√
: the post-processing was used; the

bold indicates the best results.

Methods
Accuracy Precision Recall F1-score

⊗
√

⊗
√

⊗
√

⊗
√

FPN combine S4 0.698 0.716 0.633 0.771 0.615 0.616 0.624 0.670
PSPNet combine S4 0.629 0.667 0.626 0.773 0.513 0.517 0.564 0.617
MANet combine S4 0.663 0.686 0.609 0.765 0.523 0.534 0.563 0.598

Unet combine S4 0.672 0.696 0.630 0.767 0.601 0.616 0.615 0.633
Segmenter combine S4 0.705 0.725 0.630 0.770 0.603 0.630 0.616 0.667

Unet++ combine S4 0.765 0.786 0.777 0.804 0.729 0.756 0.752 0.779

Based on a comprehensive analysis of the above results, the following conclusions can
be drawn:

First, regardless of whether post-processing is used, Table 4 shows a steady increase
in all metrics, which indicates that our proposed shape modules have a positive effect on
the shape representation and Lenke classification of scoliosis. Specifically, S2 improved S1
in accuracy (⊗5.8% and

√
6%), precision (⊗2.5% and

√
2.4%), recall (⊗1.8% and

√
3.9%),

and F1-score (⊗7.3% and
√

8.3%). This is mainly because the proposed adaptive weigh
assignment strategy for shape matching in S2 uses the most curved segments as the key
factors, which effectively reflects the most discriminative features of the Lenke shape. In
addition, S3 led to an obvious increment on S2 in accuracy (⊗7.9% and

√
7.2%), precision

(⊗31.2% and
√

31.7%), recall (⊗8.4% and
√

6.8%), and F1-score (⊗10.9% and
√

10.3%),
which demonstrates that the proposed shape description of each vertebra’s horizontal
tilt angle is a great feature supplement for the Lenke classification of scoliosis. Finally,
our S4 method achieved the best results and improved S3 in all metrics. This not only
indicates that our method overcomes the errors caused by rotation, but also shows that the
organic combination of these shape representation strategies can play a significant role in
the Lenke classification.

Second, from the results of Table 5, we notice that the proposed framework combining
Unet++ and S4 achieved the best performance in the Lenke classification, irrespective of
whether the post-processing operation was used. This is because Unet++ provided superior
segmentation results in both the objective indicators and subjective effects, which cause
the proposed shape descriptor to be more effective. However, a particular phenomenon
should be explained, which is that Segmenter + S4 achieved an inferior classification
performance even though Segmenter surpassed Unet++ in the quantitative evaluation of
the segmentation. This is mainly because the actual segmentation effect of Segmenter has
some non-negligible errors in the boundaries of the vertebrae, which greatly influences the
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Lenke classification of scoliosis. Additionally, for Unet++, by broadening the main structure
of Unet, it can capture the features of different levels and obtain clearer boundaries for the
vertebrae, thus providing a more reliable benchmark for shape description. Furthermore,
the post-processing operation plays a greater role in Unet++ than Segmenter by viewing
Table 3, which also contributes to improving the classification effect.

Finally, by comparing the results in Table 4 on whether post-processing was used, the
proposed post-processing strategy improves the classification performance under all evalu-
ation indicators. For example, the post-processing operation gains accuracy improvement
with 2.6%, 2.8%, 2.1%, and 2.1% for S1, S2, S3, and S4, respectively, and gains F1-score
improvements with 2.5%, 3.5%, 2.9%, and 2.7% for those four methods. Indeed, the results
in Table 4 support a similar conclusion, i.e., that a post-processing operation improves
the Lenke classification performance for different segmentation networks combined with
S4. These improvements are even more significant, such as the post-processing opera-
tion gaining precision improvement with 13.8%, 14.7%, 15.6%, 13.7%, 14.0%, and 2.7%
for FPN, PSPNet, MANet, Unet, Segmenter, and Unet++ combined with S4, respectively.
This suggests that the proposed post-processing algorithm can effectively overcome the
segmentation error and help to improve the scoliosis classification performance.

3.5. Comparison of the Representative and Latest Methods

For a complete evaluation, we selected two types of methods for comparison. The first
type is the four representative shape descriptors involved in our classification framework:
(1) shape context [41,42], which is a classic shape descriptor and has important applications
in many fields; (2) TAR [43], which has superior performance in overall and local shape
description; (3) CBoW [44], which provides a new strategy to describe shapes with bag
of visual words; and (4) Fourier descriptor [45], which has recently been used for shape
representation in cerebral microbleed detection. The second type is the recently popular
deep learning classification method that we performed on spinal X-ray images for Lenke
classification, such as remarkable Resnet101 [46], the latest vision transformer [18], and
Swim transformer [47]. All these compared methods achieved state-of-the-art for shape
representation or image classification. All the experimental results are presented in Table 6,
where the values marked in bold indicate the best performance.

Table 6. Lenke classification results for the representative and latest methods. Bold means the best.

Compared Methods Accuracy Precision Recall F1-Score

Shape context 0.428 0.320 0.381 0.348
TAR 0.320 0.309 0.345 0.326

CBoW 0.263 0.299 0.248 0.271
Fourier descriptor 0.571 0.595 0.548 0.556
Swin transformer 0.517 0.232 0.205 0.180

Vision transformer 0.708 0.505 0.534 0.503
Resnet101 0.733 0.596 0.585 0.588

OURS 0.786 0.804 0.756 0.779

To further provide a visual comparison of the shape representation, we also conducted
a content-based image retrieval experiment for the five compared shape descriptors. We
input an original spine X-ray image as the query and retrieved the seven most similar
results in the dataset using the proposed shape matching framework based segmentation
network. The two groups of retrieval results are presented in Figures 16 and 17, respectively.
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From the above result, we can draw the following conclusions.
First, the proposed Lenke classification framework embedded with our adaptive

shape descriptor achieves best results in all the evaluation indicators, which shows its
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outstanding performance compared with the other representative and latest methods.
Specifically, compared with the shape context descriptor, we achieved an improvement
of 35.8% in accuracy, 48.4% in precision, 37.5% in recall, and 43.1% in F1-score; compared
with the Fourier descriptor, we achieved an improvement of 21.5% in accuracy, 20.9%
in precision, 20.8% in recall, and 22.3% in F1-score. We also surpassed the other shape
descriptors including CBoW and TAR for all metrics, and the improvement was markedly
significant. This is mainly because our shape descriptor is especially designed for describing
the microscopic shape distribution of the vertebrae, while the existing shape descriptors
were mainly developed for objects with larger shape changes.

Second, we achieved superior results compared with deep learning classification
methods. Specifically, compared with Resnet101, we achieved an improvement of 5.3% in
accuracy, 20.8% in precision, 17.1% in recall, and 19.1% in F1-score. Compared to the recent
transformer methods that demonstrated conspicuous performance in image classification,
such as Swin transformer and vision transformer, we achieved more significant performance
improvements. This demonstrates that the Lenke classification of scoliosis in X-rays is
indeed challenging. It may be difficult to directly use an end-to-end deep learning method
to the learn the small shape changes between different Lenke types, and our hand-designed
method can better describe such shape differences. In addition, the small number of data
samples affects the performance of transformers and other deep learning methods. We
used deep leaning to segment and manually design the shape description and matching
method to achieve a more efficient scoliosis classification.

Finally, by observing the content-based image retrieval results in Figures 16 and 17,
we found the proposed shape descriptor achieved the best results. Specifically, our method
yielded the results that had the most Lenke types in common with the query. Using the
query marked Lenke 4 in Figure 16 as an example, five of the seven most similar results by
our method were Lenke 4, while, for the shape context, CBoW, TAR, and Fourier descriptor,
there are four, four, three and two samples marked Lenke 4 were retrieved, respectively.
For the results in Figure 17, our method also retrieved the most images, consistent with the
Lenke type of the query. In addition, from the perspective of subjective observation, the
results obtained using our method are more visually similar to the query, i.e., the shape of
the spine obtained by our method is similar to that of the query. Even those results with
different Lenke types from the query still have a certain similarity in the general outline
shape. This implies that the proposed shape descriptor can describe the spine’s overall
shape and local details well.

In summary, the proposed method achieved competitive performance in the Lenke
classification of scoliosis.

3.6. Comparison of the Classification Framework Based on Cobb Angle Measurement and
Shape Description

As shown in Figure 2, we present two alternative schemes for the Lenke classification
of scoliosis. The first was to use Cobb angle measurement and classifying criteria (denoted
as Cobb angle + criteria for short) based on the segmentation results, and the second was
to use the shape description and KNN classifier (denoted as Shape + KNN for short) for
the segmentation results. In this section, we conducted an experiment to compare the two
schemes; the results are listed in Table 7.

From Table 7, we note that the scheme using the shape description and KNN classifier
achieved better experimental results than that using the Cobb angle and classifying criteria,
where most of the indicators are significant. This is because the Lenke classification criteria
built on the Cobb angle is very strict and is extremely dependent on the accuracy of the
segmentation. However, the proposed automatic Lenke classification method based on the
shape descriptor and KNN classifier achieved a considerable improvement and overcame
the influence of the segmentation error caused by deep learning to a great extent.
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Table 7. Results of the classification framework based on Cobb angle measurement and shape description.

Compared Method Segmentation
Networks Accuracy Precision Recall F1-Score

Cobb angle + criteria

FPN 0.484 0.398 0.531 0.455
PSPNet 0.428 0.376 0.691 0.487
MANet 0.475 0.327 0.654 0.436

Unet 0.486 0.388 0.559 0.458
Segmenter 0.373 0.304 0.469 0.369

Unet++ 0.489 0.352 0.685 0.465

Shape descriptor + KNN

FPN 0.712 0.742 0.616 0.673
PSPNet 0.675 0.758 0.517 0.615
MANet 0.682 0.706 0.534 0.608

Unet 0.697 0.715 0.616 0.662
Segmebter 0.731 0.731 0.630 0.677

Unet++ 0.786 0.804 0.756 0.779

3.7. Computational Complexity Analysis

In this section, we focus on computational complexity analysis for the proposed Lenke
classification framework of scoliosis, which consists of two parts: segmentation using deep
learning and classification using the shape descriptor and classifier.

First, we report the parameter memory as the evaluation indicator for the segmentation
networks in Table 8, in which the input and output image are resized to 256 * 256. To provide
a more intuitive and comprehensive comparison, a schematic diagram of the computational
complexity requirements vs. the classification performance is presented in Figure 18. From
the above results, the MANet evidently has the smallest params. However, if we regard the
classification performance as a comprehensive consideration, the Unet++ has a moderate
param size and operation count. Therefore, based on a balance of the classification and
time complexity, we recommend Unet++ as the preferred segmentation network.

Table 8. Computational complexities of segmentation networks.

Networks FPN PSPNet MANet Unet Segmenter Unet++

Params 28.51 M 49.01 M 19.42 M 29.05 M 25.74 M 34.96 M

Next, we performed computational complexity analysis for different classification
methods, which mainly included feature extraction, training, and testing. From the results
shown in Table 9, the proposed adaptive shape descriptor had minimum time consumption
in the feature extraction among all shape descriptors and a moderate testing time. It is
worth noting that shape context, TAR, and our method directly extracted features from a
single image. Thus, there is no training process. For CBoW, the visual dictionary needs
to be trained from the dataset, and the training time is relatively long. For deep learning
methods, the feature extraction is included in the training time. Considering the actual
performance and time complexity, we concluded that the proposed method is the best
choice in the Lenke classification of scoliosis.
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Table 9. Time consumption with different classification methods.

Methods Feature Extraction Training Testing

Shape context 882.226 s / 6.623 s
CBoW 12.021 s 98.53 s 2.157 s
TAR 52.175 s / 6.248 s

Fourier descriptor 5.136 s / 4.278 s
Swin transformer / 447.10 s 0.137 s

Vision transformer / 4979.01 s 0.132 s
Resnet101 / 933.02 s 0.130 s

OURS 0.983 s / 0.889 s

4. Conclusions and Future Perspectives

In this study, we mainly investigated the Lenke classification problem for scoliosis
and proposed a novel automatic Lenke classification framework. First, we used deep
networks such as Unet++ to segment the vertebrae in the spine X-ray images and employed
an effective post-processing strategy to overcome the spots and adhesions caused by the
segmentation errors. We then focused on the shape representation of the segmented spine,
and a new shape descriptor was designed to describe the details of the spinal curvature.
With shape feature extraction and matching, a new Lenke classification algorithm for
scoliosis was constructed with a classifier. For comparison and application, we also built
another alternative Lenke classification option based on the automatic measurement of the
Cobb angle. Finally, multiple experiments were conducted on a public dataset, including
evaluating the segmentation networks, evaluating the shape descriptors, evaluating the
classification strategies, and performing ablation experiments. The experimental results
indicated that the proposed method achieved the best Lenke classification performance for
scoliosis among the compared methods. The ablation experiments demonstrated that the
modules in our shape descriptor were organically connected and supported by each other.
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To further highlight the technical improvements and contribution compared with the
state-of-the-art methods, three aspects should be noted. First, we improved the overall
framework and viewed the Lenke classification of scoliosis from the perspective of its
microscopic shape on the basis of segmentation network. Second, we improved the shape
representation through three novel strategies: the adaptive similarity matching based on
key segment calculation, the tilt angle description, and the symmetric matching. These
strategies are carefully designed for the needs of the Lenke classification of scoliosis, which
can be used to obtain more shape details. Finally, a general post-processing method for
vertebrae segmentation is proposed, which improved the segmentation results for all
compared deep networks.

Although the proposed method achieved superior results in the Lenke classification
of scoliosis, there is still much room for improvement in terms of the objective evaluation
indicators. This is attributed to two reasons. First, different Lenke types have very similar
shapes, which is very hard to distinguish with human judgment. The rules of the Lenke
classification dictate that it requires a very high level of segmentation and fine-grained
shape representation, which is a great challenge. In addition, for fairness of the comparison
and reproducibility of the results, we evaluated our method on a publicly available dataset
that only included coronal plane X-rays of scoliosis. In fact, sagittal plane X-rays are an
important supplement for diagnosing of scoliosis. However, under the present case, our
method still significantly improved the existing methods and yielded satisfactory results
with smaller data requirements, faster computation, and full automation. Moreover, the
proposed Lenke classification framework and adaptive shape descriptor are also applicable
to evaluating the spinal curvature of the sagittal plane X-rays. Combining the coronal plane
and sagittal plane X-rays can further improve the proposed method’s performance. One
alternative solution is to assign the weights to the coronal and sagittal plane X-rays in the
similarity matching of the two scoliosis cases. In future work, we will construct a clinical
scoliosis dataset with both sagittal and coronal plane X-rays and fully utilize two kinds of
plane information to further improve the Lenke classification of scoliosis.
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