
Citation: Chu, Z.; He, J.; Li, J.; Wang,

Q.; Zhang, X.; Zhu, N. SSKM_DP:

Differential Privacy Data Publishing

Method via SFLA-Kohonen Network.

Appl. Sci. 2023, 13, 3823.

https://doi.org/10.3390/

app13063823

Academic Editors:

Konstantinos Rantos,

Konstantinos Demertzis and

George Drosatos

Received: 15 January 2023

Revised: 14 March 2023

Accepted: 14 March 2023

Published: 16 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

SSKM_DP: Differential Privacy Data Publishing Method via
SFLA-Kohonen Network
Zhiguang Chu 1,2, Jingsha He 1 , Juxia Li 2 , Qingyang Wang 2, Xing Zhang 2 and Nafei Zhu 1,*

1 School of Software Engineering, Beijing University of Technology, Beijing 100124, China
2 School of Electronics and Information Engineering, Liaoning University of Technology, Jinzhou 121001, China
* Correspondence: eielnut@163.com

Abstract: Data publishing techniques have led to breakthroughs in several areas. These tools provide
a promising direction. However, when they are applied to private or sensitive data such as patient
medical records, the published data may divulge critical patient information. In order to address
this issue, we propose a differential private data publishing method (SSKM_DP) based on the SFLA-
Kohonen network, which perturbs sensitive attributes based on the maximum information coefficient
to achieve a trade-off between security and usability. Additionally, we introduced a single-population
frog jump algorithm (SFLA) to optimize the network. Extensive experiments on benchmark datasets
have demonstrated that SSKM_DP outperforms state-of-the-art methods for differentially private
data publishing techniques significantly.
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1. Introduction

With the advent of the era of big data and artificial intelligence, massive amounts of
data are produced every day with an explosive growth in data scale, such as customer
transaction records established by banks, disease information of patient archives by medical
institutions, employee salary information recorded by companies, and so on. These data
contain a lot of valuable information, and the collection, sharing, mining, and analysis of
these data can provide great support for market trend prediction, scientific discovery, and
decision-making and the quality of life of the public. However, data are a double-edged
sword. While providing a variety of convenient services, they also bring with them the
problem of disclosure of users’ privacy by releasing data. The released data contain a
large amount of sensitive information (such as bank transaction records, patients’ medical
records, etc.). Although personal identifiers are deleted or encrypted in the process of
data release, private information may still be disclosed through mining and analyzing
other public information associated with data release. Therefore, protection against users’
privacy or sensitive data have become a research hotspot in data release. In order to solve
the problem of privacy information disclosure, k-anonymity, l-diversity, t-closeness, and
their improved methods [1] are proposed one after another. These methods all effectively
prevent attribute link attack, but most of them are difficult to resist background knowledge
attack and composite attack. Differential privacy protection methods of privacy are more
popular in recent years, as privacy protection technology based on data distortion, without
assuming having background knowledge of the attack and attack type, through the strict
mathematical model of quantitative intensity of privacy protection, avoids the shortcomings
of traditional privacy protection methods and provides stronger protection for privacy
information about the data. However, in order to protect the privacy of the original data,
most current data publishing methods based on differential privacy introduce a lot of noise,
which greatly reduces the availability of published data.

Chen [2] proposed a DP solution based on privacy priority and designed two new
indicators, including point confidence and regional average belief, to evaluate its pri-
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vacy from a new perspective of privacy preference. However, the dynamic acquisition
and release algorithm needs to rely on data distribution and thus faces challenges in the
effectiveness and robustness of the algorithm in the face of unknown data distribution.
Yan [3] proposed using grid clustering to realize the differential privacy publishing of
location-based statistical data to achieve location statistics in the unit of equal size grid,
and they designed a bottom-up grid clustering algorithm through the density classification
of wavelet transform. However, there are some limitations. The human living environment
is mostly based on the distribution of infrastructure, which cannot be well represented by a
grid or tree structure and cannot be used to implement an efficient location-based query
mode. Zhang [4] proposed a data publishing privacy protection method based on local
priority anonymity (LPA), which automatically selects anonymous technology for each
anonymous algorithm. Utaliyeva [5] believes that anonymity technology is vulnerable
to various attacks and proposed an adaptive differential privacy protection method for
structured data. It protects the privacy of sensitive information through machine learning
(ML), which solves the privacy–utility trade-off problem. Zhuo [6] proposed an efficient
differential privacy spatial information network mechanism that is based on personal-
ized sampling; thus, the network can ensure accurate information privacy while sharing
statistical information.

The k-means clustering algorithm is relatively simple and efficient to process the
dataset, but it is sensitive to the initial points, the number of clusters k needs to be chosen
empirically has a great impact on the clustering effect, and it is extremely sensitive to noise,
and the k-means algorithm causes the loss of clustering accuracy. Although the DBSCAN
algorithm can find clusters of any shape, and the clustering results are less affected by
noise, its clustering effect needs to be improved on high-dimensional data, and it cannot
be applied to high-dimensional data. Accordingly, we propose an improved clustering
method based on the Kohonen neural network.

There may be complex correlations in the attributes of the data, the correlation between
sensitive and non-sensitive attributes can lead to the disclosure of sensitive information,
and attackers can infer sensitive information from non-sensitive information. Accordingly,
we introduce the maximum information coefficient to measure the relationship between
attributes in the data, and according to the correlation between sensitive attributes and
non-sensitive attributes, we perturb different degrees of noise to the cluster in which they
are located.

Based on the above research, this paper proposes a differential privacy data publishing
method (SSKM_DP) based on the SFLA-Kohonen network, which allows the published
data to obtain a better privacy protection effect and better availability of the published data.
The main contributions of this paper are summarized as follows:

(1) A clustering method based on the SFLA-Kohonen network is proposed, which im-
proves the fitting accuracy of connection.

(2) Weights to training data and the accuracy of clustering results. The validity of the
SSKM_DP algorithm is proven theoretically.

(3) Considering that the k-means algorithm is very sensitive to the selection of the initial
point, the number of clusters needs to be carefully set empirically, and the DBSCAN
algorithm does not work well on high-dimensional data; a clustering method based
on the Kohonen neural network was introduced to solve the above problems. In
order to initialize the Kohonen network, the single-population frog leaping algorithm
(SFLA) was introduced to speed up network convergence.

(4) Considering that there may be complex correlations between attributes in the data,
the correlation between non-sensitive attributes and sensitive attributes is bound to
lead to the inference of sensitive information from non-sensitive attributes. To solve
this problem, we introduced the maximum information coefficient to measure the
correlation. An appropriate amount of noise is added to the cluster of non-sensitive
attributes to protect non-sensitive attributes and further prevent the private leakage
of sensitive data.
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(5) In view of the effectiveness of the SSKM_DP algorithm, compared to the algorithms
MDAV, IDP_KMENAS, and MDAV_DP on the real datasets NLTCS and UCI Adult,
SSKM_DP was carried out in a lot of experiments. Experimental results show that,
compared to these similar methods, SSKM_DP not only ensures the privacy of the
published data, but it also greatly improves the usability of the published data.

2. Related Works

The privacy data release model based on differential privacy protection is mainly
divided into two ways:

(1) Noise is directly added to the original data record, and then the data with noise is
released. This method has high privacy protection ability, but it leads to the poor
utility of published data.

(2) First, the original data is processed by using compression, transformation, and other
technologies, and then noise is added to the processed data. Finally, the data with noise
are released. Although this method may lead to a small part of the data information
being missing, it greatly improves the effectiveness of published data.

In both methods, the clustering grouping method is used to process the original data,
and then the noise is added to each cluster after transformation, which can greatly reduce
the noise added to satisfy the differential privacy. At present, there have been some research
results from private data publishing methods based on clustering ideas, but these have
some problems to some extent.

Soria-Comas et al. [7] combined k-anonymity with differential privacy and realized
k-anonymity [8] through micro-clustering, adding noise to each cluster, realizing the differ-
entiation of differential privacy from individual to cluster, reducing the amount of noise
absorbed to satisfy differential privacy, and improving the availability of published data.
A differential privacy protection method based on k-means clustering was proposed [9],
which uses the clustering center point to replace the privacy in the original records. How-
ever, this method is limited by the size of the data, and the availability of clustering
results is highly dependent on the size of the privacy budget. David et al. [10] carried out
micro-clustering according to the level of attributes to improve the homogeneity within
the cluster, to reduce information loss, and to improve the availability of data. However,
the algorithm has very high computational requirements, which requires high running
time and space complexity to process large data. Monedero et al. [11] proposed an efficient
micro-aggregation method to anonymize multidimensional numerical data by reducing
the number of attributes through principal component analysis. The algorithm realized
data privacy protection and improved the utility of published multidimensional numerical
data, but it was not applicable to discrete attributes and compound attributes. Xiao et al. [1]
defined three different security levels for different sensitive attribute values proposed an
l-diversity model for multiple sensitive attributes [1,12], and also proposed three greedy
algorithms to achieve l-diversity for multiple sensitive attributes. This algorithm can solve
the problem that information loss increases greatly with an increase in the number of
sensitive attributes. Li Yuxi et al. [13] proposed a mobile social network privacy protection
scheme supporting the K-nearest neighbor search for the first time, which reduces the
communication cost between users and servers and reduces the location information and
search pattern leaked to servers. Sensitivity calculation methods based on different center
cross-distance clustering have been proposed [14] and so have published data satisfying
differential privacy protection. However, the method does not delve further into the more
flexible micro-aggregation method. Gu Zhen et al. [15] studied data publishing based on
probabilistic principal component analysis, and Chen Si et al. [16] studied data publishing
based on a neural network multi-cluster distributed algorithm. Ye et al. [17] proposed an
anonymization method to protect the privacy of micro data with multiple sensitive proper-
ties through anatomy and arrangement. In this paper, the naïve multi-sensitive buckets
and the nearest multi-sensitive buckets are used to anonymize the data. This approach only
works for a single release, rather than focusing on multiple releases. Saraswathi et al. [18]
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proposed an enhanced t-closeness algorithm for multiple sensitive attributes. The algorithm
applies the t-closeness [19] on the MSB k-anonymous clustering attribute layer (MSB-kaca)
algorithm and uses the EMD method to avoid the probabilistic reasoning attack caused by
bucking. Acs et al. [20] proposed a new method of differential privacy protection based
on neural networks, which combine differential privacy and neural networks to generate
high-dimensional data satisfying differential privacy. The DP-OPTIC-BASED differential
privacy protection method to balance the privacy protection capability and data utility to
improve the availability of data was proposed [21]. However, this method is only applicable
to numerical data.

Therefore, using the idea of the machine learning model for reference, this paper
proposes a differential privacy data publishing method (SSKM_DP) based on the SFLA-
Kohonen network, which meets the requirements of differential privacy protection and
improves the availability of published data compared to the algorithm in Table 1. SSKM_DP
no longer uses the traditional clustering method to cluster data, but it introduces the
clustering method of the Kohonen neural network, which avoids the defect of the traditional
method requiring the artificial specified number of clustering, and makes the clustering
more reasonable. Aiming at the problem of selecting the initial weight of the Kohonen
network, the single-population frog leaping algorithm was introduced to optimize the initial
connection weight of the Kohonen network to obtain the best initial weight. Considering
that there is a complex correlation between insensitive attributes and sensitive attributes
of data, the largest information coefficient is introduced as a measure of the correlation
intensity. For non-sensitive attributes with relevance, noise is added to further protect
sensitive information from disclosure so that the released data can meet the requirements
of privacy protection and improve data utility to a large extent.

Table 1. Contrast algorithms.

Algorithm Main Idea Limitation

MDAV [7]

By micro-aggregating all attributes
to achieve K anonymization, the
amount of noise required can be

effectively reduced.

Too much noise,
poor utility,

limited clustering effect,
information loss.

IDP_KMENAS [22]

It uses a canopy to select
the initial center point and uses the

Laplace mechanism to
realize the differential privacy

protection.

Poor clustering results, poor
utility,

slow convergence.

MDAV_DP [23]

Adds noise to the micro-aggregated
version ofthe original dataset, with

the micro-aggregation dataset as
our protection target.

Not suitable for complex data;
value attribute utility is not

considered.

3. Definitions
3.1. Differential Privacy

Differential privacy protection technology adds noise to the original data itself or
its transformation in order to achieve the purpose of privacy protection. This method
ensures that a record is inserted or deleted from the dataset without affecting the output of
the query.

Definition 1 (Differential privacy [24]). Given two data D and D′, which are identical or differ
by at most one record, given a random algorithm A, range(A) represents the range of A, and S is a
subset of Range(A). If A satisfies (1), then Algorithm A satisfies ε-differential privacy,

Pr[A(D) ∈ S] ≤ eε × Pr[A(D′) ∈ S] (1)
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where probability Pr[•] represents the probability of the algorithm, which is determined by algorithm
A; ε is the privacy budget, which represents the degree of privacy protection against algorithm A.
The smaller the value of ε, the higher the degree of privacy protection for A.

Definition 2 (sensitivity [25]). Given the query function f: D→Rd, the input data is D, and the
output is d-dimensional vector, then the sensitivity is defined as:

∆ f = maxd(D,D′)=1‖ f (D)− f (D′)‖1 (2)

where ‖ · ‖1denotes the L1 norm.

3.2. Kohonen Network

The Kohonen network, namely Self-Organization Feature Map (SOFM), is a self-
organizing competitive neural network proposed by Kohonen et al. in 1981, which is an
unsupervised learning model [26]. The Kohonen network is a neural network of an input
layer and a competing layer (output layer) that realizes the bidirectional link between
two layers through a full connection. Each node in the competing layer represents an
aggregated class and connects adjacent nodes through weight. Under the premise of
no prior knowledge, the "competitive learning" method is used to identify the rules and
relationships between the input samples and realize the clustering of the samples. The
topology of the Kohonen network is shown in Figure 1.

Appl. Sci. 2023, 13, 3823  6  of  21 
 

3) Adjusting And Updating The Weight 

According  to  the winning  neuron  and  the  neighborhood  function,  the winning 

neighborhood of  the winning neuron  is determined, all neurons  in  the winning neigh‐

borhood  are  found  out,  and  the weight  of  these  neurons  is  adjusted.  The  updating 

method is shown in (4): 

( 1)

( ) *[ ( ) ( )]

   

   
ij ij ij

ij ij i ij

W t W W

W t N I t W t
  (4)

where Nij represents the domain function, and η(t) represents the learning rate at time t, 

which decreases with the increase of t. 

4) Iterating The Process 

The learning rate η is updated to determine whether η reaches the preset condition 

or whether the learning time t reaches the maximum learning time T. If  min    or t T  

, the iteration ends and the clustering is completed. Otherwise, step (2) is returned until 

the end of the iteration. 

 

(a) One‐dimensional linear matrix. 

 

(b) Two dimensional linear arrays. 

Figure 1. Kohonen neural network topology. 

3.2.1. Leap Frog Algorithm 

The shuffled frog leaping algorithm (SFLA) [27] is a new and effective bionic swarm 

intelligence optimization algorithm  that was proposed by Eusuff et al.  to simulate  the 

behavioral  interaction of  frog groups  foraging  [28]. The SFLA algorithm combines  the 

advantages of the particle swarm optimization algorithm [29] (PSO) and meme calculus 

algorithm  (MA)  and  has  the  characteristics  of  fewer  parameters,  a  fast  computation 

speed, and strong global optimization ability. 

The basic  idea of the SFLA algorithm  is that there are N frogs  living  in a wetland, 

and they find the place with the most food by jumping over different rocks. Each frog is 

defined as a feasible solution, and N frogs are divided into different subgroups according 

to  specific  rules. Each  frog has  its  own decision  information,  and  it  evolves  from  the 

subgroups by  communicating with  each other, and  the  subgroups  evolve accordingly 

Figure 1. Kohonen neural network topology.

The core idea of the Kohonen network is that when the Kohonen network receives the
input vector, the input vector is automatically divided into different nodes, and each node
of the competitive layer responds to the input in a ”competitive” way, obtains a winning
node, and updates the weight of the node’s neighborhood. Through repeated learning
and training for input vectors, the distribution of connection weight between nodes in the
competitive layer is close to the input value; thus, the input vector with correlation can
obtain clustering results from the competitive layer.

The steps of data clustering in the Kohonen network are as follows:

(1) Initializing The Network
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The connection weight Wj of each neuron is set in the input layer I and the competition
layer. Wj is usually a random number in the range (0, 1). The initial value of the learning
rate η(0) is determined, and its value range is (0, 1). The maximum learning time T is set.

(2) Looking For Winning Neurons

For the input vector Ii, the most matching neuron in the competition layer should
be searched for and the winning neuron determined. The matching degree is measured
by Euclidean distance. The smaller the distance, the higher the matching degree. The
calculation method is shown in (3):

dj = ‖I −Wj‖ =
√

n

∑
i=1

[
Ii(t)−Wij(t)

]2 (3)

where Wij is the connection weight between the ith neuron in the input layer and the jth
neuron in the competition layers.

(3) Adjusting And Updating The Weight

According to the winning neuron and the neighborhood function, the winning neigh-
borhood of the winning neuron is determined, all neurons in the winning neighborhood
are found out, and the weight of these neurons is adjusted. The updating method is shown
in (4):

Wij(t + 1) = Wij + ∆Wij
= Wij + η(t) ∗ Nij ∗ [Ii(t)−Wij(t)]

(4)

where Nij represents the domain function, and η(t) represents the learning rate at time t,
which decreases with the increase of t.

(4) Iterating The Process

The learning rate η is updated to determine whether η reaches the preset condition or
whether the learning time t reaches the maximum learning time T. If η ≤ ηmin or t = T, the
iteration ends and the clustering is completed. Otherwise, step (2) is returned until the end
of the iteration.

3.2.1. Leap Frog Algorithm

The shuffled frog leaping algorithm (SFLA) [27] is a new and effective bionic swarm
intelligence optimization algorithm that was proposed by Eusuff et al. to simulate the
behavioral interaction of frog groups foraging [28]. The SFLA algorithm combines the
advantages of the particle swarm optimization algorithm [29] (PSO) and meme calculus
algorithm (MA) and has the characteristics of fewer parameters, a fast computation speed,
and strong global optimization ability.

The basic idea of the SFLA algorithm is that there are N frogs living in a wetland, and
they find the place with the most food by jumping over different rocks. Each frog is defined
as a feasible solution, and N frogs are divided into different subgroups according to specific
rules. Each frog has its own decision information, and it evolves from the subgroups by
communicating with each other, and the subgroups evolve accordingly (local search). After
the evolution to a certain extent, the information about the subgroups is exchanged until
the algorithm meets the convergence condition (global search). A schematic diagram of the
SFLA algorithm is shown in Figure 2.
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The workflow of the SFLA algorithm optimization can be divided into four steps:

(1) Population Initialization

An initial population R = {X1, X2, . . . , XN} consisting of N frogs is randomly generated;
the ith frog is denoted as Xi = {A1, A2, . . . , Ak}, and k is the dimension of the frog.

(2) Subgroup Division

After the frog population R is generated, the fitness value f(i) of all frogs in R is
calculated, and the frog with the highest fitness value is derived as the frog Xg with the
optimal population. N frogs should be ranked in descending order of f(i) and R divided
into P subpopulation:

{
S1, S2, . . . , Sp

}
, each subpopulation containing q frogs, satisfying

N = p× q.

(3) Local Search

After dividing the population, the frogs with the worst fitness value and the frogs with
the best fitness value in each subpopulation are labeled as Xw and Xb, respectively. Frogs
with the worst fitness position in each subpopulation are cyclically updated according to
(5) and (6):

D = rand()× (Xb − Xw) (5)

X′w = Xw + D, Dmin ≤ D ≤ Dmax (6)

where rand() represents the random number in the range (0, 1), D represents the leapfrog
step, and Dmin represents the minimum and Dmax represents maximum leapfrog step.

After the frog position is updated, if the updated frog is better than the current frog
Xw, then X′w replaces Xw; if the new frog is not better than the current frog, then frog Xg,
the optimal frog of the population, replaces frog Xb. If no better than the current fitness
value is obtained, a new frog X′w is randomly generated to replace Xw.

When the P subgroup completes the local search, all frogs are remixed and reordered
according to the fitness value. The molecular group is reclassified, and the local search is
carried out again until the maximum number of iterations or the required convergence
condition is reached. The algorithm terminates and the optimal frog Xg of the population
is output.

3.2.2. Maximum Information Coefficient

The Pearson coefficient, Spearman coefficient, mutual information (MI), and k-nearest
distance (KNN) are often used to measure the degree of correlation between two attributes.
However, the Pearson coefficient cannot measure nonlinear and non-functional relations.
Although the Spearman coefficient can be applied to simple monotone nonlinear relation-
ships, its statistical efficiency is low. The mutual information has weak computing power
for continuous variables, has low accuracy, and cannot compare the calculation results of
different data. KNN needs to calculate the distance between each sample and all sample
points to obtain its k nearest neighbors, which requires a large amount of calculation.
Maximal Information Coefficient (MIC) [30] is a new method to measure the correlation
between variables based on mutual information and meshing proposed by Reshef et al.
in 2011, which can overcome the shortcomings of the above methods. It captures the
linear, nonlinear, and non-functional relations among attributes more accurately and has
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the advantages of universality, balance, and low computational complexity. The pairs of
common coefficients are shown in Table 2.

Table 2. Comparison of common coefficients.

Scope of
Application Standardized Computational

Complexity Robustness

Pearson coefficient Linear data Yes Low Low

Spearman coefficient
Linear data

simple monotone
nonlinear data

Yes Low Medium

KNN Linear data
nonlinear data No High High

MIC Linear data
nonlinear data Yes Low High

The specific definition of MIC is described as follows:

Definition 3 (Maximum information coefficient). Given order to the data D,
X = {xi, i = 1, 2, . . . , n} and Y = {yi, i = 1, 2, . . . , n} are the two variables in D, xi and yi,
respectively, according to the value of a mesh of a× b. There are many kinds of a× b meshing,
respectively, used to calculate the mutual information of each grid under different division I(X : Y),
selecting different divisions under the maximum mutual information of Max(I(X : Y)). The
largest information coefficient is defined as shown in (7).

MIC(X : Y) = max
a×b≤B

Max(I(X : Y))
log2 min(a, b)

(7)

In the formula, B is the upper limit of the a× b grid, generally n0.6.

In this paper, the maximum information coefficient was used to measure the correlation
between sensitive attributes and between sensitive attributes and non-sensitive attributes
in the data. The greater the value of MIC, the stronger the correlation between attributes;
conversely, the smaller the value of MIC, the weaker the correlation between attributes.

4. The Proposed Data Publishing Method
4.1. Description of Problem

The general data method based on differential privacy protection is the original data
by differential privacy protection, releasing a private dataset that users can use to perform
any query operation of general data, but this method of the original data for privacy
protection adds a lot of noise and greatly reduces the release data utility. By reducing the
sensitivity of differential privacy and allocating the privacy budget reasonably, the amount
of noise added to satisfy differential privacy can be effectively reduced, and the availability
of published data can be improved.

Most existing methods do not consider the complex correlation between attributes in
the data. When adding noise to sensitive attributes in the data, the correlation between
sensitive attributes and non-sensitive attributes in the data should be considered, and
then the non-sensitive attributes with a strong correlation with sensitive attributes should
be protected.

Based on the above problems, this paper proposes a differential privacy data pub-
lishing method SSKM_DP based on the SFLA-Kohonen network. This method conducts
a clustering operation on the original data, reduces the query sensitivity, and reduces the
intake of noise while reducing the data dimension, and then it determines the correlation
between attributes. The noise required by differential privacy is added to protect the
privacy. When the same differential privacy protection effect is achieved for the published
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data generated by the SSKM_DP method, less noise is added and the availability of the
data is better.

4.2. SSKM_DP Multi-Sensi tive Attribute Data Publishing Mechanism

The operation mechanism of the differential privacy data publishing method based
on the SFLA-Kohonen network is shown in Figures 3 and 4 as a detailed flow chart of the
proposed method.

Appl. Sci. 2023, 13, 3823  9  of  21 
 

Most existing methods do not consider  the complex correlation between attributes  in 

the data. When adding noise to sensitive attributes in the data, the correlation between sensi‐

tive attributes and non‐sensitive attributes  in  the data should be considered, and  then  the 

non‐sensitive  attributes with  a  strong  correlation with  sensitive  attributes  should be pro‐

tected. 

Based on the above problems, this paper proposes a differential privacy data pub‐

lishing method SSKM_DP based on the SFLA‐Kohonen network. This method conducts a 

clustering operation on the original data, reduces the query sensitivity, and reduces the 

intake of noise while reducing the data dimension, and then it determines the correlation 

between  attributes. The noise  required by differential privacy  is  added  to protect  the 

privacy. When  the  same differential privacy protection  effect  is achieved  for  the pub‐

lished data generated by the SSKM_DP method, less noise is added and the availability 

of the data is better. 

4.2. SSKM_DP Multi‐Sensi tive Attribute Data Publishing Mechanism 

The operation mechanism of the differential privacy data publishing method based 

on the SFLA‐Kohonen network is shown in Figures 3 and 4 as a detailed flow chart of the 

proposed method. 

Raw data
The cluster 

after 
clustering

Sensitive attribute cluster and 
strongly related non-sensitive 

attribute cluster
Publish data

SLFA-Kohonen Network Maximum information 
coefficient

Laplace noise

 

Figure 3. SSKM_DP data publishing framework satisfying differential privacy protection. 

dataset

SLFA

Kohonen

V

Vs Vcassociated

Noise addition

Publish data

MI
C

MI
C

 

Figure 4. Detailed flow chart of the proposed method. 

   

Figure 3. SSKM_DP data publishing framework satisfying differential privacy protection.

Appl. Sci. 2023, 13, 3823  9  of  21 
 

Most existing methods do not consider  the complex correlation between attributes  in 

the data. When adding noise to sensitive attributes in the data, the correlation between sensi‐

tive attributes and non‐sensitive attributes  in  the data should be considered, and  then  the 

non‐sensitive  attributes with  a  strong  correlation with  sensitive  attributes  should be pro‐

tected. 

Based on the above problems, this paper proposes a differential privacy data pub‐

lishing method SSKM_DP based on the SFLA‐Kohonen network. This method conducts a 

clustering operation on the original data, reduces the query sensitivity, and reduces the 

intake of noise while reducing the data dimension, and then it determines the correlation 

between  attributes. The noise  required by differential privacy  is  added  to protect  the 

privacy. When  the  same differential privacy protection  effect  is achieved  for  the pub‐

lished data generated by the SSKM_DP method, less noise is added and the availability 

of the data is better. 

4.2. SSKM_DP Multi‐Sensi tive Attribute Data Publishing Mechanism 

The operation mechanism of the differential privacy data publishing method based 

on the SFLA‐Kohonen network is shown in Figures 3 and 4 as a detailed flow chart of the 

proposed method. 

Raw data
The cluster 

after 
clustering

Sensitive attribute cluster and 
strongly related non-sensitive 

attribute cluster
Publish data

SLFA-Kohonen Network Maximum information 
coefficient

Laplace noise

 

Figure 3. SSKM_DP data publishing framework satisfying differential privacy protection. 

dataset

SLFA

Kohonen

V

Vs Vcassociated

Noise addition

Publish data

MI
C

MI
C

 

Figure 4. Detailed flow chart of the proposed method. 

   

Figure 4. Detailed flow chart of the proposed method.

The steps of the SSKM_DP data publication method are as follows:

(1) Attribute Clustering

The Kohonen network is optimized, the original data are clustered by using the im-
proved SFLA-Kohonen network, and the data are reasonably divided into multiple sub-data
to achieve the differentiation of sensitive attributes from individuals to groups to reduce the
data and query sensitivity and reduce the noise required to meet the differential privacy.

(2) Attribute Correlation Judgment

Part of the sensitive attribute exists on a strong affinity, by inferring sensitive attributes,
introducing the largest information coefficient sensitive to data with the sensitive attribute.
The connection between each child data clustering partition cluster with the sensitive
property has a strong correlation between the sensitive attributes. Add an appropriate
amount of noise to the subdataset cluster to protect such non-sensitive attributes and
further prevent the privacy leakage of sensitive data.
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(3) Data Noise

The privacy budget satisfying differential privacy is allocated to the subset cluster
obtained by SFLA-Kohonen network clustering. Then, the corresponding noise is added
to the cluster of sensitive attributes and the cluster of non-sensitive attributes associated
with sensitive attributes, to reduce the required noise amount and improve the availability
of data.

Algorithm 1 is the process algorithm for proposing the model.

Algorithm 1 SSKM-DP

Input: dataset U = {x1, x2, . . . , xn}, the number of neurons in the input layer of Kohnen’s
network t, the number of frogs N, learning rate η, Maximum learning times T.
Output: published dataset Ũ = {x1, x2, . . . , xn}.
1: Wij ← SFLA optimizes the initial weight of Kohonen network (N, t)

2: FModel ← SFLA−Kohonen network to achieve data clustering data clustering
(

Wij, η, T
)

3: V = v1, v2, . . . , vm ← FModel(U)
4: Vc = vc1, vc2, . . . , vcq and Vs = vs1, vs2, . . . , vsp ← Attribute correlation determination method
5: published dataset Ũ = {x1, x2, . . . , xn} ← Noise(Vc, Vs)

4.3. SFLA-Kohonen Data Clustering Algorithm

The general data publishing method based on differential privacy protection is to add
noise to each record of the data to meet the differential privacy protection and publish
universal data where data users can perform any query operation. However, this method
introduces a large amount of noise, which greatly reduces the availability of published
data. By reducing the sensitivity of differential privacy and allocating the privacy budget
reasonably, the amount of noise added to satisfy differential privacy can be effectively
reduced, and the availability of published data can be improved. The literature [31] points
out that the method of clustering or grouping is used to process the original data, and then
noise is added to each cluster after conversion, which can greatly reduce the amount of
noise added to satisfy the differential privacy. Based on this, the idea of clustering was
introduced in this paper to divide data attributes into clusters, reduce the sensitivity of
differential privacy, and reduce the required intake noise.

The traditional and classical clustering methods include k-means [32] and the DB-
SCAN [33] algorithm, but both of them and their improved methods have some problems.
k-means is very sensitive to the selection of the initial point, and the number of clustering k
is artificially selected according to experience. This setting method is extremely unreason-
able, resulting in different clustering results, which are bound to result in insufficient or
excessive privacy protection ability and reduce the availability of released data. Although
DBSCAN does not need to set the number of clusters and has high robustness, it is unable
to obtain better clustering results from data on many dimensions. Aiming at the limitations
of the above methods, a clustering method based on the Kohonen neural network was intro-
duced in this paper, and the neural network model was combined with differential privacy
to improve the privacy protection ability of sensitive data and the utility of published data.

However, in the training process of the Kohonen network, the initial connection weight
must be specified in advance, which depends on the setting of experience, and the accuracy
of clustering results depends very much on the selection of the initial connection weight.
Aiming at the shortcomings in the clustering method based on the Kohonen network, the
single population frog leaping algorithm (SFLA) was used to optimize the initial connection
weight of the Kohonen network, and a clustering method based on the SFLA-Kohonen
network was proposed to improve the fitting accuracy of connection weight to training
data and the accuracy of clustering results.

Algorithm 2 of the initial optimization process of Kohonen networks using SFLA is
as follows:
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Algorithm 2 SFLA optimizes the initial weight of Kohomen network

Input: data the number of neurons in the input layer of Kohomen’s network; the number of frogs.
Output: the optimal initial weight of the SOM nwtwork.

1: R = {X1, X2, . . . XN} ← X(s) 1√
2πσ

e(−
(s−u)2

2σ2 )

2: f it(Xi) =
1

1+E[∑a1,a2, Nx(b1−a1,b2−a2)xi−W(a1,a2)]
3: for t = 0→ T do
4: D = rand()× (Xb − Xw)
5: X′W = XW + D
6: if f it

(
X′W
)
> f it(XW) then

7: XW = X′W
8: end if
9: end for
10: return Xg → SOM network

Input: data U = {x1, x2, . . . , xn}; the number of neurons in the input layer of the
Kohonen network; the number of frogs.

Output: The optimal initial weight of the SOM network.
Step 1.The initial population is generated composed of N frog R = {X1, X2, . . . , XN},

and the generation method follows the Gaussian distribution formula, as shown in (8):

X(s) =
1√
2πσ

exp(− (s− u)2

2σ2 ) (8)

where µ = 0, σ = 1.
Step 2. After the frog population R is generated, all frogs are substituted for the

Kohonen network model. The input vectors are randomly selected to calculate the fitness
value of all frogs in R, fit(Xi). The fitness calculation method used in this paper is shown
in (9):

f it(Xi) =
1

1 + E[ ∑
a1,a2

Nx(b1 − a1, b2 − a2)‖xi −W(a1, a2)‖]
(9)

where E is the mathematical expectation, Nx( ) is the domain function, W(a1, a2) is the
weight of the neuron (a1, a2), and (b1, b2) represents the coordinate of the winning neuron
in U.

Step 3. N frogs are ranked in descending order of fit (Xi) to obtain frog Xw with the
worst fitness value and frog Xb with the best fitness value. Frogs with the worst fitness
value of a cycle are ranked according to position update (10) and (11):

D = rand()× (Xb − Xw) (10)

X′w = Xw + D (11)

where rand() represents a random number in the range (0, 1) and D represents the leapfrog
steped size.

Step 4. The fitness value is calculated after the frog position is updated. If the
updated frog is better than the current frog Xw, X′w replace Xw and retain the updated
frog’s parameters. If the updated frog is not better than the current frog, keep the current
frog’s parameters.

Step 5. When the maximum number of iterations or the required convergence condi-
tion are reached, the algorithm is terminated and the optimal frog Xg of the population is
output. The parameter of the optimal frog is taken as the initial weight of the SOM network.

There is no need to set the number of clustering clusters when the SFLA-Kohonen
network is used for clustering, and the clustering results have better accuracy and rationality.
Secondly, the adjacent relation is imposed on the center of mass of the cluster, resulting
in higher homogeneity within the cluster. At the same time, the SFLA-Kohonen network
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has good self-stability and strong anti-noise ability, which makes the cluster sensitivity
formed by clustering low to reduce the noise required by differential privacy and improve
the availability of data.

The Algorithm 3 for the data clustering process using the SFLA-Kohonen network is
as follows:

Algorithm 3 SFLA—Kohonen networks to achieve data clustering

Input: dataset U = {x1, x2, . . . xn}; the learning rate is and its value range is (0,1); Maximum
learning times T
Output: Clusters formed by clustering V = {v1, v2, . . . vm}.
1: Wij ← Xg
2: for η < ηmax or t < T do

3: calculate dj =

√
n
∑

i=1

[
xi(t)−Wij(t)

]2

4: Obtain new winning neurons, update Wij

5: Wij(t + 1) = Wij + η(t) ∗ Nj,c(x)

[
xi(t)−Wij(t)

]
6: η(t) = η(0)e−t/T

7: end for
8: return FModel

Input: Dataset U = {x1, x2, . . . , xn}; the learning rate is η, and its value range is (0, 1);
maximum learning times T.

Output: Clusters formed by clustering V = {v1, v2, . . . , vm}.
Step 1. The value of optimal frog Xg obtained in Algorithm 1 is set as the initial

connection weight Wij of each neuron in the input layer I and the competition layer of
the Kohonen network. In this paper, the Gaussian function was adopted as the domain
function, and its definition is shown in (12):

Nx =

{
exp(− ‖di−dj‖2

2δ2 ) di − dj ≤ δ

0 di − dj > δ

}
(12)

Step 2. The Euclidean distance dj is calculated from all input neurons xi and neurons
in the competition layer at time t, as shown in (13):

dj =

√
n

∑
i=1

[
xi(t)−Wij(t)

]2 (13)

The neuron with the smallest Euclidean distance is obtained to determine the win-
ning neuron.

Step 3. The winning neighborhood of the winning neuron is obtained according to
the domain function. The weight of all neurons is adjusted in the winning neighborhood
according to Equation (14):

Wij(t + 1) = Wij + η(t) ∗ Nj,c(x) ∗ [xi(t)−Wij(t)] (14)

where η(t) represents the learning rate at time t, which decreases with the increase of t.
The η (t) function used in this paper is shown in Equation (15):

η(t) = η(0)e−t/T (15)

Step 4. The learning rate η is updated and whether η reaches the preset condition
or whether the learning times t reaches the maximum learning time T is determined. If
η ≤ ηmin or t = T, then the iteration ends and the clustering is completed; Otherwise, Step
2 is repeated until the end of the iteration.
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Step 5. The trained model FModel is obtained and input U into FModel, and the
cluster set is obtained by clustering V = {v1, v2, . . . , vm}.

4.4. Attribute Correlation Determination Method

There may be complex correlations between attributes in the data. Some attributes are
correlated to each other, while some attributes are independent of each other. If there is
a relationship between a non-sensitive attribute and a sensitive attribute, it is likely that
sensitive information can be inferred from the non-sensitive attribute. Therefore, when
noise is added to sensitive attributes in the data, it is necessary to consider the correlation
between the attributes in the data.

The common methods used to measure the degree of attribute correlation are the
Pearson coefficient, mutual information, and k-nearest distance. However, Pearson’s co-
efficient cannot measure nonlinear relationships and non-functional relationships. The
mutual information has weak computing power for continuous variables, has low accuracy,
and cannot compare the calculation results of different data. KNN needs to calculate the
distance between each sample and all sample points, which requires a large amount of
calculation. The maximum information coefficient can overcome the shortcomings of the
above methods and reflect the correlation degree between attributes more accurately. There-
fore, when the SSKM_DP algorithm measures the connection strength between attributes,
the maximum information coefficient is adopted as the metric index.

Definition 4 (Connection strength). Given the properties zi andzj, the calculation method to
define the connection strength between them is shown in Equation (16):

CS(zi : zj) = MIC(zi : zj) (16)

where MIC is the maximum information coefficient between attributeziandzj.

Algorithm 4 for finding non-sensitive attributes linked to sensitive attributes is
described below:

Algorithm 4 Attribute correlation determation method

Input: cluster formed by SFLA-SOM network clustering V = {V1, V2, . . . . . . Vm}; Connection
strength threshold CSTsh
Output: Clusters with sensitive attributes Vs; there exists cluster Vc with non-sensitive attributes
strongly connected to sensitive attributes.
1: Mark all sensitive attributes xs in the data
2: Vs add Vi(xsi)

3: Calculate Connection strength CS
(

xsi : xvj

)
4: CS(xsi : xvi) = max

a×b<B

Ma(I(xsi :xvi))
log2min(a,b)

5: if CS
(

xsi : xvj

)
≤ CSTsh then

6: Vc add Vi(xvi)
7: end if
8: returnVs =

{
vs1, vs2, . . . . . . Vsp

}
, Vc =

{
vc1,vc2, . . . . . . vcpq

}
Input: Cluster formed by SFLA-SOM network clustering V = {v1, v2, . . . , vm}; connec-

tion strength threshold CSTsh.
Output: Clusters with sensitive attributes Vs; there exists cluster Vc with non-sensitive

attributes strongly connected to sensitive attributes.
Step 1. All sensitive attributes xs are marked in the data.
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Step 2. The connection strength between each sensitive attribute xsj and the non-
sensitive attribute xvi of other subset clusters CS(xsi : xvj) is calculated, as shown in
Equation (17):

CS(xsi : xvj) = MIC(xsi : xvj)

= max
a×b≤B

Max(I(xsi :xvj))

log2 min(a,b)
(17)

Step 3. It is determined CS(xsi : xvj) whether the connection strength reaches the
threshold of the CSTsh connection strength. If CS(xsi : xvj) ≤ CSTsh, it indicates that there
is a strong connection between them; otherwise, they are considered to be only weakly
connected and are not marked.

Step 4. Clusters with sensitive attributes and clusters Vs =
{

vs1, vs2, . . . , vsp
}

with
non-sensitive attributes with a strong connection Vs =

{
vs1, vs2, . . . , vsp

}
are obtained

according to the results of tags in Vc =
{

vc1, vc2, . . . , vcq
}

.

4.5. Data Noise

Satisfying differential privacy noise added to each cluster after conversion can be
greatly reduced compared to adding to each record. The privacy budget satisfying dif-
ferential privacy is allocated to the clustering center of the subset cluster formed by the
SFLA-Kohonen network clustering, and then the corresponding noise is added to the
clustering center of the cluster where the sensitive attribute is located and the cluster with
the non-sensitive attribute is associated with the sensitive attributes. For the cluster center
of each cluster, the calculation method is described as follows:

Given data composed of n records U = {x1, x2, . . . , xn}, each record has q attributes,
U forms, and m clusters through SFLA-Kohonen network clustering. Assuming Aq

i that the
attribute completes the clustering, there are mj records in the clustering vj(j = 1, 2, . . . , m).
The calculation of the clustering center is shown in Equation (18):

Center(vj(Aq
i )) =

mj

∑
p=1

vjp(Aq
i )

mj
(18)

where vjp(Aq
i ) is the Aq

i value of p records in vj, and mj represents the number of records
in vj.

The Laplace mechanism is used to add noise to each cluster center to make it meet
differential privacy protection, and the Ue of differential privacy data is generated. The
method of adding noise is shown in Equation (19):

Noise(vj(Aq
i )) = Center(vj(Aq

i )) + Y (19)

where Y ∼ Lap(∆ f /ε) is the random noise, obeying the Laplace distribution of the scale
parameter ∆ f /ε.

5. Analysis of Privacy Protection Effect of the Algorithm

Theorem 1. SSKM_DP algorithm satisfies the ε-differential privacy.

Proof of Theorem 1. Given two adjacent data U1 and U2, the output of the SSKM_DP algo-
rithm is A (U1) and A (U2), respectively, and Ũ is the differential privacy data. According
to the definition of differential privacy, the following equation is proven to be true:

Pr(A(U1) ∈ S)
Pr(A(U2) ∈ S)

≤ exp(ε) (20)
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Assume that the query results of U1 and U2 are f (U1) and f (U2), respectively, and
f (Ũ) is the query results of Ũ.

Pr(A(U1) ∈ S) ∝ exp

 ε
∣∣∣ f (Ũ)− f (U1)

∣∣∣
∆ f


then

Pr(A(U1)∈S)
Pr(A(U2)∈S) =

exp
(

ε| f (Ũ)− f (U1)|
∆ f

)
exp

(
ε| f (Ũ)− f (U2)|

∆ f

)
≤ exp

(
ε| f (U1)− f (U2)|

∆ f

)
≤ exp

(
ε‖ f (U1)− f (U2)‖1

∆ f

)
≤ exp(ε)

(21)

In the SSKM_DP algorithm, there is no intersection among the m clusters generated.
According to the parallel combinatorial property of differential privacy, the privacy budget
εi allocated by the SSKM_DP algorithm for each cluster is the overall privacy budget ε
of SSKM_DP.

The conclusion is that the SSKM_DP algorithm satisfies ε-differential privacy. �

6. Experimental Evaluation

Three advanced methods, namely MDAV [7], IDP_KMENAS [22], and MDAV_DP [23],
were compared by designing experiments to measure the effectiveness and availability of
the SSKM_DP algorithm.

6.1. Experimental Environment

In this experiment, Python programming language is used to implement the proposed
method and the comparison method. The specific setting of the experimental environment
is shown in Table 3.

Table 3. Experimental environment information.

Hardware and Software Information Specific Configuration

CPU Intel(R) Core(TM) i5-9400F CPU(2.90 GHz)
Memory 16 GB

The operating system Win10 64-bit
The development environment PyCharm-professional-2021

Programming language Python 3

6.2. Experimental Data

Two data that are widely used in the research field of privacy data release, namely
NLTCS and UCI Adult, were used in the experiment. NLTCS is data from the Nursing
Center Nursing Survey of the United States, which records information about the daily care
of 21,574 patients. Adult is census data from the US Census Center, recording 48,842 pieces
of personal information. Specific information about data type, number, and size of attributes
of the two experimental data is shown in Table 4.

Table 4. Data information.

Datasets Type Number of Attributes Date Size

NLTCS Binary 16 21,574
Adult Non-binary 14 48,842
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6.3. Experimental Evaluation Indexes

This experiment used mean square error (MSE) and record linkages (RL) to evaluate
the performance of the SSKM_DP algorithm. In the SSKM_DP algorithm, the data utility is
measured by the information loss caused by the noise added to the original data to satisfy
differential privacy. Information loss is generally quantified by the mean square error.

The mean square error (MSE) is defined as the mean sum of the squares of the
attribute distance errors between the published data Ue, satisfying differential privacy and
the original data U. The calculation method is shown in Equation (22):

MSE =

∑
uj

∑
ai

j∈uj

[
dj(ai

j, (ai
j)e

)
]2

n
(22)

In the formula, dj() represents the Euclidean distance defined by Equation (3); uj is an
attribute of dataset U, and the ai

j and (ai
j)e

distribution represents the ith attribute value of
the jth record and its corresponding record to be published. The larger the MSE, the more
serious the information loss and the lower the availability of published data.

In the SSKM_DP algorithm, the privacy protection ability is measured by information
disclosure. Disclosure is defined as the percentage of the original record that correctly
matches the record in the published dataset. Information disclosure is usually represented
by the recorded association. The smaller the RL, the lower the degree of information
disclosure and the higher the ability of privacy protection. The calculation method is
shown in Equation (23):

RL =

∑
u∈U

Pr(ue)

n
× 100 % (23)

In the formula, Pr(ue) represents the probability of association of published record ue,
and the formula is as follows:

Pr(ue) =

{
1
|Ue | , u ∈ Ue

0, u /∈ Ue
(24)

6.4. Analysis of Experimental Results

In order to verify the availability of SSKM_DP, MDAV [16], IDP_KMENAS [17],
MDAV_DP [18], and SSKM_DP algorithms were compared on two data, respectively.

In the experiment, the value of the privacy budget ε was {0.05, 0.1, 1, 5}, and the number
of data attributes m was {5, 10}. In order to decrease the error caused by the experiment,
20 experiments were carried out for the four algorithms on two data, respectively, and the
average value of the 20 experiments was taken as the final experimental result.

For the UCI Adult data, the number of different attributes of m was set to evaluate the
data utility through the SSKM_DP algorithm. The experimental results of data utility are
shown in Figure 4.

As can be observed in Figure 5, for Adult data, when the value of ε increased from
0.05 to 5, the value of information loss MSE decreased gradually. When ε was 0.05, the MSE
value changed slightly with the increase of the number of clustering a, but the MSE value
was still very low, indicating that the availability of data released through the SSKM_DP
algorithm was also very low when the intake noise was very high. When the value of ε was
{1, 5}, the value of MSE was large and the availability of data was greatly improved. Since
the clustering scale of the SFLA-Kohonen network is not subject to artificial constraints, it is
completely dependent on the network topology mapping relationships. As the number of
clusters a increased, the MSE value did not change significantly. Therefore, the SSKM_DP
algorithm has a good anti-noise performance.
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For the UCI Adult data, the number of different attributes of m was set to evaluate
the privacy protection ability of the SSKM_DP algorithm. The experimental results of the
privacy protection ability are shown in Figure 6.
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As can be seen from Figure 6, for the Adult data, when the value of ε was {0.05, 0.1}, even
if the value of attribute number m and cluster number a changed, the value of the record
correlation RL did not change significantly. When the value of ε was 5, the value of RL also
increased with the increase of a, the risk of information disclosure gradually increased, and
the ability of privacy protection decreased. As can be seen from Figures 4 and 5, when the
privacy budget ε was 1 and 5, the SSKM_DP algorithm had good data utility. When ε
was 1, the privacy protection ability of SSKM_DP algorithm was much better than that
of ε as 5. Therefore, this paper took ε = 1 as the optimal privacy budget value of the
SSKM_DP algorithm.

For NLTCS and UCI Adult data, the value of the privacy budget ε was set as 1, and
the number of different attributes of m was taken. The SSKM_DP algorithm compares with
MDAV [25], IDP_KMENAS [26], and MDAV_DP [27]. Experimental results on information
loss are shown in Figure 7.
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As can be seen from Figure 7, for Adult and NLTCS data, when ε was 1 and the
number of attributes m was 5 and 10, respectively, the MSE of MDAV, IDP_KMENAS, and
MDAV_DP gradually decreased with the increase of the number of clustering a, while
the MSE of the SSKM_DP algorithm remained stable all the time. The MSE of SSKM_DP
was always smaller than the MSE of the other three algorithms. This is because MDAV,
IDP_KMENAS, and MDAV_DP are very sensitive to the number of clustering a, resulting
in uneven clustering results and considerable information loss, while SSKM_DP is not
affected by the number of clustering a and has a good anti-noise ability.

It can be clearly concluded from the experimental results that the published data
generated by the SSKM_DP algorithm are obviously better than MDAV, IDP_KMENAS,
and MDAV_DP in terms of data utility when the privacy protection degree is certain.

7. Conclusions

In this paper, the balance between data utility and privacy protection of multi-sensitive
attribute data was studied, and a differential privacy data publishing method based on the
SFLA-Kohonen network was proposed. Our proposed model noisily processes the dataset
so that it satisfies the differential privacy of privacy protection, which inevitably affects the
availability of data, but as the privacy budget is set, with the better the data availability,
there is a corresponding decrease in security. A common approach to differential privacy
data publishing adds noise to each piece of data, introducing excessive noise and reducing
availability. Most previous clustering algorithms need to be improved to achieve better
clustering results. For example, k-means clustering, while effective, is limited by the need
to artificially set initial k-values. Although the DBSCAN algorithm does not need to set the
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number of clusters and it is highly robust, it is not suitable for high-dimensional data. To
solve this problem, we introduced the SFLA algorithm to improve the Kohonen network,
obtain the insensitive attributes associated with the sensitive attributes through MIC, and
add the noise required to satisfy differential privacy to ensure that the data privacy was
not leaked. We theoretically proved that the SSKM_DP algorithm improves the availability
of published data while satisfying the differential privacy. Finally, the experimental results
on real data proved that the performance of the SSKM_DP algorithm is significantly better
than other similar methods. Under the premise of meeting the same privacy requirements,
the availability of the data to be published by the SSKM_DP algorithm was better. With
different sensitivity degrees of attributes, adding noise is not the same. Directly adding
the same size of noise is bound to lead to part of the release of data privacy protection as
insufficient. Part of the release of data privacy protection is excessive, resulting in the waste
of privacy resources and the lack of data information, reducing the utility of the problem
of data. In the next research work, we must not only design a more reasonable privacy
budget allocation strategy and further improve privacy protection capabilities and data
utility, but we must also consider the future in the distributed environment and the security
and usability of the algorithm in this paper.

Author Contributions: Methodology, J.H.; Validation, Z.C.; Formal analysis, X.Z.; Investigation,
Q.W.; Resources, N.Z.; Writing—original draft, Z.C.; Visualization, J.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This paper was supported in part by Applied Basic Research Project of Liaoning Province
under Grant 2022JH2/101300280, Scientific Research Fund Project of Education Department of
Liaoning Province under Grant LJKZ0625.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xiao, Y.; Li, H. Privacy Preserving Data Publishing for Multiple Sensitive Attributes Based on Security Level. Information 2020,

11, 166. [CrossRef]
2. Chen, Y.; Xu, Z.; Chen, J.; Jia, S. B-DP: Dynamic Collection and Publishing of Continuous Check-In Data with Best-Effort

Differential Privacy. Entropy 2022, 24, 404. [CrossRef]
3. Yan, Y.; Sun, Z.; Mahmood, A.; Xu, F.; Dong, Z.; Sheng, Q.Z. Achieving Differential Privacy Publishing of Location-Based

Statistical Data Using Grid Clustering. ISPRS Int. J. Geo-Inf. 2022, 11, 404. [CrossRef]
4. Zhang, X.; Luo, Y.; Yu, Q.; Xu, L.; Lu, Z. Privacy-Preserving Method for Trajectory Data Publication Based on Local Preferential

Anonymity. Information 2023, 14, 157. [CrossRef]
5. Utaliyeva, A.; Shin, J.; Choi, Y.-H. Task-Specific Adaptive Differential Privacy Method for Structured Data. Sensors 2023, 23, 1980.

[CrossRef]
6. Zhuo, M.; Huang, W.; Liu, L.; Zhou, S.; Tian, Z. A High-Utility Differentially Private Mechanism for Space Information Networks.

Remote Sens. 2022, 14, 5844. [CrossRef]
7. Soria-Comas, J.; Domingo-Ferrer, J.; Sanchez, D.; Martínez, S. Enhancing Data Utility in Differential Privacy via Microaggregation-

based K-anonymity. VLDB J. 2014, 23, 771–794. [CrossRef]
8. Sweeney, L. k-ANONYMITY: A Model for Protecting Privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2002, 10, 557–570.

[CrossRef]
9. Zhao, X.W.; Liang, J.Y. An Attribute Weighted Clustering Algorithm for Mixed Data Based on Information Entropy. J. Comput.

Res. Dev. 2016, 53, 1018–1028.
10. Sanchez, D.; Domingo-Ferrer, J.; Martinez, S.; Soria-Comas, J. Utility-Preserving Differentially Private Data Releases via Individual

Ranking Micro Aggregation. Inf. Fusion 2016, 30, 1–14. [CrossRef]
11. Monedero, D.R.; Mezher, A.M.; Colome, X.C.; Forné, J.; Soriano, M. Efficient K-anonymous Micro Aggregation of Multivariate

Numerical Data via Principal Component Analysis. Inf. Sci. 2019, 503, 417–443. [CrossRef]
12. Machanavajjhala, A.; Kifer, D.; Gehrke, J.; Venkitasubramaniam, M. L-diversity: Privacy beyond K-anonymity. ACM Trans. Knowl.

Discov. Data 2006, 1, 3–5. [CrossRef]
13. Li, Y.; Zhou, F.; Xu, Z. Privacy protection scheme for mobile social networks supporting k-nearest neighbor search. J. Comput. Sci.

2021, 44, 1481–1500.

http://doi.org/10.3390/info11030166
http://doi.org/10.3390/e24030404
http://doi.org/10.3390/ijgi11070404
http://doi.org/10.3390/info14030157
http://doi.org/10.3390/s23041980
http://doi.org/10.3390/rs14225844
http://doi.org/10.1007/s00778-014-0351-4
http://doi.org/10.1142/S0218488502001648
http://doi.org/10.1016/j.inffus.2015.11.002
http://doi.org/10.1016/j.ins.2019.07.042
http://doi.org/10.1145/1217299.1217302


Appl. Sci. 2023, 13, 3823 20 of 20

14. Parra-Arnau, J.; Domingo-Ferrer, J.; Soria-Comas, J. Differentially private data publishing via cross-moment microaggregation.
Inf. Fusion 2020, 53, 269–288. [CrossRef]

15. Gu, Z.; Zhang, G.; Ma, C.; Song, L. Differential privacy data publishing method based on probabilistic principal component
analysis. J. Harbin Eng. Univ. 2021, 1–8. Available online: https://kns-cnki-net.wvpn.lnut.edu.cn/kcms/detail/23.1390.U.202106
09.1219.004.html (accessed on 10 August 2021).

16. Chen, S.; Fu, A.; Ke, H.; Su, C.; Sun, H. MCDP: Multi cluster distributed differential privacy data publishing method based on
neural network. Acta Electron. Sin. 2020, 48, 2297–2303.

17. Ye, Y.; Wang, L.; Han, J.; Qiu, S.; Luo, F. An Anonymization Method Combining Anatomy and Permutation for Protecting
Pprivacy in Microdata with Multiple Sensitive Attributes. In Proceedings of the 2017 International Conference on Machine
Learning and Cybernetics, Ningbo, China, 9–12 July 2017; pp. 404–411.

18. Saraswathi, S.; Thirukumar, K. Enhancing Utility and Privacy Using T-closeness for Multiple Sensitive Attributes. Adv. Nat. Appl.
Sci. 2016, 10, 6–14.

19. Li, N.; Li, T.; Venkatasubramanian, S. t-Closeness: Privacy beyond k-Anonymity and l-Diversit. In Proceedings of the IEEE 23rd
International Conference on Data Engineering, Istanbul, Turkey, 15–20 April 2007; pp. 106–115.

20. Acs, G.; Melis, L.; Castelluccia, C.; De Cristofaro, E. Differentially Private Mixture of Generative Neural Networks. IEEE Trans.
Knowl. Data Eng. 2019, 31, 1109–1121. [CrossRef]

21. Wang, H.; Ge, L.N.; Wang, S.Q.; Wang, L.; Zhang, Y.; Liang, J. Improvement of Differential Privacy Protection Algorithm Based on
Optics Clustering. J. Comput. Appl. 2018, 38, 73–78. (In Chinese) [CrossRef]

22. Yao, S. An Improved Differential Privacy K-Means Algorithm Based on MapReduce. In Proceedings of the 2018 11th International
Symposium on Computational Intelligence and Design, Hangzhou, China, 8–9 December 2018; pp. 141–145.

23. Soria-Comas, J.; Domingo-Ferrer, J. Differentially Private Data Publishing via Optimal Univariate Micro-aggregation and Record
perturbation. Knowl.-Based Syst. 2018, 153, 78–90. [CrossRef]

24. Dwork, C. Differential Privacy. In Proceedings of the 33rd International Colloquium on Automata Languages and Programming,
Venice, Italy, 10–14 July 2006; pp. 1–12.

25. Ji, Z.; Lipton, Z.C.; Elkan, C. Differential Privacy and Machine Learning: A Survey and Review. arXiv 2014, arXiv:1412.7584.
26. Onishi, A. Landmark Map: An Extension of the Self-organizing Map for a User-intended Nonlinear Projection. Neurocomputing

2020, 388, 228–245. [CrossRef]
27. Eusuff, M.M.; Lansey, K.E. Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm. J.

Water Resour. Plan. Manag. 2003, 129, 210–225. [CrossRef]
28. Eusuff, M.; Lanmy, K.; Pasha, F. Shuffled Frog-leaping Algorithm: A Memetic Meta-heuristic for Discrete Optimization. Eng.

Optim. 2006, 38, 129–154. [CrossRef]
29. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks,

Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.
30. Reshef, D.N.; Reshef, Y.A.; Finucane, H.K.; Grossman, S.R.; McVean, G.; Turnbaugh, P.J.; Lander, E.S.; Mitzenmacher, M.; Sabeti,

P.C. Detecting Novel Associations in Large datas. Science 2011, 334, 1518–1524. [CrossRef]
31. Ye, Q.Q.; Meng, X.F.; Zhu, M.J.; Huo, Z. Survey on Local Differential Privacy. J. Softw. 2018, 29, 1981–2005. (In Chinese)
32. Bai, L.; Liang, J.; Cao, F. A Multiple K-means Clustering Ensemble Algorithm to Find Nonlinearly Separable Clusters. Inf. Fusion

2020, 61, 36–47. [CrossRef]
33. Scitovski, R.; Sabo, K. DBSCAN-like Clustering Method for Various Data Densities. Pattern Anal. Appl. 2019, 23, 541–554.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.inffus.2019.06.011
https://kns-cnki-net.wvpn.lnut.edu.cn/kcms/detail/23.1390.U.20210609.1219.004.html
https://kns-cnki-net.wvpn.lnut.edu.cn/kcms/detail/23.1390.U.20210609.1219.004.html
http://doi.org/10.1109/TKDE.2018.2855136
http://doi.org/10.1016/j.cam.2018.01.003
http://doi.org/10.1016/j.knosys.2018.04.027
http://doi.org/10.1016/j.neucom.2019.12.125
http://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210)
http://doi.org/10.1080/03052150500384759
http://doi.org/10.1126/science.1205438
http://doi.org/10.1016/j.inffus.2020.03.009
http://doi.org/10.1007/s10044-019-00809-z

	Introduction 
	Related Works 
	Definitions 
	Differential Privacy 
	Kohonen Network 
	Leap Frog Algorithm 
	Maximum Information Coefficient 


	The Proposed Data Publishing Method 
	Description of Problem 
	SSKM_DP Multi-Sensi tive Attribute Data Publishing Mechanism 
	SFLA-Kohonen Data Clustering Algorithm 
	Attribute Correlation Determination Method 
	Data Noise 

	Analysis of Privacy Protection Effect of the Algorithm 
	Experimental Evaluation 
	Experimental Environment 
	Experimental Data 
	Experimental Evaluation Indexes 
	Analysis of Experimental Results 

	Conclusions 
	References

