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Featured Application: Sample entropy is applied to the analysis of physiological signals assess-
ing sub-maximal physical load during exercise, and thus applied to sports science.

Abstract: Sub-maximal physical load (sub-max) training is optimal for athletes. However, few meth-
ods can directly assess whether training is sub-max. Therefore, this study aimed to identify metrics
that could assess sub-max training by predicting maximal physical load, helping athletes to avoid
the risks associated with maximal training. Physiological data were collected from 30 participants
in a bicycle incremental exercise experiment, including the R-R interval (RR), stroke volume (SV),
breath-to-breath interval (BB), and breathing rate (BR). Sample Entropy (SampEn) analysis was used
to assess the complexity of the physiological data. BR increased with exercise time but could not
be used to identify the sub-max stage; however, SampEn BB could effectively identify the sub-max
stage (p < 0.05), as could the novel indicators SampEn SV and cardiac output (p < 0.01). This study
also identified the threshold value of each SampEn value in sub-max, which can be used as a sports
science indicator to assess the load of athletes. The results suggest that SampEn-based indicators can
be used to assess sub-max and maximal physical load. These findings can be used as a guide for
quantitative exercise healthcare.

Keywords: sub-maximal physical load; breathing; cardiovascular response; sample entropy

1. Introduction

In 2018, Michael Goolaerts died suddenly at the age of 23 in Paris during the Paris–
Roubaix bike race [1]. This death was the first of more than 10 sudden deaths of cyclists
due to heart disease since 2004. Sudden death in sports is becoming a critical focus of
sports health care [2]. Sudden death during exercise is often caused by exercise-induced
cardiac fatigue (EICF) [3]. The literature has revealed that the majority of sudden deaths
in sports occur in endurance sports; the highest proportion is in cycling, followed by
marathon running, soccer, and hiking. From 2005 to 2010, the prevalence of sudden death
in connection with sporting activity was approximately 4.6 per 10,000,000 people per
year [4]. Approximately 6% of this cohort comprises young athletes. Recently, the number
of studies investigating EICF and the cardiovascular response to exercise has increased [4].

Some key cardiac indicators are heart rate (HR, in beats/min); stroke volume (SV, in
ml/cycle), the amount of blood ejected per heartbeat; cardiac output (CO, in mL/min);
and the amount of blood pumped per minute. In general, CO is derived as SV × HR
(assuming that HR is steady) [5]. During exercise, CO must continually increase to provide
peripheral nutrients; hence, HR also increases [6]. However, the heart comprises muscle
tissue, which eventually becomes fatigued. Moreover, the left ventricle cannot expand
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indefinitely; it has a maximum size, and thus, a maximum SV exists. The aerobic capability
plateau (ACP) is a state in which the left ventricle is unable to expand due to cardiac fatigue
after exercise for an excessive intensity or duration; at the ACP, SV can no longer increase,
and EICF may occur. ACP typically occurs in maximum physical load training, and the
maximum value of SV and oxygen consumption (VO2) is the standard metric for the clinical
judgment of a person’s ACP [7]. Researchers have demonstrated that training in the stage
before ACP is optimal for increasing athletic performance [8]. Training at sub-maximal
load (sub-max) can avoid exhaustion and enhance the training efficiency of athletes [8].
ACP may lead to myocardial injuries due to ventricular tachycardia or fibrillation [9]. ACP
may also directly cause right ventricular overload and left ventricular dysfunction. It may
also cause patchy myocardial fibrosis, particularly in the atria, interventricular septum,
and right ventricle, which creates a substrate for atrial and ventricular arrhythmias [10].
Studies have indicated that ventricular dysfunction occurs after prolonged and intense
exercise. One study reported that the right ventricular volume increased after a race, but
the right ventricular postrace ejection fraction decreased by 9% relative to the baseline [11].
Although the left ventricular volume increases after exercise, the ejection fraction remains
unchanged. These findings indicate that investigating exercise-related health care is critical
for increasing safety during sports [12].

Denniston demonstrated that the impedance cardiogram (ICG) method operates under
the principle that blood has electrical impedance. ICG could be used to obtain accurate
SV values [13]. Another study demonstrated that ICG can be performed during dynamic
exercise. Furthermore, SV measurements produced using ICG have been compared with
gold standard measurements and found to be accurate [14]. Cardiac echocardiography can
also be used to measure SV; however, echocardiogram measurements must be performed
at a precise angle, which is challenging during dynamic exercise. Therefore, ICG is the
optimal method of measuring SV during exercise. Breathing rate (BR) can be measured
using spirometry and body plethysmography [15]. However, the wearing of a mask during
exercise can be restrictive. Respiratory inductance plethysmography (RIP) is a noninvasive
method for measuring BR. In RIP, a participant wears two straps with insulated coils around
the thorax and abdomen; obtaining the waveform through these coils through a transducer
and demodulating it can reveal changes in the diameter of the thorax and abdomen during
respiration. Monitoring of these changes enables observation of respiratory patterns and
respiratory control responses. Studies have demonstrated that RIP calibrated a priori is
accurate during exercise conditions [16].

The maximum physical load, ACP, is typically determined using the maximum values
of SV and VO2 [7]; however, several other methods of evaluating ACP have been developed.
The American College of Sports Medicine recommends using 40%, 60%, 80%, and 85% of
VO2 max for developing prescriptions for various exercise intensity levels, and 55%, 70%,
85%, or 90% of HRmax may be used as indices of these VO2max levels [17]. Hence, the
percentage of HRmax can be used as a proxy for VO2max. Studies have also examined
breathing patterns before and after the induction of inspiratory fatigue during incremental
exercise. BR increased from 22.5 ± 4.4 (SD) during rest to 27.0 ± 6.7 breaths/min (p < 0.02)
at 75% of maximum work load following the induction of fatigue [18].

Training at sub-maximal physical loads is key for athletes because it does not cause
exhaustion, has high training efficiency, and avoids the risk of injuries caused by ACP [8].
Various studies have explored metrics that could indicate sub-max training, such as HR
variability (HRV) and SV variability (SVV). No gold standard exists for measuring the
optimal training load (TL). One study used HRV indices to evaluate TL during exercise.
Another study demonstrated that ratings of perceived exertion (RPE), blood lactate (BLa),
and HF could be used to determine TL, and RPE and BLa were negatively correlated
with HF [19]. In a previous study, we attempted to identify indicators for determining
sub-max to avoid ACP. We determined that SVV has a high-correlation bandwidth with
HRV. Moreover, the maximum cross-correlation R value between SVV and HRV at sub-max
was significantly greater than that at rest and significantly lower than that during ACP. The
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spectral analysis correlation coefficient between SVV and HRV during ACP was less than
those at all other stages [20]. Although the ACP assessment metrics are clear, the sub-max
physical load assessment metrics are still insufficiently accurate.

The complexity of a physiologic signal may be a helpful metric in both dynamical mod-
els of biological control systems and bedside diagnostics [21]. Disease and aging appear to
reduce the adaptive capacity of individuals, and loss of complexity has been proposed to
be a generic feature of pathologic dynamics [22]. Entropy is an appropriate measure of the
complexity of a time series. Signals from diseased individuals have lower entropy values
than those from healthy individuals [23]. Time series signals, such as HR variability, respira-
tory rate, and gait, generated by healthy physiological systems are complex [22]. Low signal
complexity has been associated with system dysfunction. For example, fatigue resulted in
a substantial loss of knee extensor torque complexity, as measured by signal entropy [22].
Complexity is associated with system adaptability, and fatigue-induced loss of complexity
may contribute to an inability to engage in sustained physical exercise [24]. Because entropy
is an effective measure of complexity, it has been increasingly used in recent studies. Clau-
sius first introduced the concept of entropy in thermodynamics [25]. Shannon first applied
entropy to information science [26]. Kolmogorov entropy was the first introduction of the
concept of fractals to entropy theory [27]. Pincus introduced approximate entropy (ApEn),
which was derived from Kolmogorov entropy [28]. ApEn can be used to quantify temporal
unpredictability for various applications, such as medical–physiological research (e.g., HR),
meteorology, and finance. ApEn has been used in numerous clinical applications [29].
However, the self-matching of sequences in the ApEn technique may produce inconsistent
results if the sequence length of a data set is changed. In 2000, Richman proposed an ApEn
technique, Sample Entropy (SampEn) [30], which overcomes bias from self-matching in
ApEn. SampEn results are independent of data length, and the method is powerful and has
no major flaws. Hence, SampEn is the most widely used entropy method for physiological
signals and is the second most widely used in all clinical applications (after Shannon en-
tropy). ApEn [28] and SampEn [30] are the two most commonly used methods for handling
biological data. In this study, SampEn was selected because its results are more consistent
than those of ApEn, it achieves faster processing of short data sets, and it is more common
in the medical literature, facilitating comparisons. A study investigating SampEn RR data
are correlated with normalized HF (nHF) but negatively correlated with normalized LF
(nLF) and LF/HF parameters in cardiac control, confirming that the complexity of cardiac
interval time series is associated with the ANS functional status [31]. SampEn at the highest
intensity tends to decline during the exercise [32]. Another study demonstrated that both
SampEn RR and SampEn-breath-to-breath (BB) were significantly different for exercise and
non-exercise signals. Analyzing SampEn trend line gradients is an effective method for
fatigue detection [33].

Sports players often overtrain, resulting in fatigue and an inability to continue training;
overtraining could be avoided by ensuring that training is in the sub-max range. Although
metrics for ACP assessment are well understood, further research is required regarding
those for sub-max physical load assessment. In the literature, fatigue has been shown to
affect the complexity of physiological signals. This study aims to identify a novel scientific
indicator of fatigue to increase the efficiency of training.

2. Materials and Methods
2.1. Participants

The Institutional Review Board B (IRB-B) of National Yang Ming Chiao Tung Uni-
versity (NYCU-REC-110-026F) approved the protocol of the study. All experiments were
conducted following the principles of the Declaration of Helsinki. We enrolled 17 male and
13 female patients between December 2018 and November 2019. All patients were healthy
students of National Yang Ming Chiao Tung University, including some baseball players of
National Yang Ming Chiao Tung University, aged from 18 to 30 years old. We excluded
individuals with cardiovascular or respiratory diseases, cardiac arrhythmia, and those
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taking medication. All participants understood the experimental protocol and provided
signed informed consent prior to starting the study.

2.2. Protocol

An incremental cycle experiment involving 3 min stages, with power output increases
of 25 W per stage, was conducted. The aim was for participants to maintain a 60 revolutions
per minute (rpm) pedaling rate on an air-powered bicycle dynamometer (Wattbike Pro,
Wattbike, Nottingham, UK). The bicycle ergometer setup was individually tailored to
the participants’ height. The study ensured that participants did not consume alcohol
or caffeinated beverages for at least 24 h prior to the experiment. A flowchart of the
experimental procedure is presented in Figure 1. To normalize the riding time for all
participants, the SV maximum stage for each subject was defined as the ACP stage—the
maximum physical load. The stage before the ACP stage was defined as the sub-max
stage (Figure 1).
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Figure 1. Protocol flowchart and stage normalization.

The procedure includes the following steps:

1. Survey patients about their exercise habits.
2. Rest at 0 watts. At each stage, the difficulty of each stage increases by 25 W.
3. The experiment continues until the patients are unable to maintain 60 rpm or

are exhausted.
4. The patient is in recovery the experiment ends.



Appl. Sci. 2023, 13, 3813 5 of 17

2.3. Measurement and Signal Processing

An AESCULON ICG device (Osypka Medical, Berlin, Germany) [34] was used for simul-
taneous HR and SV measurements. The time variate thoracic bioimpedance was acquired
using a set of four electrodes (each) on the thorax and neck (sampling frequency = 200 Hz,
sampling period = 5 ms). The erythrocyte orientation changes during opening and closing
of the aortic valves; the corresponding change in impedance with each beat enables SV
estimation. The AESCULON ICG device uses one-lead electrocardiography (ECG). QRS
waves in the ECG were identified and the time-domain index of the R-peak was recorded
as index [n].

HR [n] = round{ 60× 200
Index [n]− Index [n − 1]

, 0 } (1)

The function round {X,0} represents where X is rounded to the specified number of
digits (0). The number will round to the nearest integer. For instance, round{98.98, 0} = 99.

Missing RR interval and SV series points occur during riding stages due to motion
artifacts during impendence acquisition. If HR[n] > 200 or HR[n] < 2 bpm, an autoregression
extrapolation using the first 10 points of n were used to calculate a reasonable R peak.
Similarly, if SV[n] > 200 or SV[n] < 2 bpm, the first 10 points of n were selected for
autoregression and extrapolation of the point to calculate a reasonable SV value. The
calculation equation for each beat is SV × HR = CO, and the standard deviation (SD) and
mean of CO, HR and SV were also calculated for every stage. The maximum SV value
indicates the ACP stage; SV begins to decrease from this stage, which is also the limit of left
ventricular volume diastolic expansion. The results of time-domain were used to compare
physiological responses between rest and incremental exercise. The phase of SVV might
affect the correlation between HRV and SVV, using cross-correlation to test the correlation
in SV and RR intervals. Fast Fourier transform analysis was used for frequency domain
analysis of HR and SV, and a power spectrum was generated for analyzing the spectrum.
The distribution of components in the power spectrum of HRV power is divided into LF
(0.04–0.15 Hz) and HF (0.15–0.4 Hz); both are absolute values (ms2). On the basis of the
results of our previous study, the distribution of components in the power spectrum of SVV
power is divided into LF (0.035–0.13 Hz) and HF (0.13–0.28); both are absolute values too
(ms2). HRV and SVV are normalized from 0 to 1 × 100%, as is conventional in HRV and
SVV analysis, as follows:

nHF =
HF

LF + HF
× 100% (2)

nLF =
LF

LF + HF
× 100% (3)

The LabVIEW (LabVIEW 2020, National Instruments Corp., Austin, TX, USA) platform
was used to develop programs for processing RIP signals. The original raw RIP signal has
substantial noise; thus, complementary ensemble empirical mode decomposition (CEEMD)
was used to decompose the RIP signal into intrinsic mode functions (IMFs) to filter this
noise [35]. An IMF is defined as follows: (1) the number of local maxima and local minima
must be equal to the number of zero-crossings or dissimilar by at most one, and (2) at any
point, the value of the average envelope must be approximately equal to zero. The main
IMF among various IMFs was found in order to calculate the BR. CEEMD was used to
identify the IMFs from the raw data, and the main signal was extracted on the basis of the
correlation between the main IMF and raw data.

The next step is to time-shift the main IMF component in order to identify the peak of
the RIP signal; these acquired peaks are used to calculate BR. The time difference between
adjacent peaks was calculated as well as breath-to-interval for subsequent analysis. A
flowchart of the RIP signal processing method is displayed in Figure 2.
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2.4. Sample Entropy Analysis

Entropy is defined as the loss of information in a time series or signal. Over the
past 30 years, entropy methods have been increasingly used to quantify the periodicity
or regularity of physiological data. The two most commonly used entropy methods for
biological data are ApEn and SampEn. According to the literature, SampEn is more reliable
for short-gait data sets (N < 200) because SampEn is less sensitive to changes in data
length, is more consistent, and does not contain the inherent bias associated with the ApEn
algorithm. Hence, SampEn was used as the complexity analysis method in this study. A
flowchart of the entropy analysis is presented in Figure 3.
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The procedure includes the following steps:

1. Input a time-domain signal u with length N.
2. Define the sequence xm, which is a vector with length m.
3. Define the distance dm

i,j between xm(i) and xm(j) as the largest difference between
these elements for all elements i and j.

4. Count the number of dm
i,j less than a given threshold r as Bm

i (r).
5. The average value of these counts for all i is calculated as Bm (r).
6. Similarly, calculate these values for m + 1.

7. SampEn(m, r, N) = − ln [ Bm+1 (r)
Bm (r) ].

For clinical data, m should be set to 2 for the ApEn algorithm. The setting m = 2 was
also used in the earliest studies reporting SampEn. In this study, the SampEn parameters
were as follows: N = input data, m = 2, r = 0.2 SD.

2.5. Statistical Analysis

Data were analyzed using descriptive statistics (mean, SD, and median). Statistical
analyses were performed using SPSS (SPSS Statistics 22, International Business Machines
Corporation, Armonk, NY, USA) and LabVIEW (LabVIEW 2020, National Instruments
Corp., Austin, TX, USA). The Wilcoxon test was used to identify statistically significant
differences between the SampEn values for each BR stage, and the Mann–Whitney U test
was used to test for statistically significant differences between groups. The ROC curve was
used to find the critical value of sub-max. The Pearson’s correlation coefficient between the
SampEn results and HRV or SVV was calculated. Statistical significance was set at p < 0.05.

3. Results

In total, 17 men and 13 women participated in this study. All patients accepted
the experimental protocol and signed informed consent prior to the experiment. The
participants were divided into three groups in accordance with the number of hours of
exercise they performed each week. The sedentary group (S) performed less than 2 h of
exercise, the normal group (N) had over 3–6 h of exercise, and the exercise group (E) had
over 6 h of exercise. Table 1 presents the participant data. The final ACP stage in the N
group was significantly lower than that of the E group.

Table 1. Participant data.

S (Sedentary) N (Normal) E (Exercise)

Exercise time/week (hour) 0.6 ± 0.52 * 3.00 ± 1.00 * 11.64 ± 8.37
Gender (male/female) 4/6 4/5 9/2

Body mass index 22.52 ± 3.57 22.14 ± 2.71 23.59 ± 2.25
Riding time (min) 20.50 ± 4.88 21.67 ± 3.61 22.91 ± 2.43

ACP stage 2.6 ± 1.17 2.00 ± 0.71 * 4.45 ± 2.58
* p < 0.05, compared with E group.

3.1. Cardiovascular Response Results

The results of SampEn RR, SV, and CO are shown in Table 2. Six participants reached
the SV maximum in the first stage; hence, the number of sub-max stages was 24 (E = 8,
N = 8, S = 8). SampEn RR at rest was significantly different to the sub-max stage and
ACP stage (p < 0.05). SampEn RR increased during exercise (1.24 to 1.35). However,
SampEn RR in the sub-max stage is not significantly different than that in the ACP stage.
Hence, SampEn RR may not be an effective indicator for identifying the sub-max stage
and predicting the ACP stage. The SampEn SV results are listed in Table 2 (E = 8, N = 8,
S = 8). SampEn SV at rest, in the sub-max stage, and in the ACP stage were all significantly
different (p < 0.01). SampEn SV increased during exercise (1.43 to 2.15). These results
suggest that SampEn SV can be used to predict the ACP stage because the SampEn SV
is the greatest in the ACP stage; moreover, the SD of SampEn in the ACP stage was the
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smallest. These results suggest that SampEn SV could be used as an effective indicator
in exercise-related health care. The SampEn CO results are presented in Table 2 (E = 8,
N = 8, S = 8). SampEn CO at rest, in the sub-max stage, and in the ACP stage were all
significantly different (p < 0.01). SampEn CO increased during exercise (1.38 to 2.18). This
result indicates that SampEn SV and SampEn CO can be used to predict the ACP stage;
SampEn CO can also be used in exercise health care.

Table 2. SampEn RR, SV, and CO during the rest, sub-max, and ACP stages.

SampEn RR SampEn SV SampEn CO

Rest (N = 24)
mean ± SD 1.01 ± 0.48 1.44 ± 0.39 1.33 ± 0.41

median 1.24 1.43 1.38

Sub-max (N = 24)
mean ± SD 1.26 ± 0.44 1.78 ± 0.37 1.86 ± 0.29

median 1.22 * 1.77 **,## 1.82 **,##

ACP stage (N = 24) mean ± SD 1.31 ± 0.46 2.14 ± 0.09 2.18 ± 0.13
median 1.35 * 2.15 ** 2.18 **

* p < 0.05, ** p < 0.01 compared with rest. ## p < 0.01 compared with the ACP stage.

The Pearson correlation coefficient test results for SampEn RR and HRV and for
SampEn SV and SVV are displayed in Table 3. SampEn RR and RR have a strong positive
correlation in the rest stage (R = 0.51, p < 0.01) as do SampEn SV and SVV nHF (R = 0.46,
p < 0.05).

Table 3. Pearson correlation coefficients between SampEn RR and HRV and between SampEn
SV and SVV.

Rest Sub-Max Stage ACP Stage

RR 0.51 ** −0.01 0.17
HRV nHF 0.19 0.36 * 0.11
HRV nLF −0.19 −0.36 * −0.11

SV 0.30 0.13 −0.05
SVV nHF 0.46 * −0.02 0.16
SVV nLF −0.46 * 0.02 −0.16

Statistically significant correlation, * p < 0.05, ** p < 0.01.

We tried to find the threshold value of sub-max by using the ROC curve module.
The input is the result of the SampEn of sub-max and rest (lower limit), and the result
of SampEn of sub-max and ACP (upper limit). Figures 4–6 are the results of the ROC
curve in SampEn RR, SV, and CO. The SampEn RR sub-max threshold is 0.7971–1.0482.
The SampEn SV sub-max threshold is 1.3218–1.8813. The SampEn CO sub-max threshold
is 1.4520–1.9286.
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3.2. Breathing Results

The BR and SampEn BB results are presented in Table 4. Four of the thirty participants were
excluded due to excessive noise in their breathing signals. Therefore, the total number of remaining
participants was 26. In total, 6 of these participants reached the SV maximum in the first stage;
hence, the number of sub-max stages was 20 (E = 8, N = 5, S = 6). For 2 participants, the final
stage was the ACP stage; hence, the number of final stages was 24 (E = 9, N = 6, S = 6). The BR of
participants increased in this experiment (from 15.42 to 21.33). BR in the sub-max stage was not
significantly different from that in the ACP stage (18.83 and 21.42). Hence, BR cannot be used to
predict the ACP stage or sub-max stage. The SampEn BB value decreased in the ACP stage (2.04
to 1.69) and then increased in the final stage (1.69 to 2.07). SampEn BB in the sub-max stage was
significantly higher than at rest and then in the ACP stage (p < 0.05). Hence, calculating SampEn BB
can enable the observation of changes that cannot be identified by using BR alone. Thus, SampEn
BB is an effective indicator for predicting the ACP and sub-max stages. Figure 7 shows the results
of the ROC curve in SampEn BB. The SampEn BB sub-max threshold is 2.2589–2.1538.

Table 4. BR and SampEn BB during the rest, sub-max, and ACP stages.

BR SampEn BB

Rest (N = 20) Mean ± SD 16.62 ± 3.93 1.98 ± 0.44
median 15.58 2.06

Sub-max (N = 20) Mean ± SD 20.08 ± 4.25 2.34 ± 0.44
median 18.83 ** 2.32 *,##

ACP stage (N = 20) Mean ± SD 21.48 ± 6.50 1.71 ± 0.36
median 19.17 ** 1.77 *

* p < 0.05, ** p < 0.01 compared with rest. ## p < 0.01 compared with the ACP stage.
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3.3. Sub-Group Results

The results of SampEn RR, SampEn SV, SampEn CO, SampEn BB, and BR in the three
groups are shown in Table 5. There was no significant difference in each stage in BR for the
S group. The BR of the S group was significantly different from that of the E group in both
the sub-max stage and the ACP stage (p < 0.05). The BR of the N and E groups increased
with exercise time, and the change in the E group was larger than that of group N. The
results for SampEn SV show that the S group was significantly different (p < 0.05) at each
stage. SampEn RR in the N and E Groups was significantly higher than in the S group at
rest. The SampEn RR values were similar in both groups at the ACP stage. The results for
SampEn RR and SampEn SV in the three groups are shown in Figure 8. The SampEn RR
results were significantly different in the E group between rest, sub-max, and ACP.

Table 5. SampEn RR, SampEn SV, SampEn CO, SampEn BB, and BR in the three groups during rest,
sub-max, and ACP stages.

Rest Sub-Max ACP
Mean ± SD Median Mean ± SD Median Mean ± SD Median

SampEn RR
S (N = 8) 1.04 ± 0.45 1.11 1.11 ± 0.44 1.02 1.41 ± 0.57 1.51
N (N = 8) 1.26 ± 0.42 1.31 ˆ 1.29 ± 0.51 1.23 1.36 ± 0.44 1.38
E (N = 8) 0.73 ± 0.45 0.67 1.36 ± 0.44 1.38 * 1.16 ± 0.38 1.07 *

SampEn SV
S (N = 8) 1.01 ± 0.48 1.24 1.26 ± 0.44 1.22 * 1.31 ± 0.46 1.35 *
N (N = 8) 1.18 ± 0.33 1.15 1.65 ± 0.39 1.54 *,# 2.13 ± 0.12 2.15 *
E (N = 8) 1.39 ± 0.35 1.42 † 1.68 ± 0.28 1.64 * 2.13 ± 0.10 2.13 *

SampEn CO
S (N = 8) 1.76 ± 0.27 1.77 †† 2.01 ± 0.35 † 2.13 2.16 ± 0.08 2.16 *
N (N = 8) 1.44 ± 0.39 1.43 1.78 ± 0.37 1.77 **,## 2.14 ± 0.09 2.15 **
E (N = 8) 1.37 ± 0.35 1.40 1.76 ± 0.27 1.80 ##,† 2.17 ± 0.11 2.18 **

SampEn BB
S (N = 5) 1.88 ± 0.43 1.98 2.34 ± 0.35 2.30 # 1.87 ± 0.23 1.91
N (N = 8) 1.99 ± 0.48 2.15 † 2.29 ± 0.78 2.47 1.80 ± 0.39 1.83
E (N = 7) 2.10 ± 0.45 2.25 2.38 ± 0.25 2.35 # 1.47 ± 0.38 1.51 *,†

BR
S (N = 5) 15.79 ± 2.8 16.50 17.65 ± 1.79 18.17 ˆ 17.15 ± 4.85 15.75 ˆ
N (N = 8) 16.47 ± 4.4 15.33 20.87 ± 5.09 20.67 * 22.50 ± 6.06 21.50 *
E (N = 7) 17.69 ± 4.9 15.67 22.29 ± 4.69 24.00 25.69 ± 5.95 26.33 *

* p < 0.05, ** p < 0.01 compared with rest. # p < 0.05, ## p < 0.01 compared with the ACP stage. † p < 0.05,
†† p < 0.01 compared with group S. ˆ p < 0.05 compared with group E.
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4. Discussion
4.1. SampEn Parameters

The two most commonly used entropy analysis methods for biological data are
ApEn [28] and SampEn [30]. ApEn was proposed by Pincus in 1991 but has shortcomings,
which were addressed in the SampEn algorithm proposed by Richman in 2000. These
shortcomings include self-matching of vectors resulting in bias, inconsistent results due
to differing input data lengths, and a requirement for fixed parameters. SampEn does not
calculate self-vectors, is independent of data length, and has been demonstrated to produce
consistent results [36]. SampEn is more reliable for short-step data sets, is less sensitive to
changes in data length, and has fewer relative consistency problems [37].

In the literature, the parameter m is typically set to 2; studies have shown that m = 2
produces reasonable results for theoretical data and results in few self-matches for exper-
imental data. Because m does not have an upper bound in SampEn, comparing results
between studies is challenging if m is increased to 3.

In 2002, Bandt proposed permutation entropy (PE) [38], which is an appropriate
complexity measure for chaotic time series in the presence of dynamic and observational
noise. In 2016, Rostaghi proposed dispersion entropy (DE) [39], which is superior to PE
for discriminating between groups in a data set of real-valued signals. Its computation
time is less than those of SampEn and PE for long signals—the DE analysis of signals with
size 12,000 is 8 s faster than the SampEn analysis [39]. However, the sample size N of the
data segments in this study were typically less than 400; hence, processing speed was not a
concern. Although ApEn and SampEn are still the most widely used entropy methods in
biomedical research, DE may be superior for future research involving large data sets.

The experiment in this study was an incremental exercise experiment in which cyclists
began riding at 60 W and the power was increased by 30 W every 3 min for five stages [31].
However, previous studies did not measure SV to judge the ACP stage. Moreover, the
different setting of r in SampEn produced different results. If r = 0.1 or 0.15, the SampEn RR
value decreased with exercise time; by contrast, if r = 0.2 or 0.25, SampEn RR first increased
and then decreased.
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The objective of this study was to identify indicators for determining the sub-max
stage to predict the ACP stage. Based on previous studies, the SampEn trends of r = 0.2
and r = 0.25 were unique and this may be an observable indicator. Hence, SampEn RR with
r = 0.2 may be an indicator of sub-max training. Further, r = 0.2 is also the parameter set in
many SampEn papers. Therefore, the SampEn parameters of r = 0.2, m = 2, and N = input
data were used in this study.

4.2. SampEn RR at Rest and during Exercise

The exercise experiment in a previous study was divided into three 30 min rest periods
and three 20 min exercise periods [40]. However, the study differs from this study in that it
was not an incremental exercise test.

The SampEn RR results of this study are presented in Table 2; SampEn RR is higher
during exercise than at rest. The results in this study had a similar trend; SampEn RR
values at rest were significantly lower than in the sub-max stage and ACP stage.

Some other studies have used SampEn to analyze human behavior during exercise.
A study investigated low-intensity isometric and dynamic lower limb exercises and used
SampEn to analyze differences between exercise and rest [41]. SampEn RR was significantly
lower during low-intensity isometric exercise than at rest. However, SampEn RR increased
during dynamic exercise, and SampEn RR values at rest and during exercise were not
significantly different. By contrast with [41], the exercise in this study was dynamic, and
SampEn RR increased more after exercise; this may be attributable to the negative load
applied in this study. The authors of [41] also investigated the correlation between SampEn
RR and HRV and reported that SampEn RR and RR were positively correlated (R = 0.46,
p < 0.01). This result is similar to our results, as SampEn RR was correlated with RR at rest
(R = 0.51, p < 0.01). This study is the first to investigate the association between SampEn SV
and SVV, and the results revealed that SampEn RR at rest was associated with SVV nHF
(R = 0.46, p < 0.05). These results may indicate some correlation between cardiovascular
variability and complexity.

One study examined differences in RR complexity between young healthy trained
and untrained boys [42]. Electrocardiograms were recorded during supine rest, standing,
an incremental running exercise, and relaxation. SampEn RR was different between the
trained and untrained groups; the overall SampEn RR distribution was saddle-like in the
untrained group but more widely distributed in the trained group. In this study, the data
of participants with different exercise habits were also investigated; the SampEn RR results
were significantly different in the E group between rest, sub-max, and ACP. By contrast,
no significant differences in SampEn RR between stages was observed for the S or N
groups. Hence, our results are consistent with [41] in that SampEn RR appeared to change
significantly in the trained group; hence, it could be an indicator for advanced assessment.

In a study published in 2021, data on RR intervals were collected during treadmill
exercise and recovery in young people with a maximum VO2 [43]. Differences and the
residual of SampEn RR were associated with VO2. This result demonstrates that the
SampEn assessment system is useful for assessing physical load. It also suggests that the
direction of this study is promising.

In 2018, Entropy of Entropy (EoE) was proposed for hybrid analysis applied to heart-
beat interval time series, and disorder and complexity were analyzed separately [44].
Recently, a method has been proposed to measure instantaneous complexity, named intrin-
sic entropy (IE) [45]. The results of SampEn RR cannot effectively distinguish between ACP
and sub-max, which is not consistent with the hypothesis, perhaps because conventional
entropy may not explain the fact that complexity is different from irregularity. Alterna-
tively, maybe it is because conventional entropy may not be able to calculate instantaneous
changes. In the future, EoE and IE are methods that can be applied to the analysis of
heartbeat interval time series to gather more advanced information.
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4.3. Loss of Complexity in Physiological Systems

A reduction in complexity is well-documented to be associated with poor system adap-
tation. Studies comparing the complexity of healthy and pathophysiological systems have
shown that pathophysiological system complexity is lower [23]. Many studies have also
demonstrated that aging is responsible for a decrease in system complexity [46]. Moreover,
a loss of systemic complexity leads to impairment in the ability to adapt to physiological
stress [24]. This hypothesis is supported by observations showing age-related complexity
variability in a variety of physiological processes, including cardiovascular control.

The correlation between knee extensor torque complexity and fatigue was investigated
in [22]. The results suggest that fatigue causes a substantial loss of knee extensor torque
complexity. Fatigue decreases the values of ApEn and SampEn. Complexity is related to
systemic adaptation, and fatigue-induced loss of complexity may result in an inability to
perform physical exercise.

We hypothesized that the ACP stage is a state in which the body cannot adapt, resulting
in a decrease in signal complexity. The SampEn BB results in Tables 4 and 5 fully support
this hypothesis. SampEn BB was significantly higher at rest than during exercise, consistent
with the results of the previous study, and SampEn BB at ACP was also lower than at
sub-max. Hence, the increase in SampEn BB is a suitable indicator for identifying the ACP
stage and sub-max stage.

In a previous study, changes in SampEn BB during exercise were investigated [33]. The
results revealed that SampEn BB increased significantly during exercise. These results differ
from those of this study because that study only compared pre-exercise and post-exercise
SampEn BB; we compared SampEn BB during exercise and fatigue.

4.4. Sub-Max Physical Load

Recently, endurance sports such as triathlons have become increasingly popular.
Triathletes are advised to do exercise at sub-max physical load for a long time to avoid
reaching the fatigue state (ACP stage) [8], which confers a high risk of myocardial injury [9].
Moreover, heart complications during long-duration exercise in the ACP stage have been
identified [10]. As humans continue to exercise during ACP, ventricular tachycardia or
fibrillation might affect myocardial injury; in addition, left ventricular dysfunction or right
ventricular overload may occur after exercise. Methods of avoiding ACP have caused
widespread concern; this is a key research topic in exercise health care [12]. Even if ACP
can be identified according to physiological signals, few methods of identifying sub-max
physical load and avoiding ACP have been developed. The assessment of sub-max physical
load can be judged by measuring 90% VO2 max; however, VO2 max measurement is
uncommon and inconvenient.

To the best of our knowledge, this study is the first study to introduce SampEn SV
and SampEn CO as measurement methods. The results for SampEn SV and SampEn CO
in Table 2 and those for BB reveal that these indicators are effective for differentiating the
sub-max stage from the rest and ACP stages. Current technology has made it possible to
perform non-contact breath testing, which is a remote breath detection method via radar.
This is a method that does not require any wearable sensors, making it more comfortable
and convenient for users. The transmission signal can even go through walls [47]. These
results could be applied to wearable devices for assessing the physical load of a person to
alert them if the ACP stage is reached, enabling them to stop exercising to avoid injuries
and increase training efficiency.

4.5. Sub-Groups

The World Health Organization (WHO) recommends that all adults should undertake
150–300 min of moderate-intensity exercise per week [48]. According to this recommen-
dation, subjects were classified into three categories. Those who do not reach 150 min of
exercise per week were classified as the sedentary group (S), those who reach 150–300 min
of exercise per week as the normal group (N), and those who exceed 300 min as the exer-
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cise group (E). The sub-group results suggest that SampEn SV is a suitable indicator for
predicting sub-max physical load of body in group S. The SampEn CO difference among
the three groups was not significant during rest and ACP. However, the sub-max stage
SampEn CO values were significantly higher in the E group (p < 0.01). SampEn in the S and
N groups showed similar trends, with little change from rest to sub-max, but a significant
increase from sub-max to ACP (p < 0.01). The results for SampEn RR and SampEn SV in
the three groups are shown in Figure 8. By contrast, no significant differences in SampEn
RR between stages was observed for the S or N groups. Hence, our results are consistent
with [40] in that SampEn RR appeared to change significantly in the trained group; hence,
it could be an indicator for advanced assessment. However, the presentation of SampEn
SV was different from that of SampEn RR. The least variation was observed in group E.
There was no significant difference in group E. SampEn SV showed the greatest variation
in group S, followed by group N.

We speculate that there is no significant difference in SampEn RR for the S and N
groups due to the difference in physical ability between the three groups of subjects.
Generally, subjects without exercise habits could not support the maximum exercise load,
while those with exercise habits could. Therefore, it is possible that only the E group in this
study reached the maximum exercise load (ACP). The behavior of SampEn RR in group E
was similar to the trend for SampEn BB. We speculate that perhaps the SampEn RR, like
the SampEn BB, will increase in complexity at sub-max and lose complexity at ACP.

5. Limitations

The experiment only included bicycle exercise; other exercise methods, such as tread-
mills and stair climbing, were not considered. Cycling was chosen because a fixed point of
motion must be selected to collect dynamic data. Moreover, participants’ cycling experience
was not investigated, and exercise habits were surveyed by questionnaire only. Exercise
habits were distinguished as either aerobic or anaerobic exercise. The sample sizes of 9, 10,
and 11 for the Sedentary, Normal, and Exercise groups are too small in this study. Finally,
only SampEn data were used; other entropy methodologies could produce different results.

6. Conclusions

Physiological data were collected from 30 participants using a bicycle-based incre-
mental exercise experiment. Time-domain, frequency domain, and SampEn analyses were
performed, and the results are as follows: BR increases with exercise time (15.42 to 21.33)
but cannot be used to identify the sub-max stage. SampEn BB can effectively identify the
sub-max stage (p < 0.05). SampEn RR increases with exercise time but cannot effectively
identify the sub-max stage. However, the novel indicators of SampEn SV and CO can
identify the sub-max stage (p < 0.01). SampEn RR is correlated with RR (R = 0.51, p < 0.01),
and SV is correlated with SVV nHF at rest (R = 0.46, p < 0.05). This study also identified
the threshold value of each SampEn value in sub-max, which can be used as a sports
science indicator to assess the load of athletes. This study is one of the few that have used
SampEn to assess physical load, and the results suggest that SampEn can be used to identify
the sub-max and ACP stages. Hence, exercise habits can be effectively assessed with the
various proposed SampEn indicators. The results can be applied to sports science to help
athlete assess their physical load in a more quantitative manner.

7. Future Work

The results of this study can be used to predict the physical load of cyclists, triathletes,
and other athletes to avoid the risk of injury caused by training at ACP. For example,
baseball coaches could use these indicators to determine whether a pitcher should be
changed. Future experiments could investigate these indicators for older adults to assess
their applicability for rehabilitation exercises, such as rehabilitation cycling. Although
SampEn is a powerful technique, it is not sufficiently fast for analyzing signals; DE could
be used to analyze signals of larger size. Moreover, multiscale entropy methods may
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be more effective for observing changes in physiological signals than the single-scale
entropy methods used in this study. Entropy of entropy (EoE) can be also used to measure
complexity and disorder.
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