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Abstract: This work contemplates the application of non-destructive techniques, sonic and environ-
mental vibration tests, on a set of soil-cement compressed earth blocks reinforced masonry walls,
which were built in laboratory, under the project SHS-Multirisk. The present work constitutes a
comparative study that aimed at verifying the reliability of the sonic test method in masonry charac-
terization and in testing a methodology of combined tests for structural assessment. For that purpose,
a numerical model of the walls was developed and calibrated with the mechanical properties that
were calculated from the sonic tests data. The results of the simulation of the numerical model were
compared with the results of the environmental vibration tests, which enabled to reach a correla-
tion between the frequencies, as well as enabling the indirect sonic tests, which were performed in
the vertical direction, to result in an accurate prediction of the Young modulus to be used in the
numerical models.

Keywords: non-destructive characterization; masonry; sonic tests; dynamic identification; numerical
model

1. Introduction

To perform an assessment of the existing structures, typically, numerical models are
developed to represent the structural behavior, namely through finite-element techniques,
allowing the accurate representation of the static and dynamic structural behaviors. The
fast development of the computational tools, with user friendly packages available to all
the engineering community, introduces a great instrument to perform the assessment of
existing structures. However, to apply these powerful tools, the accuracy of the computer
models becomes essential, and any uncertainty in the obtained results should be minimized.
Considering that for complex structures, the use of complex numerical models is undeniably
the most correct method, the user must be assured of how accurately the model represents
the real behavior of the structure. To improve the accuracy of the numerical models
to represent the structural behavior, a detailed investigation should be performed, i.e.,
verifying the geometry, assessing the mechanical properties of the materials, identifying
zones where the deterioration or damage is present, and also checking the information
in the design documents and drawings. For all these reasons, the use of nondestructive
testing (NDT) techniques has become more common in the condition assessment of existing
structures, as it enables to gather data with minimum damage to the structure in study [1,2].

The aim of this work is, on the one hand, to characterize specimens of reinforced
masonry walls of soil-cement compressed earth blocks and understand their structural
behavior using NDT techniques, such as sonic tests and environmental vibration tests,
while, on the other hand, to develop a numerical model of the walls and calibrate it with
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the information obtained from an analysis of the data collected during the experimental
campaign. This work will make it possible to verify the reliability of the application of
sonic tests in the characterization of masonry, and to test a methodology of combined tests
for a structural assessment by carrying out a comparative study.

Among the NDT methods, sonic tests are commonly applied to existing masonry
structures as it has several applications, namely for masonry characterization and the
detection of voids, delamination, and weak areas [3,4]. In fact, the velocity of propagation of
sonic waves through the material is related to its physical and elastic mechanical properties,
making sonic tests a solution for estimating the elastic properties of masonry and to identify
unknown conditions inside the material [5–7].

The impact of an object on a material generateS-waves that propagate inside the
material (body waves) and waves that propagate on the surface of the material (surface
waves). Thus, in terms of mechanical waves, it is possible to encounter: (i) longitudinal
waves (P-waves), which propagate by motion in the direction of propagation and are the
fastest, (ii) transverse waves (S-waves), which propagate by motion perpendicular to the
direction of propagation, and (iii) Rayleigh waves (R-waves), which are surface waves with
retrograde elliptical motion and are the ones with the highest percentage of energy.

Depending on the configuration adopted in the test (the relative position of the emitter
and receiver), it is possible to identify different types of waves (Figure 1a). Direct tests
aim to measure the velocity (VP) of primary waves (P-waves) by placing the hammer and
accelerometer in line at opposite sides of the wall. Indirect tests can measure both the
velocity of P- and R-waves (VR) [8].
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Considering a particle at the surface, it is known that it will first experience the arrival
of P-waves, followed by S-waves, after a period of quietness. Subsequently, the particle
experiences the arrival of R-waves, which are characterized by oscillations of a much higher
amplitude that corresponds to a higher percentage of energy, and that attenuate much
more slowly than the P- and S-waves. This theory, applied to the wave identification of the
indirect tests, is illustrated in the scheme of Figure 1b, where it is possible to identify the
P-waves as those that arrive first (1), followed by the arrival of the R-waves (2), signaled by
an increase in the percentage of energy.

The dynamic response of structures is mainly dependent on the material properties,
geometry, and supporting conditions. If any physical changes or damage in the structure
are made, the dynamic response, in most of the cases, will not remain constant [9]. As the
structural integrity can relate with natural frequencies, an analysis of periodical frequency
measurements can be used to monitor the structural condition [7,10,11]. In the present
day, several works have been proposed regarding the structural damage identification
using different techniques, taking advantage of NDT to improve the location and the
quantification of the damage [12–16].

In this work, a numerical model of the walls is developed and calibrated with the
mechanical properties of the masonry obtained from the analysis of the sonic tests, namely
the modulus of elasticity of the masonry. With the numerical simulation analysis, it will be
possible to acquire the natural frequencies of the masonry walls and to compare them with
the frequency data from the environmental vibration tests.

2. Experimental Campaign

The SHS project (Simple Housing Solution) consists a methodology for (re)building
homes and other small buildings, in a joint working system (community construction),
seeking to optimize available resources and contribute to the organization of chaos installed
in critical situations, such as post-disaster, post-conflict, refugee relocation, or risk mitiga-
tion. It is based on the fundamental principles for the sustainable restoration of housing
declared by the United Nations Development Program (UNDP) and the International
Platform for Recovery (IRP): environmental, technical, financial, and socio-organizational
sustainability. The project was one of the finalists for the 2019 Sasakawa Awards, a United
Nations (UN) award in the area of disasters, with impacts on several sustainable devel-
opment goals. SHS-Multirisk is a spin-off project that is under development through a
partnership between the Federal University of Rio de Janeiro (UFRJ) and the University of
Aveiro (UA). It proposes a residence model that is simultaneously resistant to earthquakes
and hurricanes, within a specific range of magnitude to be defined in the project, using
simple, low-cost, and environmental-friendly construction technologies when compared to
traditional alternatives or more technological, but less accessible ones. In its current phase,
the first SHS-Multirisk house model [17] is being improved, aiming at more aggressive
scenarios.

The present experimental SHS campaign was performed at UA, which involved a set
of six reinforced masonry soil-cement compressed earth blocks walls, with 1 m width, a
height of 2.3 m and a thickness of 0.125 m. The walls have a U section and are constituted
by soil-cement blocks (with two holes) in the proportion 8:1, vertical 10 mm diameter A400
steel bars (in five filled holes), horizontal 6 mm diameter A400 steel bars (in four 55 cm
spaced levels, starting from the top) and soil-cement mortar in the proportion 5:1 (See
Figure 2). All the specimens were built on a 60 cm height reinforced concrete base and
designed with the same layout and materials, W1, W2, and W3 without plaster and W4,
W5, and W6 with 3 cm of soil-cement plastering in one side of the wall.



Appl. Sci. 2023, 13, 3762 4 of 17

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 16 
 

by soil-cement blocks (with two holes) in the proportion 8:1, vertical 10 mm diameter A400 
steel bars (in five filled holes), horizontal 6 mm diameter A400 steel bars (in four 55 cm 
spaced levels, starting from the top) and soil-cement mortar in the proportion 5:1 (See 
Figure 2). All the specimens were built on a 60 cm height reinforced concrete base and 
designed with the same layout and materials, W1, W2, and W3 without plaster and W4, 
W5, and W6 with 3 cm of soil-cement plastering in one side of the wall. 

The dry blocks were tested according to NBR 8492:2012 [18] and showed an average 
compressive strength of 7.29 MPa and an average compressive strength in saturated 
specimens of 5.17 MPa, with coefficients of variation at around 20% in both cases. The 
average compressive strength of the laying mortars for the blocks and plaster was 
obtained by the prism test in accordance with EN1015-11:1999 [19] and showed values of 
around 11.70 MPa. The mean tensile stress in bending was around 2.60 MPa, representing 
about 20% of the compressive strength, within the expected range. 

Each row has five whole blocks or four whole blocks and two half-blocks, laid on a 
layer of mortar about 1 cm thick, without mortar in the vertical joints, which are alternated 
between the thirty rows. Holes with vertical reinforcements are filled with the same 
mortar used as the blocks, with manual compaction. The vertical reinforcements have an 
overlapping splice at mid-height, and the lower bar was anchored with a chemical anchor 
in the reinforced concrete footing. The horizontal reinforcements are embedded in the 
mortar joints. At the top of each specimen, a crown was built in reinforced concrete, 
approximately 10 cm high. All production of blocks and construction of masonry walls 
were carried out strictly by hand, without the use of electricity. This guideline was 
adopted to approximate as much as possible the conditions of laboratory production to 
those situations of project application when there is not always electricity available. 

 
Figure 2. Masonry wall layout 

3. Sonic Tests 
Sonic tests allow the characterization of a material by analyzing the propagation of 

acoustic waves produced by the percussion of an object. Acoustic waves are mechanical 
waves, which comprise a set of movements that occur in nature and which, by the action 
of forces of different types, end up being annulled, restoring the particles to their positions 
of equilibrium by means of elastic forces [20]. They can be classified according to their 
frequency of propagation as: sonic (20 Hz–20 kHz), infrasonic (<20 Hz), and ultrasonic (20 
kHz–200 kHz). When using acoustic tests to characterize masonry, which is a 
heterogeneous material, the sonic test is the most suitable compared to the ultrasonic test 
because it has lower frequencies and longer wavelengths that can complete the emitter–
receiver path [21,22]. 

Figure 2. Masonry wall layout.

The dry blocks were tested according to NBR 8492:2012 [18] and showed an average
compressive strength of 7.29 MPa and an average compressive strength in saturated speci-
mens of 5.17 MPa, with coefficients of variation at around 20% in both cases. The average
compressive strength of the laying mortars for the blocks and plaster was obtained by the
prism test in accordance with EN1015-11:1999 [19] and showed values of around 11.70 MPa.
The mean tensile stress in bending was around 2.60 MPa, representing about 20% of the
compressive strength, within the expected range.

Each row has five whole blocks or four whole blocks and two half-blocks, laid on a
layer of mortar about 1 cm thick, without mortar in the vertical joints, which are alternated
between the thirty rows. Holes with vertical reinforcements are filled with the same
mortar used as the blocks, with manual compaction. The vertical reinforcements have an
overlapping splice at mid-height, and the lower bar was anchored with a chemical anchor in
the reinforced concrete footing. The horizontal reinforcements are embedded in the mortar
joints. At the top of each specimen, a crown was built in reinforced concrete, approximately
10 cm high. All production of blocks and construction of masonry walls were carried out
strictly by hand, without the use of electricity. This guideline was adopted to approximate
as much as possible the conditions of laboratory production to those situations of project
application when there is not always electricity available.

3. Sonic Tests

Sonic tests allow the characterization of a material by analyzing the propagation of
acoustic waves produced by the percussion of an object. Acoustic waves are mechanical
waves, which comprise a set of movements that occur in nature and which, by the action of
forces of different types, end up being annulled, restoring the particles to their positions
of equilibrium by means of elastic forces [20]. They can be classified according to their
frequency of propagation as: sonic (20 Hz–20 kHz), infrasonic (<20 Hz), and ultrasonic
(20 kHz–200 kHz). When using acoustic tests to characterize masonry, which is a heteroge-
neous material, the sonic test is the most suitable compared to the ultrasonic test because



Appl. Sci. 2023, 13, 3762 5 of 17

it has lower frequencies and longer wavelengths that can complete the emitter–receiver
path [21,22].

The use of sonic tests [8] in the characterization of construction material are based on
the propagation of acoustic waves and, depending on the configuration adopted in the test
(the relative position of the emitter and receiver), it is possible to identify different types
of waves. Direct tests aim to measure the velocity (VP) of primary waves (P-waves) by
placing the hammer and accelerometer in line at opposite sides of the wall. Indirect tests
can measure both the velocity of P- and R-waves (VR) [8].

It is possible to correlate the velocities with the physical and elastic properties of the
analyzed solid [12], namely Poisson’s ratio and dynamic modulus, through the following
expressions:

VP
VR

=

√√√√ 2(1 − υ)(1 − υ)2

(1 − 2υ)(0.87 − 1.12)2 (1)

VP =

√
E
ρ

(1 − υ)

(1 + υ)(1 − 2υ)
(2)

where υ is the Poisson’s ratio, E is the dynamic modulus and ρ is the density of the material.
These expressions were developed for solid, elastic, isotropic, and homogeneous materials;
however, it is adequate to use them in masonry structures, as they provide approximate
estimations of their mechanical properties.

Regarding the testing campaign, direct and indirect sonic tests and environmental
vibration tests were carried out on the walls. The equipment used for the execution of
the sonic tests was an instrumented hammer with a 1 kg mass and a nylon tip, an ac-
celerometer, a data acquisition system from National Instruments, and a personal computer.
With respect to the process of the dynamic characterization, tests were carried out on all
walls. The equipment used thus included four accelerometers (PCB model 393B12), with
a measurement range of ±0.5 g and 10,000 mV/g, and a frequency range between 0.15
and 1000 Hz, a personal computer, cables, and a data acquisition system from National
Instruments.

In this experimental campaign, two test configurations were performed: direct and
indirect (vertical and horizontal analysis). For the direct tests, the set used constituted
nine rows, spaced by 20 cm in the vertical slope, and by 1 m in the horizontal slope. The
instrumented hammer (emitter) and accelerometer (receiver) were placed on opposite sides
of the specimen faces. Waves were generated by the impact of the instrumented hammer
in each row and recorded by the data acquisition system. To perform the indirect tests,
a grid of points was marked on each wall with a 7 × 3 configuration, spaced by 30 cm,
both in vertical and horizontal slopes (see Figure 3). To collect data corresponding to the
horizontal slope, the accelerometer was fixed at position A1, and the instrumented hammer
was struck at points A2 and A3, along the points of the vertical slope. In turn, to collect
data corresponding to the vertical slope, the accelerometer was fixed in position A4, and
the instrumented hammer was struck at points A5, A6, A7, A8, A9, and A10, along the
points of the horizontal slope.

For the data processing, the sonic analyzer tool was used to extract the arrival times of
the waves. This process involved taking the moment when the wave was generated by the
instrumented hammer and the moment when the accelerometer recorded the arrival of the
wave and subtracting the values to obtain the arrival time. The arrival times taken from
both tests were those corresponding to the P-waves, since they correlate better with the
modulus of elasticity of the material.
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For calculation purposes, it was assumed that the masonry wall structures have a
Poisson’s ratio in the range of 0.2–0.3 based on the literature [23,24], and without additional
information, was assumed a Poisson coefficient of 0.25. A density of 1937 kg/m3 was
considered. The density value was based on simple measurements in the laboratory of
small wallets considering the brick, mortar, and reinforcement.

Table 1 presents the summary of the results obtained for the velocities of P-wave
propagation for each wall, in each test. Figures 4–6 represent the velocities of propagation
by a surface graphic in the tested area.

Table 1. Velocity values for the direct and indirect sonic tests.

Wall Test ¯
V(m/s) Vmin (m/s) Vmax (m/s) COV

W1

Direct 2463.74 1766.02 3013.15 15%

Indirect (vertical) 1431.38 1065.81 2102.42 20%

Indirect (horizontal) 1422.71 1049.21 1872.09 19%

W2

Direct 2468.05 2325.58 2560.81 5%

Indirect (vertical) 1442.03 1075.08 2500.00 26%

Indirect (horizontal) 1610.60 1209.01 1923.07 14%

W3

Direct 2267.31 2049.18 2557.54 7%

Indirect (vertical) 1397.41 1208.02 2015.30 15%

Indirect (horizontal) 1500.47 1282.05 1923.07 12%
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Table 1. Cont.

Wall Test ¯
V(m/s) Vmin (m/s) Vmax (m/s) COV

W4

Direct 2611.23 2436.05 2699.05 5%

Indirect (vertical) 1383.36 1106.84 1916.93 20%

Indirect (horizontal) 1675.08 1062.27 2537.31 25%

W5

Direct 2416.80 2325.58 2560.81 5%

Indirect (vertical) 1407.97 1139.54 1916.93 16%

Indirect (horizontal) 1731.96 1463.41 2051.28 13%

W6

Direct 2416.48 2328.28 2560.81 4%

Indirect (vertical) 1371.77 1143.26 2208.02 17%

Indirect (horizontal) 1494.23 1009.61 2226.27 24%
COV—ratio between the standard deviation and the mean.
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From the surface analysis, it is possible to observe that, in most of the area tested, the
walls present low variability (<15%), which reflects their material uniformity. Moreover, it
is visible that the values obtained in the horizontal direction tests present higher values of
velocities compared to the values obtained in the vertical tests, which indicates that there
are less voids in the horizontal slope of the walls.

By applying Equation (2), it was possible to reach the masonry dynamic elasticity
modulus, which are gathered in Table 2. Considering the indirect tests values, the results
obtained show that the dynamic elasticity modulus average varied between 3.03 and
4.52 GPa.
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Table 2. Elasticity modulus values obtained from the sonic tests.

Wall Test Eaverage
(GPa) Emin (GPa) Emax

(GPa) σ

W1

Direct 9.79 5.03 14.65 2.79

Indirect (vertical) 3.30 1.83 7.13 0.23

Indirect (horizontal) 3.26 1.77 5.65 0.55

W2

Direct 9.83 8.72 10.58 0.89

Indirect (vertical) 3.35 1.86 10.08 0.09

Indirect (horizontal) 4.18 2.35 5.96 0.79

W3

Direct 8.29 6.77 10.55 1.12

Indirect (vertical) 3.15 2.35 6.55 0.06

Indirect (horizontal) 3.63 2.65 5.96 0.49
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Table 2. Cont.

Wall Test Eaverage
(GPa) Emin (GPa) Emax

(GPa) σ

W4

Direct 11.00 9.57 11.75 1.08

Indirect (vertical) 3.08 1.97 5.93 0.03

Indirect (horizontal) 4.52 1.82 10.39 1.99

W5

Direct 9.42 8.72 10.58 0.89

Indirect (vertical) 3.19 2.09 5.93 0.08

Indirect (horizontal) 4.84 3.4 6.79 0.45

W6

Direct 9.42 8.75 10.58 0.75

Indirect (vertical) 3.03 2.10 7.86 0.08

Indirect (horizontal) 3.14 1.64 8.00 1.24

4. Environmental Vibration Tests and Modal Identification

Dynamic response is an intrinsic property of structures which depends mainly on the
material properties, geometry, and support conditions, and it will remain constant unless
there are any structural modifications or damages [25]. As natural frequencies are sensitive
indicators of structural integrity, an analysis of periodic frequency measurements can be
used to obtain information on the global dynamic behavior of the structure, and to validate
and update the numerical model of a structure [9]. The environmental vibration test method
is based on natural noise and low-frequency vibrations from the environment and can be
applied without direct excitation of the structure [26]. In order to apply the Environmental
vibration test method, there is a need to make a careful choice of sensor positioning, that
will enable to make correlations between natural frequencies and vibration modes of direct
measurement. The assessment of the structure response in the time domain is performed
by means of a combination network of high-frequency force-balance accelerometers. To
assess the natural frequencies and modal shapes of the structure, it is possible to apply
the frequency domain decomposition (FDD) technique in the frequency domain and the
data-driven stochastic subspace identification (SSI) method in the time domain, which
allows the modal parameters to be extracted from the environmental data [27]. Modal
identification provides reference values of modal parameters useful for the calibration of
numerical models, based on the Young’s modulus of the masonry, so that the model can
represent the actual dynamic behavior of the structure in its current state [28].

The dynamic characterization tests were performed to obtain the modal shapes and
natural frequencies of the walls. The tests were done using four uniaxial accelerometers
and the records were taken with one setup, acquiring 600 s with 1500 samples/s. Figure 7a
shows one setup at the time of the test, while the sensors layout is shown in Figure 7b.
Accelerations were measured in both directions at some locations in order to detect both
possible in-plane and out-of-plane mode shapes.

The modal estimation was carried out using ARTeMIS software, which allows analyz-
ing the results from all test setups simultaneously, and the representative singular value
plots provided by (traditional) FDD are shown in Figure 8 with all picked modes. The peak
values of frequency were selected using FDD analysis, to later compare the results and
determine the natural frequencies of the wall obtained with the numerical model. Figure 9
shows the first three identified modes of the walls in terms of mode shape and natural
frequency. This first mode consists in the expected out-of-plane vibration of the façade
and presents a slight difference in the walls, as seen in Table 3. The second mode is a
torsional mode, and the third mode is in the plane of the wall. The differences observed are
most likely related to the construction issues; however, the third mode associated with the
in-plane response of the wall was the one where most differences were observed; however,
no apparent cause was identified.
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Table 3. Wall frequencies obtained experimentally.

Wall 1st Mode
(Hz)

2nd Mode
(Hz)

3rd Mode
(Hz)

W1 9.34 26.37 33.72
W2 9.16 26.34 33.86
W3 8.13 26.33 39.20
W4 9.57 26.30 39.45
W5 9.39 26.20 43.39
W6 9.38 26.29 43.53

5. Numerical Modeling of the Walls

Nowadays, one of the main aims of the non-destructive tests is the calibration/adjust-
ment of the numerical models. The numerical models of the wall’s tests were developed
in finite element software SAP2000 V24 using geometry of the wall using layered shell
elements, modeled through 800 4-nodes square shell elements and 861 nodes. The me-
chanical properties of materials were adjusted to fit the experimental values, in terms
of Young model, based on the sonic tests and compared with the results obtained in the
dynamic identification tests. The model was developed using shell elements considering
only the middle plan of the element. The goodness of the fitting based on the experimental
values of the frequencies was based on the minimization of the errors in frequencies, which
were numerically determined, and those resulting from the measurements performed, thus
updating the model of finite elements. The Young modulus was the parameter selected to
adjust this calibration, and the error was calculated based on Equation (3), where ai is the
modal mass ratio and n is the number of the experimental mode shapes, considering the
first three modes (see Figure 10). The starting point was the Young modulus obtained with
the sonic tests in the vertical direction, and some adjustments were performed to minimize
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the error in frequencies, which were numerically determined, and those resulting from the
measurements performed on site, thus updating the of finite element model.

D f =
∑n

i=1

∣∣∣ fFEM,i− fFDD,i
fFDD,i

∣∣∣·ai

∑n
i=1 ai

(3)
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In the numerical model, a Poisson coefficient of 0.25 was considered, and a density of
1937 kg/m3 was considered in the sonic tests. A global agreement between the experimental
(Exp) and numerical frequencies (Num) was found. The comparison between the natural
frequencies from dynamic identification and those from numerical modeling is reported
in Table 4. It is also clear that the main differences observed are related with the third
mode. When not considering the third mode, the errors (Df) would be lower than 1%
in all the walls (with exception of wall 3). The value presented in Table 4 for the Young
modulus was the value used in the numerical analysis. Table 4 also presents the values of
the average Young modulus obtained with the sonic tests in the vertical and horizontal
directions for each wall. It can be seen that there exists an agreement between the Young
modulus considered in the numerical analysis and the Young modulus obtained with the
sonic tests in the vertical direction.

The agreement between the numerical and the experimental modal shapes was es-
timated through the Modal Assurance Criterion (MAC) [29]. The numerical simulation
better approximates the experimental measurements as the MAC approaches to 1. Figure 11
shows the MAC correlation matrix between the experimental and numerical modes. The
results reveal that the MAC coefficient is greater than 0.8 for modes 1 and 3, and lower than
0.4 in mode 2, showing a poor correlation in the torsional mode.
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Table 4. Correlation between the measured and calculated frequencies.

Wall

1st Mode
(Hz)

2nd Mode
(Hz)

3rd Mode
(Hz) Df

(%)
Enum
(GPa)

Eexp_ver
(GPa)

Eexp_hroz
(GPa)

Num Exp Num Exp Num Exp

W1 9.34 9.31 26.37 26.24 33.72 43.57 5.8 3.45 3.30 3.26

W2 9.16 9.17 26.34 25.86 33.86 42.93 5.7 3.35 3.35 4.18

W3 8.13 8.39 26.33 23.64 39.20 39.26 4.9 2.80 3.15 3.63

W4 9.57 9.52 26.30 26.81 39.45 44.51 3.3 3.60 3.08 4.52

W5 9.39 9.38 26.20 26.44 43.39 43.88 0.6 3.50 3.19 4.84

W6 9.38 9.38 26.29 26.44 43.53 43.88 0.3 3.50 3.03 3.14

Num—Numerical frequencies obtained with numerical model. Exp—Frequencies obtained with the experimental
tests (dynamic identification tests). Enum—Young modulus considered in the numerical analysis. Eexp_ver—
Average Young modulus obtained in the sonic tests in the vertical direction. Eexp_hroz—Average Young modulus
obtained in the sonic tests in the horizontal direction.
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6. Conclusions

To the best of the author’s understanding, in order to investigate the structural behav-
ior of specimens of reinforced masonry walls of soil-cement compressed earth blocks, sonic
tests were performed on six walls. The results of the tests enabled for the characterization of
the walls as a regular and uniform masonry type, with an elasticity modulus that can vary
between 3.03 and 3.35 GPa in the vertical direction and 3.14 and 4.84 GPa in the horizontal
direction. The fact that the horizontal direction has higher values of elasticity modulus
compared to the vertical indicates that it has lesser significant voids throughout the cross
section.
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A numerical model of each wall was developed, and their mechanical properties were
calibrated with the data obtained from the sonic tests analysis. The frequencies obtained
from the numerical models of the walls were compared with the frequencies obtained
from the environmental vibration tests, using the modal assurance criterion, and it allowed
a good correlation in terms of frequencies in modes 1 and 3. In turn, mode 2, which
corresponds to the torsional mode, presented a poor correlation.

According to this correlation, it is possible to assume that the elasticity modulus
obtained by the indirect tests in the vertical slope was the best approach. Nevertheless, the
elasticity modulus obtained in the indirect tests in the horizontal slope has a 10–20% of
overestimation.

From this study, it is possible to conclude that sonic tests provide reliable data that
can be used to characterize masonry structures, and that the indirect tests configuration is
the one that is most likely to be carried out on existing structures as the emitter and the
receiver are on the same face of the structure. Furthermore, the combined methodology
of using sonic and environmental vibration tests allows the calibration and validation of
numerical models of masonry structures and for the assessment of the state of conservation
and structural safety.

The approach for the indirect characterization of these materials has several limita-
tions and the proposed relations seem to point to a good empirical relationship of some
physical–mechanical properties, namely the Young modulus. The combination of several
NDTs, namely sonic and dynamic tests, seem to have a great use once they are completely
non-destructive; however, there are some factors that may influence the results, like mois-
ture, damages, and cracks. Additional comparisons should be made with other types
of techniques that are more destructive to be compared with Young modulus, which are
obtained with different tests. Otherwise, future comparisons should be made to determine
the correlation with other parameters and other mechanical properties.
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