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Abstract: Anomaly detection plays a crucial role in preserving industrial plant health. Detecting and
identifying anomalies helps prevent any production system from damage and failure. In complex
systems, such as oil and gas, many components need to be kept operational. Predicting which
parts will break down in a time interval or identifying which ones are working under abnormal
conditions can significantly increase their reliability. Moreover, it underlines how the use of artificial
intelligence is also emerging in the process industry and not only in manufacturing. In particular, the
state-of-the-art analysis reveals a growing interest in the subject and that most identified algorithms
are based on neural network approaches in their various forms. In this paper, an approach for fault
detection and identification was developed using a Self-Organizing Map algorithm, as the results of
the obtained map are intuitive and easy to understand. In order to assign each node in the output
map a single class that is unique, the purity of each node is examined. The samples are identified and
mapped in a two-dimensional space, clustering all readings into six macro-areas: (i) steady-state area,
(ii) water anomaly macro-area, (iii) air-water anomaly area, (iv) tank anomaly area, (v) air anomaly
macro-area, (vi) and steady-state transition area. Moreover, through the confusion matrix, it is found
that the algorithm achieves an overall accuracy of 90 per cent and can classify and recognize the state
of the system. The proposed algorithm was tested on an experimental plant at Università Politecnica
delle Marche.

Keywords: machine learning; unsupervised learning; Industry 4.0; anomaly detection; smart industrial
plant; predictive maintenance

1. Introduction

Regarding efficiency and safety, switching from a traditional industry to Industry
4.0 has several advantages [1]. These benefits are connected to adopting technologically
advanced machinery with a high level of digitalization and communication [2]. However,
the cost and time involved in replacing obsolete machinery can be unsustainable for many
companies instead of retrofitting machinery with new digital technologies [3]. The energy
sector can be considered to have felt the potential of this transition the most. Petrochemical
industries, for example, are keen to embrace digital technologies with all the predictive
benefits that come with them [4]. For instance, by combining plant sensors and artificial
intelligence algorithms, it is possible to build a model that can discriminate the degradation
profiles and estimate the remaining useful life of each system component [5,6].

Nevertheless, some of the largest companies still base their maintenance activities
on sporadic, mostly manual inspections to monitor and ensure the proper functioning
of machinery. Thus, if equipment such as heat exchangers, pumps, or valves are only
checked periodically, the risk of breakdowns, interruptions, or more severe situations
affecting the health and safety of operators and the plant itself is not reduced [7]. For these
reasons, the oil and gas industry aims to become increasingly innovative and implement
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smart technologies to increase levels of operational efficiency and resource utilization while
minimizing health, safety, and environmental risks and, not least, operating costs [8,9].

The Internet of Things (IoT) and Digital Twin (DT) [10] can be considered as the
guiding force for this crucial digital transformation, as they enable the real-time gathering,
handling, and interpretation of data to accomplish these objectives [11–14]. The transition
from a traditional factory to a smart factory brings a higher level of integration of physical
production with digital technologies [15,16] with particular attention to standards such as
ISO14224:2016 for oil and gas industries [17].

For example, oil particle smart sensors monitor the contamination levels in lubrication
systems such as gearboxes through a laser beam and photodetector, sending warnings when
the permissible pollution limit is exceeded [18]. However, it is also true that the proliferation
of sensors in Industry 4.0 can only lead to effective and efficient monitoring and control
capability if the data are structured for a systematic overview [19]. In addition, the increase
in available data implies the necessary development of data-driven machine learning
techniques to understand processes and their reliability defining effective maintenance
policies able to support companies in dealing with process interruptions while preventing
significant profit losses [20]. Moreover, the increase in available information increases the
computational effort of the various algorithms because of their size and nature, requiring
such algorithms to be necessarily faster and more efficient [21]. However, although artificial
intelligence and machine learning have been successfully applied in many sectors, their
potential for maintenance has not been fully recognized. In this regard, Koroteev and
Tekic [22] analysed the main challenges preventing a profound application of artificial
intelligence in the oil and gas sector regarding data, people, and all the new forms of
collaboration emerging with Industry 4.0. At the same time and for the same sector,
Li et al. [23] highlighted how artificial intelligence technology increases attention from
researchers devoted to it. Although technological innovation can support the production
of many companies, it can become a problem if all operators are not suitably well trained
in using new technologies. Therefore, the skills of operators need to be improved through
specific training courses geared toward hands-on learning of these new technologies to
increase safety and operating conditions [24].

The research study focuses on managing and detecting possible anomalies in the two-
phase experimental plant in the Department of Industrial Engineering and Mathematical
Sciences (DIISM) of the Università Politecnica delle Marche (Ancona, Italy). An unsuper-
vised algorithm called Self-Organizing Maps was chosen to conduct the research study.
This algorithm allows for easy verification of the status of the system as the data from
the plant are projected onto a two-dimensional output map where each node represents
a particular state of the system.

The article is organized as follows. After the introduction, a systematic review of the
literature in the oil and gas sector is explored in Section 2. Section 3 accurately describes
the experimental plant with all its components. In addition, the operation of the SOM-type
algorithm used to conduct the study is described. The algorithm is trained based on the
data collected on the plant, and the output map in Section 4 is then analysed. Finally,
Section 5 summarises and outlines future research directions.

2. Literature Review

The literature review about the oil and gas sector was conducted systematically to
thoroughly evaluate all relevant scientific studies. The literature analysis was conducted
using the SCOPUS database. The first keyword digit in the database was “oil and gas
sector”. The search produced 2023 results. The results obtained from the research are
based on the information in the abstract, introduction, and keywords. Figure 1 represents
a timeline for the number of publications by year. Based on an initial analysis of the
literature, it can be inferred that the first studies on oil and gas plants were conducted in the
1980s, and the subject remained relatively unexplored for many years. However, research
in this area started gaining momentum around the early 2000s and has since experienced
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a consistently growing trend. Indeed, the industrial oil and gas sector underwent significant
changes and improvements in the 2000s, thanks to the introduction of new technologies
and the increasing attention to safety [25].

During the search, specific filters were applied to identify the most relevant articles.
For the literature analysis, only scientific journal articles published in English between
2019 and 2023 were considered to keep up with the latest research studies on oil and gas
and how new enabling technologies have improved production processes. A thorough
examination of all articles was conducted to assess their relevance and appropriateness
concerning the new technologies in the oil and gas sector. Table 1 presents the selected
keywords, the number of papers retrieved by Scopus, and the relevant papers for this
literature review.
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Table 1. Summary of the selected literary contributions.

Keyword # of Papers # of Relevant Papers

“oil and gas sector” AND “machine learning” 11 3
“ onshore platform” AND “ machine learning” 1 1
“oil and gas sector” AND “anomaly detection” 11 8

“oil and gas sector” AND “artificial intelligence” 4 1
“oil and gas sector” AND “digital twin” 2 1
“multiphase flow” AND “digital twin” 6 1

“oil and gas sector” AND “Internet of Things” 5 -
“oil and gas sector” AND “artificial neural network” 4 1

“oil and gas sector” AND “Self-Organizing Map” 1 -

According to all the scientific papers reviewed, industrial oil and gas plants can be
called complex systems because they comprise numerous interconnected elements that
aim to extract resources from underground. Therefore, maintaining safety in these plants
requires strict control of numerous components. Improved reliability can be achieved
by predicting which components will fail during a specific time interval or identifying
those operating under abnormal conditions [26,27]. However, this is challenging, especially
when several parameters must be considered simultaneously, such as the probability of
failure, maintenance costs, etc. [28]. Thus, as mentioned before, the definition of effective
maintenance policies is the main objective to support companies in dealing with process
interruptions while preventing significant profit losses [29].

Zainuddin et al. [30] propose a deep learning algorithm named recurrent neural
network-gated recurrent unit (RNN-GRU) capable of monitoring the health of machines
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inside the oil industrial complex. Predicting an imminent event is a fundamental action
to safeguard the health of the plant and the safety of workers. Additionally, knowing the
status of machines in an industrial line also helps save costs in the event of an unexpected
breakdown. For example, an unplanned breakdown of a machine, in addition to halting the
machine itself, could stop the production line, causing losses of up to millions of euros. This
algorithm achieves an overall accuracy of 87 per cent in predicting the state of machines.

The study by Wang et al. [31] provides a comprehensive overview of machine learning
applications in the oil and gas sector. The research shows that different machine learning
techniques can improve industrial plant efficiency.

Choubey et al. [32] expose the main artificial intelligence and machine learning tech-
niques applied in the oil and gas industry. Through these techniques, it is possible to make
optimal use of information from smart devices on plants and also keep track of flows in
and out of the plant.

In the paper of Gupta et al. [33], different types of machine learning applied to the oil
and gas industry in upstream, midstream, and downstream processes are presented. Exam-
ples of how machine learning can optimize exploration, drilling, production, transportation,
and refining operations are discussed. Finally, the document deals with the advanced pro-
cessing of seismic data and analyses current artificial intelligence implementations and
their impact on industrial processes.

One problem that could arise in an industrial-oil context is related to possible leakage
in oil or gas pipelines. Aljameel et al. [34] developed a real-time ML model to detect
pipeline leaks. They designed and compared five automatic classification architectures to
conduct the research work. From the results obtained from the networks, they chose the
Support Vector Machine (SVM) algorithm since it achieves 97.4 per cent accuracy.

The gas-liquid ejector is one of the essential components of an oil and gas plant.
This device can mix two flows at different pressures and impart the energy necessary for
transport. However, the system will be unstable if a fault occurs in the ejector, and the
operator’s safety will be jeopardized. Mazzuto, Ciarapica et al. [35] developed a Digital
Twin of an ejector installed in an experimental plant. This model can predict the future
state of the component and diagnose any fault on the line. Swarm Intelligence methods
with minimal computational complexity and resource needs are used to build models to
reduce system latency.

The Multi-Phase Flow Metre (MPFM) is another device used in the oil and gas sector.
An MPFM does not separate the phases as this is a time-consuming industry practice but in-
stead offers real-time measurements of a well’s gas, oil, and water flows. Barbariol et al. [36]
proposed research focused on the anomaly detection approach for MPFM data, which can
successfully handle the complexity and unpredictability of the data because flow composi-
tion evaluation is crucial for excellent management and productivity prediction. These are
unsupervised approaches, such as the Cluster-Based Local Outlier Factor and Isolation For-
est, written as embedded programmes meant for plug-and-play implementations without
tweaking the module for the well that hosts the MPFM. The method may be used for other
equipment with several independent but connected modules, such as electric vehicles,
batteries, and redundant systems, and enables the end user to quickly detect aberrant data
and gain an indicator of measurement reliability.

Monitoring anomaly detection systems in the oil and gas industries are typically
Wireless Sensor Network (WSN)-based or Supervisory Control And Data Acquisition
(SCADA)-based systems, which have significant limitations. SCADA systems commu-
nicate using different protocols vulnerable to various hacker attacks. Should there be
hacker attacks, the security of the operator and the industrial facility could be jeopardized.
Mohammed et al. [37] propose a supervised machine learning algorithm (XGBoost) that can
detect the Denial of Service (DoS) hacker attack. From the results obtained, the algorithm
identifies this type of attack with 99% accuracy.

The existing literature does not include studies on using a Self-Organizing Map
(SOM)-type artificial neural network for anomaly identification in the oil and gas industry.
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To fill this gap, this study proposes an autonomous SOM-based algorithm, trained on
various steady-state and anomaly tests, to provide comprehensive support for plant state
identification.

The algorithm is tested in a two-phase experimental plant in the Department of
Industrial Engineering and Mathematical Sciences (DIISM) of the Università Politecnica
delle Marche (Ancona, Italy).

3. The Research Approach

Figure 2 shows all the steps taken to conduct the research study. The following
section describes the two-phase experimental plant used to perform the research work
and the neural network used to classify the different working conditions of the plant. The
chosen artificial intelligence algorithm is named the Self-Organizing Map. The network’s
parameters are then explained.
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The steps of the research project are briefly described as follows:

(i) Experimental plant Analysis—An AS-IS analysis is conducted in the two-phase exper-
imental plant. All components and smart sensors it is equipped with are described
(Section 3.1).

(ii) Objective definition—The research project aims to use an artificial neural network to
identify potential failures in an oil and gas plant (Section 3.2).

(iii) Dataset Acquisition Analysis—Numerous tests are conducted on the plant. First, data
are taken for the steady state of the system and fault conditions. The anomalies were
created intentionally using manual shut-off valves that prevent fluid flow. For each
shut-off valve, three distinct degrees of occlusion are produced (L1: low obstruction,
L2: medium obstruction, L3: high obstruction) (Section 4.1).

(iv) Dataset Preprocessing—The readings of steady-state and samples of all anomaly L3
tests are unified into a single database that is then standardized using the z-score
method. Finally, the dataset is ready to be fed to the SOM network (Section 4.1).

(v) SOM Training—The training process sees the SOM network’s optimal choice of
two fundamental parameters: Learning Rate and Neighbourhood Size. The two pa-
rameters are chosen to minimize an objective function defined by the quantization
error (Section 4.2).

(vi) SOM Output Interpretation—The input data are projected into a two-dimensional
output map. Next, the relationships between the areas and macro-areas into which
the SOM network projects the different readings are studied. Finally, two parameters
are considered to validate the network results: cluster purity and confusion matrix
between the predicted and actual readings (Section 4.4).

(vii) The algorithm in exercise—After training the algorithm and evaluating the results
of anomaly L3 tests, the readings of L1 and L2 anomalous states are provided to the
SOM algorithm (Section 4.6).

(viii) Performance evaluation—Sums regarding the algorithm’s effectiveness and the out-
comes from the two separate datasets are calculated (Section 4.7).
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The reason for choosing the unsupervised algorithm Self-Organizing Map for the
anomaly detection on the experimental two-phase plant is that it generates a two-dimensional
map, which can be easily comprehended by operators not well versed in artificial
neural networks.

The Self-Organizing Map algorithm is employed for clustering and visualizing data,
creating a map of artificial neurons that efficiently represent data. In contrast to other
algorithms, such as Random Forest (RF) [38] and Support Vector Machine (SVM) [39],
SOM does not necessitate input data labelling, allowing it to be utilized for analysing
unsupervised data. RF and SVM algorithms are primarily used for data classification
and regression. These algorithms require input data labelling, meaning that they need
training data and a target variable for supervision. Although they can be used to analyse
unsupervised data, their effectiveness may be limited. In summary, SOM is useful when
working with unlabelled data and seeking to visualize and analyse such data in a compact
and organized manner.

3.1. The Experimental Two-Phase Plant

The gas-liquid biphasic system is characterized by the presence of two phases, a gaseous
and a liquid one, in thermodynamic equilibrium. Although the gas and liquid are inti-
mately mixed, they maintain their distinct physical properties, such as density, viscosity,
and surface tension.

The two-phase experimental plant is located at the Department of Industrial Engi-
neering and Mathematical Sciences (DIISM) of the Università Politecnica delle Marche
(Ancona, Italy). The 3D plant model is shown in Figure 3, and some views of the actual
plant are in Figure 4. It reproduces the extraction of oil and natural gas from depleted
wells. Specifically, the useful life of hydrocarbon reservoirs is related to their potential and
operating costs. A well is depleted if the water in it is in such quantities that it cannot be
extracted or if the volumes of hydrocarbons produced become uneconomic considering
the very high operating costs to make them unsustainable if there is little or no production.
In such circumstances, the most obvious solution would be installing appropriate pumps
located on the surface and at the base of the oil well with a very high cost compared
to the produced hydrocarbon volumes. The system under consideration represents an
undoubtedly more efficient solution. The extraction from a depleted reservoir is carried
out by using the pressure of a hypothetical reservoir at the height of its useful life. Due to
its physical characteristics, the latter’s pressure is higher than the transport pressure and,
therefore, is able to create suction on the depleted reservoir, which, in contrast, does not
have enough pressure for transport on the line.

Gas-liquid ejectors can mix two phases at different pressures (depletion and good
wells) and impart the necessary transport energy. While in a realistic situation, the fluids
treated are crude oil and natural gas, for safety reasons, water and ambient air are used in
the case of the experimental plant. Specifically, water in a tank and a positive displacement
pump model pressurized well behaviour, while ambient air simulates natural gas from
a depleted reservoir. Pressurized water (“INLET WATER”) enters the ejector, creating
a vacuum that draws in a certain amount of air from the environment (“INLET AIR”), thus
creating a two-phase mixture (“INLET MIXTURE”). The resulting mixture is directed into
a vertical tank that acts as a slug catcher to separate the liquid (“OUTLET WATER”) and gas
(“OUTLET AIR”) phases. The plant is equipped with three pneumatic valves: to control
the inlet water pressure (V1), regulate the pressure inside the tank (V2), and regulate the
water level (V3). All the “VMs” in Figure 3 represent shut-off valves used to reproduce
anomalies in the system.
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Table 2 briefly describes the plant equipment characteristics in terms of the monitored
variable, the unit of measurement, type of equipment, and finally, the equipment tag code.
All the plant sensors and valves are connected to a Revolution Pi device to acquire their
status value.

Table 2. Plant equipment characteristics.

ID Description UM Type Tag

S1 Inlet water pressure [bar] OUTPUT Endress+Hauser Cerabar M PMP51
S2 Inlet water flow rate [m3/h] OUTPUT Endress+Hauser Promag W
S3 Ejector pressure [bar] OUTPUT Setra 280E
S4 Diffuser mixture pressure [bar] OUTPUT Foxboro 841GM CI1
S5 Tank pressure [bar] OUTPUT Foxboro 841GM-CI1
S6 Inlet air flow rate [m3/h] OUTPUT Foxboro Vortez DN 50
S7 Tank water level [mm] OUTPUT Foxboro IDP-10
S8 Outlet air flow rate [m3/h] OUTPUT Endress+Hauser Prowirl 200
V1 Valve 1 closure [%] INPUT Spirax Sarco 9126E Pneumatic Valve
V2 Valve 2 closure [%] INPUT ECKARDT MB6713 Pneumatic Valve
V3 Valve 3 closure [%] INPUT ECKARDT MB6713 Pneumatic Valve

3.2. The Self-Organizing Map

The Self-Organizing Map (SOM) was first theorized by Kohonen [40]. Based on
the similarity of the input information, the algorithm reorders the data in the map by
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performing a sort of classification. The structure of this artificial neural network consists
only of the input and output layers.

The input dataset consists of a samples number equal to D described by n features,
xi = (x1, x2, . . . , xn) with i = 1, 2 . . . D. Each features sample (xi,j with j = 1, 2 . . . n) is

associated with a weight vector in the output map wi
j =

(
wi

j,1, wi
j,2, . . . , wi

j,m

)
where m

is the number of output nodes. The initial weights, randomly initialized, must be close
to zero, avoiding the presence of similar weights. This way, no order is imposed on the
network during the initialization phase.

The output layer is a low-dimensional representation of the input data. Typically, its
nodes are arranged in a two-dimensional architecture organized as a grid with a rectangular
or hexagonal topology. Mainly, the number of output nodes denotes the maximum number
of clusters and influences the accuracy of the SOM.

The scientific study of Shalaginov and Franke [41] can be exploited to calculate
the number of nodes in the output grid. Considering D samples in the input database,
Equation (1) describes the number of output nodes m.

m = 5
√

D (1)

Once the number of output nodes is identified, choosing the proper grid topology
is necessary. Indeed, each grid has specific properties: in the rectangular topology, each
node has four neighbours, while in the hexagonal one, each node has six neighbours. In
general, the hexagonal topology is the most used because of its more significant number
of neighbours.

In unsupervised network learning, output nodes compete to be activated. Only the
node with the weight closest to the input vector will be activated and declared the Best
Matching Unit (BMU). Specifically, for the BMU identification, the distance between an
input sample xi and all weight vectors wj is calculated using measurement methods such
as Manhattan, Chebyshev, or Euclidean distance. However, according to Kohonen [40],
the Euclidean distance (see Equation (2)) is the most suitable for a visual representation
because a more isotropic visualization of the dataset is achieved.

di
p(k) =

√√√√ n

∑
j=1

(xi,j(k)−wi
j,p(k))

2 (2)

With i = 1, 2 . . . D, p = 1, 2 . . . m, and k = 1, 2 . . . T, where T is the maximum iterations
number. At iteration k, the winning node p*

i (k) of all those considered will be the one that
minimizes Equation (2), as shown in Equation (3).

p*
i (k) = argmin

{
di

p(k)
}

(3)

Likewise, human neurons process similar information using neighbouring neurons.
The SOM’s topological organization requires that adjacent neurons represent inputs with
similar properties in the output space. Therefore, the BMU determines the spatial position
of cooperating nodes’ neighbourhoods. These nodes, sharing common characteristics,
activate each other to learn something from the same input. This way, the BMU node
and the neighbouring nodes weights must be adapted to become more representative and
faithful to the input space. Two parameters must be set to achieve this step: the learning rate,
α(k), and the neighbourhood size. In particular, the learning rate controls the change rate of
the weights and the neighbourhood size at each iteration. Learning rate and neighbourhood
size guarantee the algorithm convergence even after a reasonable number of iterations



Appl. Sci. 2023, 13, 3725 9 of 28

(at least 1000). Thus, the learning rate gradually decreases during network training. As
described by Natita et al. [41], Equations (4)–(6) offer different learning rate formulas.

α(k) = α(0)· 1
k

(4)

α(k, T) = α(0)·(1− k
T
) (5)

α(k, T) = α(0)·e
k
T (6)

In particular, α(0) is the value of the learning rate at the first iteration, and k is the
current iteration. At this point, using a discrete-time formalism, let wi

j,p*(k) be the weight
vector of the winning node at iteration k. Then, at iteration k + 1, it is defined as described
in Equation (7).

wi
j,p*(k + 1) = wi

j,p*(k) + α(k)·
[
xi,j(k)−wi

j,p*(k)
]

(7)

The topological properties of the initial space are preserved in the final one thanks
to the neighbourhood size. The vectors of the nodes close to the BMU (p*

i (k)), indicated
with N*

N, have a crucial role in the learning process. The rate of weights adaptation
decreases moving away from the winning node, according to a decay function called the
neighbourhood function, hp*,p(k), where p* indicates the winning node and p = 1, 2, . . . m.
At this point, the weights of all other nodes can be updated according to Equation (8).

wi
j,p(k + 1) = wi

j,p(k) + α(k)·hp*,p(k)·
[
xi,j(k)−wi

j,p(k)
]

(8)

Kohonen [40] claims that different types of neighbourhoods can be distinguished
(Figure 5). A discrete neighbourhood function is defined as a function that defines a set
Nc of elements at the winning node, such as hp*,p(k) = γ(t) if i ∈ N*

N and hp*,p(k) = 0 if
i /∈ N*

N. The γ(t) value indicates the degree of participation in weight update [42]. It is
also possible to define the neighbourhood using a continuous function. The continuous
neighbourhood function is often preferred over the discrete one because it decreases in
time and space as the number of iterations increases. Thus, a more homogeneous output
that preserves as much as possible the initial topological composition returns. There are
several neighbourhood functions in the literature, such as the Bubble Equation (9), Gaussian
Equation (10), Cutgass Equation (11), and Epanechikov Equation (12) [43].

hp*
i p(k) = 1(k)·(σ(k)− di

p*
i i) (9)

hp*
i p(k) = exp

− di
p*

i i
2

2σ2(k)

 (10)

hp*
i p(k) = exp

− di
p*

i i
2

2σ2(k)

·1(k)·(σ(k)− di
p*

i i) (11)

hp*
i p(k) = max{0, 1(k)−

(
σ(k)− di

p*
i i

)2
} (12)

di
p*

i i indicates the distance between the BMU and the excited neuron i, 1(k) is the step

function: 1(k) = 0 if k < 0 and 1(k) = 1 if k≥ 0 and σ(k) stands for the neighbourhood radius
at iteration k. The maximum point of the symmetric Gaussian function is that defined by
di

p*
i i = 0. Since it is a monotone decreasing function, Kohonen [40] suggests starting with

a large σ(0) value since it has been seen experimentally that starting the training with too
small a value does not bring the network to convergence.
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3.3. Tuning Phase

Choosing the parameters that characterize the network, such as the neighbourhood
size and the value of the learning rate, is a delicate operation. Indeed, these values
cannot be chosen at first glance. Still, optimal values must be looked for in the space of
possible variables to find a set of variables that will afford the algorithm the most desirable
results [44]. Among the many hyper-parameterization techniques in the literature, the
hyperopt.fmin function is chosen to find the optimal values of the SOM [45]. The task
performed by this function is to find the best value of one or more scalar functions among
a set of possible arguments. This method causes the user to describe the objective function
space in which to search precisely in the optimal parameters of the network [46]. To use
this function, it is necessary to define:

• The space on which to search.
• The objective function to be minimized.
• The database in which to store all search evaluations (optional).
• The search algorithm to be used (optional).

Equation (13) defines the search space consisting of the two linear distributions Φ and
A. The first Φ establishes a set of possible variable values the neighbourhood radius can
take. At the same time, the A distribution indicates a potential deal to be assigned to the
learning rate (Equations (15) and (16)). Finally, the sequence of values presented within
a linear distribution is defined by a step (Equation (14)).

X(Φ, A) (13)

step = 10−µ with µ ∈ N and step ∈ (0, 1] (14)

Φ = {∀ si ∈ R : si = i·step, i ∈ [1, 5× 10µ], i ∈N} (15)

A = {∀ ai ∈ R : ai = i·step, i ∈ [1, 5× 10µ], i ∈N} (16)

The task performed by hyper-parameterization is to test the SOM network with
different learning rate values and neighbourhood size to find the best combination that
minimizes an objective function (Equation (17)). In the case of SOM networks, it is necessary
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to have a low Quantization Error (QE). Only in this way can the map return outputs that
preserve the topological relationships of the source data.

s′i, a′i = argmin(QE) (17)

3.4. Quality of Self-Organizing Map

Several methods in the literature are used to validate the quality of the SOM. Pölzl-
bauer [47] validates the SOM according to two parameters concerning the quality of the
network learning (Quantization Error, QE) and the quality of the projection of the source
data onto the output map (Topographic Error, TE). At the end of the learning process, each
input data x is assigned to a weight on the output map that best represents it wi

j,p [48]. The

difference
∥∥∥x(k)−wi

j,p(k)
∥∥∥ between the input and its associated weight expresses the quan-

tization error. Through Equation (18), it is possible to calculate the average quantization
error, which numerically represents how similar the final map is to the initial dataset.

QE =
∑K

k=1

∥∥∥x(k)−wi
j,p(k)

∥∥∥
K

(18)

One way to reduce the value of QE is to increase the number of output nodes to
have the samples distributed more sparsely over the map, but in this way, the direct
correlation with TE would be lost. The quality of the data projection on the output map is
determined by considering the Topographic Error (Equation (19)). This parameter defines
the percentage of vectors for which the first and second BMUs are not adjacent. Equation
(20) expresses how this value is calculated.

TE =
1
D

D

∑
k=1

err(x(k)) (19)

err(x(k)) =

{
1, if p*

i (k), 2p*
i (k) ∈ N*

n

0, otherwise
(20)

After verifying the method and training the network, the input data are projected onto
the output map. The nodes that make up the output grid accommodate only one class type,
but sometimes this does not happen. Therefore, an analysis of cluster purity is conducted
to uniquely assign a single class to each cell in the map [49]. Purity is a metric for how
much a cluster contains a single class (Equation (21)). First, this parameter is calculated:
count the number of data points from each cluster’s most common class type. Then, divide
the total data points by the sum of all clusters. Formally, given a collection of clusters M
and a set of classes C, both splitting N data points, purity may be defined as:

1
N ∑

m∈M
max
c∈C
|m∩ c| (21)

The confusion matrix is another tool to validate the results of the SOM Network [50].
A confusion matrix is a C × C matrix used to assess the effectiveness of a classification
model, where C represents the number of target classes [51]. The matrix compares the
actual goal values to the machine learning model’s predictions (Figure 6). Thus, this method
evaluates a classification model’s performance by computing measures such as accuracy,
precision, recall, and F1-score [34]. The parameters that make up the matrix are:

• True positives (TP): the actual value is positive, and the predicted is also positive.
• True negatives (TN): the actual value is negative, and the prediction is also negative.
• False positives (FP): the actual is negative, but the prediction is positive.
• False negatives (FN): the actual is positive, but the prediction is negative.
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Figure 6. Confusion matrix for the binary classification [51].

The following parameters can be exploited to analyse the properties of the confusion
matrix:

• Accuracy (Equation (22))—is the percentage of samples in the test set that were cate-
gorized correctly.

Accuracy =
TP + TN

TP + FP + TN + FN
(22)

• Precision (Equation (23))—out of all the samples, how many belonged to the positive
class compared to how many the model projected would.

Precision =
TP

TP + FP
(23)

• Recall (Equation (24))—the proportion of samples from the positive class was expected
to do so.

Recall =
TP

TP + FN
(24)

• F1-Score (Equation (25))—the harmonic mean of the precision and recall scores ob-
tained for the positive class.

F1− Score =
2·Precision·Recall
Precision + Recall

(25)

All the steps taken during the SOM algorithm’s training phase are depicted in a flowchart
in Figure 7.
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4. Results and Discussions

This section discusses the data collected by the plant. The steady-state and abnormal
readings are managed within a single database representing the SOM network’s input. The
data are projected onto the map and are validated depending on the quantization error.
Finally, correlations between the identified and macro areas are analysed based on the data
projected onto the map.

4.1. Raw Data Collection and Data Standardization

By acting on the pneumatic valve (V1, V2, and V3) closures and setting the inlet water
pressure (S1) to 5.5 bar, the tank pressure (S5) to 1.3 bar, and the tank level (S7) to 300 mm,
the standard plant behaviour has been achieved. Then, all the anomalies were reproduced
by acting on the shut-off valve (VM) closures, as described in Table 3. The data are collected
in a single database containing physical quantities of different types of different scales.
Indeed, for each sampling, flow, pressure, and level measurements characterize the fluids
circulating in the system. For this very reason, before starting the training phase of the
SOM, the data are standardized through the z-score method, where a random variable
X, with a mean γ and variance σ2, is transformed to a random variable Z with mean 0
and variance equal to 1 [52]. The calculation involves subtracting from X, the variable of
interest, its mean γ and dividing it by the standard deviation σ (Equation (26)).

Z =
X− µ

σ
(26)
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Table 3. Description of the anomalies.

Test ID Description

V10L1 It describes a minor tank water leakage obtained since closing the valve VM10 by 30%
V10L2 It describes a medium tank water leakage obtained since closing the valve VM10 by 60%
V10L3 It describes a grave tank water leakage obtained since closing the valve VM10 by 100%
V3L1 It describes a minor obstruction in the water inlet piping system obtained since closing the valve VM3 by 30%
V3L2 It describes a medium obstruction in the water inlet piping system obtained since closing the valve VM3 by 60%
V3L3 It describes a grave obstruction in the water inlet piping system obtained since closing the valve VM3 by 100%
V5L1 It describes a minor obstruction in the mixture inlet piping system obtained since closing the valve VM5 by 30%
V5L2 It describes a medium obstruction in the mixture inlet piping system obtained since closing the valve VM5 by 60%
V5L3 It describes a grave obstruction in the mixture inlet piping system obtained since closing the valve VM5 by 100%
V6L1 It describes a minor obstruction in the water outlet piping system obtained since closing the valve VM6 by 30%
V6L2 It describes a medium obstruction in the water outlet piping system obtained since closing the valve VM6 by 60%
V6L3 It describes a grave obstruction in the water outlet piping system obtained since closing the valve VM6 by 100%
V7L1 It describes a minor obstruction in the air inlet piping system obtained since closing the valve VM7 by 30%
V7L2 It describes a medium obstruction in the air inlet piping system obtained since closing the valve VM7 by 60%
V7L3 It describes a grave obstruction in the air inlet piping system obtained since closing the valve VM7 by 100%
V8L1 It describes a minor air leakage in the tank obtained since closing the valve VM8 by 30%
V8L2 It describes a medium air leakage in the tank obtained since closing the valve VM8 by 60%
V8L3 It describes a grave air leakage in the tank obtained since closing the valve VM8 by 100%
V9L1 It describes a minor obstruction in the air outlet piping system obtained since closing the valve VM9 by 30%
V9L2 It describes a medium obstruction in the air outlet piping system obtained since closing the valve VM9 by 60%
V9L3 It describes a grave obstruction in the air outlet piping system obtained since closing the valve VM9 by 100%

4.2. The Algorithm

A computer equipped with a 12th Gen Intel(R) Core(TM) i9-12900KF 3.20 GHz pro-
cessor, 32.0 GB RAM, and 16 GB GPU was used to perform the research work. The
Self-Organizing map was written in Python code, and several libraries were used. NumPy
and Pandas packages were needed to manipulate the data, while the MiniSom library was
used for map creation and the Bokeh package for graphical representation. The MiniSom
Function appears as follows:

SOM = MiniSom(x, y, input len, topology, sigma, learning rate, neighborhood function, seed) (27)

where x and y are the numbers of rows and columns of the output grid, input len is the
length of the database supplied to the network, topology defines the topology of the grid
(rectangular or hexagonal), sigma is the initial radius of the neighbourhood, learning rate
represents the α(0), neighborhood function is Equation (10), and the seed is the seed of
the network.

The readings from the steady-state test and all the Level 3 anomalies are collected in
a database of 5321 samples. To improve readability and ensure a homogeneous output, the
number of rows and columns in the output map was set to be equal, resulting in a square
map. Applying the formula explained in Section 3.2 to the spatial dimension of the map, it
is also possible to calculate these last two parameters. There are 18 rows and columns of
the output map.

In function (27), the hexagonal topology is set for the grid cells, the inverse learning
rate function is chosen (Equation (5)), the Gaussian neighbourhood function is imposed
(Equation (10)), and the seed is also set to 0 to realize an isotropic, repeatable map that
preserves the initial topological relationships.

The algorithm is hyper-parametrized for the optimal choice of parameters characteriz-
ing the learning rate and neighbourhood size. In Equation (14), µ is set to 4 for both linear
distributions. Therefore, the range [1, 5× 10µ] in Equations (15) and (16) is composed of
50,000 values, and the algorithm tests the SOM network by combining all possible values
between these two distributions.



Appl. Sci. 2023, 13, 3725 15 of 28

The input parameters to the network are defined as follows:

• x: 18.
• y: 18.
• Input len: 5130.
• Topology: hexagonal.
• Sigma: 2.382866878925671.
• Learning rate: 2.422871364551101.
• Neighbourhood function: Gaussian Function.
• Seed: 0

4.3. Validation

After setting the various parameters within the MiniSom Function, it is necessary to
initialize the weights and start training the network. The weights associated with each
output node are initialized randomly to small values close to zero, and the number of
iterations is set to 10,000. Before visually studying the output map, it is necessary to validate
the network according to the quantization and topographic errors. The quantization error
allows us to assess the quality of network learning and shows how well the map fits the
source data. This parameter is calculated by determining the average distance of the sample
vectors to the BMU. The closer the error is to zero, the higher the quality of the map and
the more correctly arranged the output data. Topographic error defines the percentage of
vectors for which the first and second BMUs are not adjacent. A sample for which these two
nodes are not adjacent counts as an error. If the topographic error is 0, no error has occurred.
If it is 1, the topology was not preserved for any of the samples, and relationships from the
input dataset are lost in the output map. As shown in Figure 8, both parameters tend to
zero so the well-trained network preserves in the output map the topological relationships
present in the source dataset.

Before studying the results obtained from projecting the input data into the output
map, it is essential to analyse the U-Matrix (Unified Distance Matrix). This matrix contains
the various Euclidean distances between the input data and its associated weight. Through
the study of the U-Matrix, an initial analysis of the potential clusters in the map is possible.
In Figure 9a, the U-Matrix is represented using a heat map. If the node’s colour is lighter,
that node has similar properties to neighbouring nodes. On the other hand, if the colour
is dark blue, that node has different characteristics from the neighbouring node. Eight
clusters are visible while doing an initial qualitative study of the map’s colour tones, which
the artificial intelligence programme projects the input data into.
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4.4. Output Map

After an initial analysis of the U-Matrix, it is possible to analyse the matrix of occur-
rences of BMU responses (Figure 9b) through a colour map. In this case, dark-coloured
boxes indicate those nodes that are recalled the most during the training phase and vice
versa for the light-coloured boxes. The most responsive nodes have coordinates [5, 10]
and [6, 10]. As shown in Figure 10, all readings of the system’s steady state are placed in
these two locations. Unlike all other samples in the anomaly tests, the system’s steady-state
samples always present the same trend and do not vary its state. Therefore, all steady-state
readings are projected at those two nodes.

The nodes that make up the output grid accommodate only one class type, but
sometimes this does not happen. Therefore, an analysis of cluster purity (Equation (21)) is
conducted to uniquely assign a single class to each cell in the map. First, the purity value
is calculated for each cell. Then, the overall purity value considers all cell purities. The
overall value is 0.90, which means that statistically, the algorithm assigns each cell only one
class 90% of the time. In conclusion, each node in the output map is assigned a class based
on the purity of the clusters and the values provided by the U-Matrix. Figure 11 represents
the final output map, where each cell has been filled with the colour of the specific category,
as shown in Table 4.

Table 4. Legend of SOM output map.

System State Type of Anomaly Tag Colour

Transient of steady state / Hex Fuchsia
Steady state / Asterisk Orange

Anomaly 3 L3 Water Dot Green
Anomaly 5 L3 Air-water Dot Red
Anomaly 6 L3 Water Dot Purple
Anomaly 7 L3 Air Dot Brown
Anomaly 8 L3 Air Cross Pink
Anomaly 9 L3 Air Line Gray

Anomaly 10 L3 Tank Rhombus Yellow
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The first readings of almost all anomaly tests are clustered near the regime area. Then,
the shut-off valves are closed manually, and the system goes from a steady state to a new
operating point. Indeed, the database provided to the network also contains the readings
that characterize the transient of each abnormal test. The shut-off valves VM3 and VM6
impede the passage of water into the system and out of the tank. The SOM can recognize
a water anomaly in the system in both cases and projects the readings in the left part of the
map. The VM7 valve prevents air inflow, VM9 prevents air outflow, and VM8 simulates
an air leak inside the tank. The algorithm recognizes that all three anomalies involve air
and arranges the readings in the right part of the map. The red area shown in Figure 12
collects all the readings recorded on the system when the VM5 valve impedes the passage
of the two-phase air-water fluid into the tank. The algorithm arranges these anomalous
readings under the area marking the water anomaly and the air anomaly area. Finally,
the yellow area (Figure 12) in the lower right collects the readings recorded on the system
when a water leakage from the tank through the VM10 valve is simulated. The diversity of
this anomaly from the others described above prompts the SOM to arrange the readings in
a new area set in the lower right corner.

From the study conducted on the output map, the algorithm arranges the input data
into six macro areas (Figure 12): (i) steady-state area (orange), (ii) water anomaly macro-area
(green), (iii) air-water anomaly area (red), (iv) tank anomaly area(yellow), (v) air anomaly
macro-area (blue sky), and (vi) steady-state transition area (fuchsia).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 28  

 
Figure 12. Macro-areas in the output map. 

4.5. Input Data Confusion Matrix 
As explained in Section 3.4, each node provided to the algorithm contains a particular 

system state. Therefore, since nine classes are supplied to the input, the confusion matrix 
is 9 × 9 (Figure 13). 

 
Figure 13. Input data confusion matrix. 

Table 5 collects all the parameters needed for analysis. The lowest precision value 
(0.72) is assigned to the class representing the steady state. Filtering the projected data on 
the output map shows that the steady-state area contains all the first anomalous test 

Figure 12. Macro-areas in the output map.

4.5. Input Data Confusion Matrix

As explained in Section 3.4, each node provided to the algorithm contains a particular
system state. Therefore, since nine classes are supplied to the input, the confusion matrix is
9 × 9 (Figure 13).
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Table 5 collects all the parameters needed for analysis. The lowest precision value
(0.72) is assigned to the class representing the steady state. Filtering the projected data
on the output map shows that the steady-state area contains all the first anomalous test
readings. The reason why this result appears is that the anomaly test data are not acquired
automatically. The shut-off valves are mechanical. In addition, proper coordination is
needed between the operator who turns on the acquisition system and the operator who
rotates the shut-off valve obstructing the flow.

Table 5. Classification report of the level 3 anomalies.

Precision Recall F1-Score Support

Transient of Steady State 0.79 0.75 0.77 848
Steady State 0.72 1.00 0.84 717
Anomaly 3 0.98 0.81 0.89 301
Anomaly 5 1.00 0.98 0.99 168
Anomaly 6 0.98 0.75 0.85 328
Anomaly 7 1.00 0.95 0.97 238
Anomaly 8 1.00 0.98 0.99 918
Anomaly 9 0.97 0.97 0.97 755

Anomaly 10 0.98 0.91 0.94 1048

Figure 14 displays all the airflow sensor output values from every experiment. The
data are standardized, and the different tests are divided according to the colours shown
in Table 4. The black dots indicate the samples in the node [6,10]. This result is confirmed
further by the fact that when the shut-off valve is triggered, the system needs some time to
migrate to a new operating point. Consequently, the first measurements obtained during
anomaly tests often reflect the transition of the system from a steady state to anomaly state.

The overall accuracy of the algorithm is 90%, so the network optimally classifies the
readings in the output map.
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4.6. The Algorithm Evaluation

In the second phase of the research work, level 1 and level 2 anomalous readings are
analysed on the output map. As performed previously, the level 1 and level 2 outlier test
data were first unified and then standardized with the mean and variance of the input
dataset. Figure 15 represents all readings of levels 1 and 2 projected onto the output map.

The green circles in Figure 15a represent the level 1 and 2 anomaly readings generated
by the VM3 shut-off valve. The new input data are arranged in four distinct clusters. The
first two clusters are projected close to the border of the green area and the edge of the
orange-coloured steady state. The readings of the first two levels of VM3 are similar to
those of these two clusters. The last two clusters represent the readings of level 2. They are
placed within the area of the reservoir anomaly since the system in both situations has the
same incoming water flow rate.

The red area on the map represents the cluster in which the source network distributes
the anomalous readings of the system caused by the occlusion of the pipe connecting the
ejector outlet to the inlet of the holding tank. Level 1 and level 2 anomaly test data from the
VM5 valve are shown using red circles. These new input data, recording lower occlusions
than level 3, are distributed to the sides of the red area. The first readings of anomaly 5
level 1 deviate from the red area board and are located at the board of the air anomaly
macro area (Figure 15b).

The purple circles represent the data from the level 1 and level 2 anomalous tests of the
VM6 shut-off valve. Again, the new data are projected into the edge of the corresponding
anomalous area since, once more, the occlusions are less severe than those of level 3
(Figure 15c).

The brown circles depict the first two degrees of occlusion generated by the VM7
shut-off valve on the output map. The data recorded from these two tests show a reduced
obstruction of the air intake duct. The system is ready and immediately returns to the
steady-state condition; this is why level 1 and 2 readings are projected between the brown
and orange areas of the steady-state data (Figure 15d).

The network separates the data from levels 1 and 2 of anomaly 8 into four major
clusters, each symbolized by a pink cross. Due to their reduced intensity, all level 1
measurements are projected near the regime data zone. Level 2 measures, on the other
hand, are situated close to the edge of the anomaly 8 level 3 region and have a bigger valve
opening (Figure 15e).
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By providing the algorithm with data from levels 1 and 2 of anomaly 9, all readings are
projected into three clusters marked with a grey line. In addition, because the occlusions
are smaller than those in level 3, the data are also projected near to the regime zone, notably
in the transient zone. (Figure 15f).

The VM10 manual shut-off valve simulates the loss of water from the tank. The yellow
area of the map at the bottom right contains the level 3 VM10 readings. The map shows the
network level 1 and 2 readings as separate clusters of yellow rhombi positioned throughout
the network. Even slightly opening VM10 makes the system unstable and prevents it from
finding a new equilibrium point. While level 1 readings, due to their lower intensity, are
projected to be close to the regime zone, level 2 readings are projected to be close to the
yellow area (Figure 15g).

Moreover, the confusion matrix is used to verify the effectiveness of the algorithm.
Figure 16 represents the confusion matrix, and Table 6 compiles the findings after sending
the network level 1 and 2 anomaly values as input.
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Table 6. Classification report of the level 1 and 2 anomalies.

Precision Recall F1-Score Support

Anomaly 3 0.00 0.00 0.00 1195
Anomaly 5 0.95 0.48 0.63 913
Anomaly 6 0.80 0.31 0.45 709
Anomaly 7 0.00 0.00 0.00 949
Anomaly 8 0.83 0.38 0.52 1737
Anomaly 9 0.00 0.00 0.00 1550

Anomaly 10 0.48 0.23 0.31 1541

A closer look at the data on the confusion matrix reveals that many samples of level 1
and level 2 anomalies are misclassified. Most readings are projected in the steady-state area
and some in the transient area. Thus, the occlusion intensity is too low.

The VM3 shut-off valve prevents water from entering the system. Therefore, this
anomaly will only affect the system when the valve is entirely closed. The reason is that
if the valve is not entirely closed, it can allow water through, regardless of the amount of
water the system needs. For precisely this reason, the algorithm recognizes level 1 and level
2 anomaly 3 values as steady-state measurements when supplied.

However, the new tests for anomaly 5 show the highest accuracy level at 95 per cent.
Even by slightly closing the inlet water flow shut-off valve at the tank, the system enters
a new state that differs significantly from the steady state, and it is like level 3.

The results obtained from anomaly 6 level 1 and 2 data projection are also good. The
accuracy reaches 80% because even if the VM6 valve is closed a little, the flow rate of water
leaving the tank is like that of level 3.

Anomaly tests of inlet and outlet air produce the lowest accuracy values. In these
two scenarios, even with valves VM7 and VM9 partially closed, air still enters and exits
the system without experiencing a real occlusion. Figure 17 depicts the inlet air flow rate
relative to the steady state for testing anomaly 7 levels 1 and 2. Figure 18 shows the air
output for the tests of anomaly 9 level 1 and level 2 compared to the steady state.
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The two figures attest that the trend of the anomalous air system is very similar to the
trend of the steady state under both circumstances.

In conclusion, despite the low-precision results, the algorithm can still evaluate system
conditions. The created model can classify the presence or absence of an anomaly. For
example, suppose there is a significant occlusion in the system pipelines. In that case, the
algorithm can identify and classify it, but if there is only a minor occlusion, the model can
only notify the problem.

4.7. Summary

Self-Organizing Maps are generally used to solve clustering problems such as image
classification [53] or customer segmentation in the economic-financial domain [54]. In
the case of this study, the SOM algorithm is applied to anomaly detection instead. The
proposed algorithm can ensure reliable performance in detecting and classifying anomalies
in the experimental two-phase system.

The readings with which the algorithm was trained describe six distinct macro-areas
on the output map: the steady-state area, the transient area, the water anomaly area, the
air anomaly area, the air-water two-phase fluid anomaly area, and the reservoir leakage
anomaly area. Given that the algorithm has an overall accuracy of 90%, the network
efficiently classifies the readings on the output map.

Once the algorithm is trained using steady-state test data and level 3 anomalies, it
maps the output for data obtained from level 1 and level 2 anomalous tests. However, the
accuracy of these tests is lower compared to the training data since the pipe obstructions
created during these tests are of lower intensity. As a result, in most cases, the readings
from level 1 and 2 anomalous states are projected into the transient area.

Apart from its ease of implementation, the algorithm generates an easily comprehensi-
ble output map, even for individuals not well versed in artificial neural networks. Moreover,
if the algorithm is connected to the Digital Twin of the experimental system, it would enable
real-time projection of the system data onto the output map. Consequently, if the system
were to be in a condition different from the steady state, it would be easy to identify the
anomaly type, as the readings would be mapped onto the relevant anomaly area.

Two conclusions can be drawn from the output map if an anomaly is detected. Firstly,
the more severe the obstruction, the further the map will project the reading towards the
centre of the region of interest. Secondly, if the obstruction is minimal, the data will be
displayed at the border of the area.
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However, the analysed case study highlighted a limitation in characterizing the tran-
sient region. The algorithm can alert us that the system is no longer in steady-state
conditions but cannot classify the detected anomaly type. To describe the transient area
more thoroughly, one could study how the network organizes readings recorded on the
system when multiple anomalies are combined simultaneously. In addition, these new
tests could make a more detailed analysis of the macro-output areas boundaries.

5. Conclusions

The purpose of the paper was to implement a Self-Organizing Map to monitor
the health of the two-phase air-water plant within the Department of Industrial Engi-
neering and Mathematical Sciences (DIISM) of the Università Politecnica delle Marche
(Ancona, Italy).

This algorithm is an example of unsupervised learning, which is advantageous because
it does not require the user to label the training data manually. Moreover, the SOM
algorithm offers the benefit of decreasing the dimensionality of the input dataset to yield
an output that is simple to interpret. The input dataset is multidimensional and consists of
readings from all the flow, level, and pressure sensors directly connected to the experimental
system during various tests. In contrast, the output of the algorithm is a two-dimensional
map that is easy to interpret, even for an operator who is not an expert in artificial neural
networks. The algorithm implemented in this research has an accuracy of 90%. It can
identify the state of the two-phase system by associating a particular state with each node
on the output map. The output map comprises six macro-areas representing the possible
states of the two-phase system. Thus, the operator can quickly identify the state of the
plant by observing which area the system reading is projected onto. If the system deviates
from normal operating conditions, the system reading will be projected into the anomaly
area of the output map, allowing the operator to pinpoint the location of the fault within
the system.

The research study has identified certain limitations. The first constraint pertains to
the synchronization of data acquisition on the system. Anomaly tests are conducted by
manually closing the shut-off valves to generate obstructions in the line to create the training
dataset. However, there is often a lack of synchronization between the operator closing the
valve and the one initiating the recording. To overcome this limitation in future research,
replacing manual valves with solenoid valves is being considered to have complete control
over the system and reduce acquisition errors. Another limitation is associated with the
anomalies of air at level 1 and level 2. When these two types of anomalies are recorded, the
readings in the output map are projected close to the steady-state and transient areas. This
is because, in such scenarios, the system behaviour is very similar to that of the steady-state
state. In the next research work, it will be necessary to discriminate these anomalous areas
more efficiently to generate a detailed map.

In addition, in the transient area, the algorithm cannot accurately identify the type of
anomaly but only indicates that the system is no longer in steady-state conditions. New
readings will be recorded in the upcoming research work to overcome this limitation by
combining multiple anomalies in the same test. This method may enable the study of
individual boundaries of the output macro-areas in greater detail.
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