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Featured Application: We propose the PrivacyGLUE benchmark to compare and contrast NLP mod-
els’ general language understanding in the privacy language domain. This will help practitioners
in selecting understanding models for applications within the privacy language domain.

Abstract: Benchmarks for general language understanding have been rapidly developing in recent
years of NLP research, particularly because of their utility in choosing strong-performing models
for practical downstream applications. While benchmarks have been proposed in the legal language
domain, virtually no such benchmarks exist for privacy policies despite their increasing importance
in modern digital life. This could be explained by privacy policies falling under the legal language
domain, but we find evidence to the contrary that motivates a separate benchmark for privacy
policies. Consequently, we propose PrivacyGLUE as the first comprehensive benchmark of relevant
and high-quality privacy tasks for measuring general language understanding in the privacy lan-
guage domain. Furthermore, we release performances from multiple transformer language models
and perform model–pair agreement analysis to detect tasks where models benefited from domain
specialization. Our findings show the importance of in-domain pretraining for privacy policies. We
believe PrivacyGLUE can accelerate NLP research and improve general language understanding
for humans and AI algorithms in the privacy language domain, thus supporting the adoption and
acceptance rates of solutions based on it.

Keywords: privacy policies; NLP; benchmark; general language understanding; domain specialization
and generalization

1. Introduction

Data privacy is evolving into a critical aspect of modern life, with the United Nations
(UN) describing it as a human right in the digital age [1]. Data privacy practices are often
disclosed in complex legal documents known as privacy policies, and are commonly en-
countered in daily digital life when visiting websites or utilizing online services. Therefore,
the comprehension of privacy policies is important as it strongly correlates with the compre-
hension of one’s data privacy. Despite this importance, several studies have demonstrated
high barriers to the understanding of privacy policies due to their length and legal jargon [2].
McDonald and Cranor [3] estimate that an average person requires∼200 h annually to read
all privacy policies encountered in their daily life. The negative consequences of accepting
privacy policies without comprehension could be significant. Obar and Oeldorf-Hirsch [2]
demonstrated that most users in a survey mistakenly consented to gotcha clauses which
enabled the sharing of their private data with intelligence authorities and employers. Solu-
tions to the problem of privacy policy comprehension are in active discussion, with studies
such as Wilson et al. [4] advocating for the training of Artificial Intelligence (AI) algorithms
on appropriate benchmark datasets to assist humans in understanding privacy policies.

Appl. Sci. 2023, 13, 3701. https://doi.org/10.3390/app13063701 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13063701
https://doi.org/10.3390/app13063701
https://doi.org/10.3390/app13063701
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1347-9108
https://orcid.org/0000-0002-2772-5701
https://orcid.org/0000-0001-9778-8495
https://orcid.org/0000-0002-7378-0664
https://orcid.org/0000-0002-6747-1021
https://doi.org/10.3390/app13063701
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13063701?type=check_update&version=1


Appl. Sci. 2023, 13, 3701 2 of 18

In recent years, benchmarks have been gaining popularity in Machine Learning and
Natural Language Processing (NLP) communities because of their ability to holistically
evaluate model performance over a variety of representative tasks, thus allowing practi-
tioners to compare and contrast different models on multiple tasks relevant for the specific
application domain. General Language Understanding Evaluation (GLUE) [5] and Super-
GLUE [6] are examples of popular NLP benchmarks which measure the natural language
understanding capabilities of state-of-the-art (SOTA) models. NLP benchmarks are also
developing rapidly in language domains, with LexGLUE [7] being an example of a recent
benchmark hosting several difficult tasks in the legal language domain. Interestingly, we
do not find similar NLP benchmarks in the privacy language domain for privacy policies.
While this could be explained by privacy policies falling under the legal language domain
due to their formal and jargon-heavy nature, we claim that privacy policies fall under
a distinct language domain and cannot be subsumed under any other specialized NLP
benchmark such as LexGLUE.

To investigate this claim, we gather documents from Wikipedia [8], European Leg-
islation (EURLEX) [9] and company privacy policies [10], with each corpus truncated to
2.5 M tokens. Next, we feed these documents into BERT and gather contextualized em-
beddings, which are then projected to a two-dimensional space using Uniform Manifold
Approximation and Projection (UMAP) [11]. In Figure 1, we observe that the three domain
corpora cluster independently, providing evidence that privacy policies lie in a distinct
language domain from both legal and Wikipedia documents, and therefore require an
independent NLP benchmark. With this motivation, we propose PrivacyGLUE as the first
comprehensive benchmark for measuring general language understanding in the privacy
language domain. Our main contributions are threefold:

1. Composition of seven high-quality and relevant PrivacyGLUE tasks, specifically OPP-
115, PI-Extract, Policy-Detection, PolicyIE-A, PolicyIE-B, PolicyQA and PrivacyQA.

2. Benchmark performances of five transformer language models on all aforementioned
tasks, specifically BERT, RoBERTa, Legal-BERT, Legal-RoBERTa and PrivBERT.

3. Model agreement analysis to detect PrivacyGLUE task examples where models bene-
fited from domain specialization.

We release PrivacyGLUE as a fully configurable benchmark suite for straight-forward
reproducibility and production of new results in our public GitHub repository: https://
github.com/infsys-lab/privacy-glue (accessed on 22 January 2023).

We illustrate our methodologies in the form of a flowchart in Figure 2. Our findings
show that PrivBERT, the only model pretrained on privacy policies, outperforms other
models by an average of 2–3% over all PrivacyGLUE tasks, shedding light on the impor-
tance of in-domain pretraining for privacy policies. Our model–pair agreement analysis
explores specific examples where PrivBERT’s privacy-domain pretraining provided both a
competitive advantage and disadvantage. By benchmarking holistic model performances,
we believe PrivacyGLUE can accelerate NLP research into the privacy language domain and
ultimately improve general language understanding of privacy policies for both humans
and AI algorithms.

https://github.com/infsys-lab/privacy-glue
https://github.com/infsys-lab/privacy-glue
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Figure 1. UMAP visualization of BERT embeddings from Wikipedia, European Legislation (EURLEX)
and company privacy policy documents with a total of 2.5 M tokens per corpus.

Innovative aspects of our study include consulting European and American privacy ex-
perts to determine challenging task types where AI algorithms could assist humans. Based
on this analysis, we carefully select high-quality and publicly available datasets originating
from peer-reviewed studies. We refine these datasets by applying transformations to shape
them into tasks that would be useful for improving comprehension of privacy policies
to average users. Next, we selected pretrained models from various language domains
and fine-tuned them on PrivacyGLUE tasks. Finally, we provide a model disagreement
analysis to investigate samples where in-domain pretraining led to specialization and the
lack thereof.
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Figure 2. Flowchart depicting our main contributions, that is, the PrivacyGLUE benchmark with its
tasks and models, along with the model disagreement analysis proposed in our study.

2. Related Work

NLP benchmarks have been gaining popularity in recent years because of their ability
to holistically evaluate model performance over a variety of representative tasks. GLUE [5]
and SuperGLUE [6] are examples of benchmarks that evaluate SOTA models on a range
of natural language understanding tasks. The Generation, Evaluation and Metrics (GEM)
benchmark [12] looks beyond text classification and measures performance in Natural
Language Generation tasks, such as summarization and data-to-text conversion. The Cross-
Lingual Transfer Evaluation of Multilingual Encoders (XTREME) [13] and Cross-Lingual
Transfer Evaluation of Multilingual Encoders Revisited (XTREME-R) [14] benchmarks
specialize in measuring cross-lingual transfer learning on 40–50 typologically diverse lan-
guages and corresponding tasks. Popular NLP benchmarks often host public leaderboards
with SOTA scores on supported tasks, thereby encouraging the community to apply new
approaches for surpassing top scores.

While the aforementioned benchmarks focus on problem types such as natural lan-
guage understanding and generation, other benchmarks focus on language domains.
The LexGLUE benchmark [7] is an example of a benchmark that evaluates models on tasks
from the legal language domain. LexGLUE consists of seven English language tasks that
are representative of the legal language domain and chosen based on size and legal spe-
cialization. Chalkidis et al. [7] benchmarked several models, such as Bidirectional Encoder
Representations from Transformers (BERT) [15] and Legal-BERT [16], where Legal-BERT
has a similar architecture to BERT but was pretrained on diverse legal corpora. A key
finding of LexGLUE was that Legal-BERT outperformed other models which were not
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pretrained on legal corpora. In other words, they found that an in-domain pretrained
model outperformed models that were pretrained out-of-domain.

In the privacy language domain, we tend to find isolated datasets from specialized
studies. The Refs. [4,17–19] are examples of studies that introduce annotated corpora for
a privacy-practice sequence and token classification tasks, while the Refs. [20,21] release an-
notated corpora for privacy-practice question answering. Amos et al. [22] is another recent
study that released an annotated corpus of privacy policies. As of writing, no comprehen-
sive NLP benchmark exists for general language understanding in privacy policies, making
PrivacyGLUE the first consolidated NLP benchmark in the privacy language domain.

3. Datasets and Tasks

During the composition phase of the PrivacyGLUE benchmark, we consulted Euro-
pean and American privacy experts on aspects of privacy policies that are particularly
challenging for non-expert users to comprehend. We found these challenging aspects to be
well-addressed by NLP models trained on the sequence classification, token classification
and question-answering task types. We then searched for publicly available datasets in the
privacy domain that fit our task type requirements. We refined our selection by keeping
datasets that had at least ∼1K total samples of sufficient quality, prioritizing datasets that
were accompanied by a peer-reviewed scientific study. With this, we composed the Priva-
cyGLUE benchmark using seven natural language understanding tasks originating from
six datasets in the privacy language domain, which we describe in subsequent sections.
Summary statistics, detailed label information and representative examples are shown in
Table 1, Table A1 (Appendix A) and Table A2 (Appendix B), respectively.

Table 1. Summary statistics of PrivacyGLUE benchmark tasks; ‡ PI-Extract and PolicyIE-B consist of
four and two subtasks, respectively, and the number of BIO token classes per subtask are separated
by a forward-slash character.

Task Source Task Type Train/Dev/Test Instances # Classes

OPP-115 Wilson et al. [4] Multi-label sequence classification 2185/550/697 12

PI-Extract Bui et al. [18] Multi-task token classification 2579/456/1029 3/3/3/3 ‡

Policy-Detection Amos et al. [22] Binary sequence classification 773/137/391 2

PolicyIE-A Ahmad et al. [19] Multi-class sequence classification 4109/100/1041 5

PolicyIE-B Ahmad et al. [19] Multi-task token classification 4109/100/1041 29/9 ‡

PolicyQA Ahmad et al. [21] Reading comprehension 17,056/3809/4152 –

PrivacyQA Ravichander et al. [20] Binary sequence classification 157,420/27,780/62,150 2

3.1. OPP-115

Wilson et al. [4] was the first study to release a large annotated corpus of privacy
policies. A total of 115 privacy policies were selected based on their corresponding com-
pany’s popularity on Google Trends. The selected privacy policies were annotated with
12 data privacy practices on a paragraph-segment level by experts in the privacy domain.
As noted by Mousavi Nejad et al. [23], one limitation of Wilson et al. [4] was the lack of
publicly released training and test data splits which are essential for machine learning
and benchmarking. To address this, Mousavi Nejad et al. [23] released their own training,
validation and test data splits for researchers to easily reproduce OPP-115 results. Priva-
cyGLUE utilizes the “Majority” variant of data splits released by Mousavi Nejad et al. [23]
to compose the OPP-115 task. Given an input paragraph segment of a privacy policy,
the goal of OPP-115 is to predict one or more data practice categories.

3.2. PI-Extract

Bui et al. [18] focus on enhanced data practice extraction and presentation to help
users better understand privacy policies. As part of their study, they released the PI-
Extract dataset consisting of 4.1 K sentences (97 K tokens) and 2.6 K expert-annotated
data practices from 30 privacy policies in the OPP-115 dataset. Expert annotations were
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performed on a token level for all sentences of selected privacy policies. The PI Extract
was broken down into four subtasks, where spans of tokens were independently tagged
using the Beginning, Inside and Outside (BIO) scheme commonly used in Named Entity
Recognition (NER). Subtasks I, II, III and IV require the classification of token spans for
data-related entities that are collected, not collected, not shared, and shared, respectively.
In the interest of diversifying tasks in PrivacyGLUE, we composed PI-Extract as a multi-task
token classification problem where all four PI-Extract subtasks are to be jointly learned.

3.3. Policy Detection

Amos et al. [22] developed a crawler for automated collection and curation of pri-
vacy policies. An important aspect of their system is the automated classification of
documents into privacy policies and non-privacy-policy documents encountered during
web-crawling. To train such a privacy policy classifier, Amos et al. [22] performed ex-
pert annotations of commonly encountered documents during web crawls and classified
them into the aforementioned categories. The Policy Detection dataset was released with
a total of 1.3 K annotated documents and is utilized in PrivacyGLUE as a binary sequence
classification task.

3.4. PolicyIE

Inspired by the Refs. [4,18,19], PolicyIE was created, an English corpus composed
of 5.3 K sentence-level and 11.8 K token-level data practice annotations over 31 privacy
policies from websites and mobile applications. PolicyIE was designed to be used for
machine learning in NLP, to ultimately make data privacy concepts easier for users to
understand. We split the PolicyIE corpus into two tasks, namely PolicyIE-A and PolicyIE-B.
Given an input sentence, PolicyIE-A entails multi-class data practice classification while
PolicyIE-B entails multi-task token classification over distinct subtasks I and II, which
require the classification of token spans for entities that participate in privacy practices
and their conditions/purposes, respectively. The motivation for composing PolicyIE-B as
a multi-task problem is similar to that of the PI Extract.

3.5. PolicyQA

Ahmad et al. [21] argue in favour of short-span answers to user questions for long
privacy policies. They release PolicyQA, a dataset of 25 K reading comprehension exam-
ples curated from the OPP-115 corpus from Wilson et al. [4]. Furthermore, they provide
714 human-written questions optimized for a wide range of privacy policies. The final
question–answer annotations follow the Stanford Question Answering Dataset (SQuAD)
1.0 format [24], which improves the ease of adaptation into NLP pipelines. We utilize
PolicyQA as PrivacyGLUE’s reading comprehension task.

3.6. PrivacyQA

Similar to [20,21] who argued in favour of annotated question-answering data for
training NLP models to answer user questions about privacy policies, they correspondingly
released PrivacyQA, a corpus composed by 1.75 K questions and more than 3.5 K expert-
annotated answers from 35 privacy policies. Unlike PolicyQA, PrivacyQA proposes a binary
sequence classification task where a question–answer pair is classified as either relevant or
irrelevant. Correspondingly, we treat PrivacyQA as a binary sequence classification task
in PrivacyGLUE.

4. Experimental Setup

The PrivacyGLUE benchmark was tested using the BERT, RoBERTa, Legal-BERT,
Legal-RoBERTa and PrivBERT models, which are summarized in Table 2. We prioritized
these models since they are of similar size but differ in terms of their pretraining corpora,
which are the general, legal and privacy language domains, respectively. As a result, this
selection would provide us with insights about the influence of pretraining on downstream
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performance. In this section, we describe the models used and task-specific approaches,
and provide details on our benchmark configuration.

4.1. Models

This section introduces the models which are currently available in our PrivacyGLUE
benchmark release. Table 2 provides a synoptic, comparative view on the important
properties of the models, while the next paragraphs introduce their origin, scope, and
relevant literature pointers.

Table 2. Summary of models used in the PrivacyGLUE benchmark; all models used are base-sized
variants of BERT/RoBERTa architectures; § BC = BookCorpus, CC-News = CommonCrawl-News,
OWT = OpenWebText; F models were initialized with the pretrained RoBERTa model.

Model Source # Params Vocab. Size Pretraining Corpora §

BERT Devlin et al. [15] 110 M 30 K Wikipedia, BC (16 GB)

RoBERTa Liu et al. [25] 125 M 50 K Wikipedia, BC, CC-News, OWT (160 GB)

Legal-BERT Chalkidis et al. [16] 110 M 30 K Legislation, Court Cases, Contracts (12 GB)

Legal-RoBERTa F Geng et al. [26] 125 M 50 K Patents, Court Cases (5 GB)

PrivBERT F Srinath et al. [27] 125 M 50 K Privacy policies (17 GB)

4.1.1. BERT

Proposed by Devlin et al. [15], BERT is perhaps the most well-known transformer
language model. BERT utilizes the WordPiece tokenizer [28] and is case-insensitive. It is
pretrained with the Masked Language Model (MLM) and Next-Sentence Prediction (NSP)
tasks on the Wikipedia and BookCorpus corpora.

4.1.2. RoBERTa

Liu et al. [25] proposed RoBERTa as an improvement to BERT. RoBERTa uses dynamic
token masking and eliminates the NSP task during pretraining. Furthermore, it uses
a case-sensitive byte-level Byte-Pair Encoding [29] tokenizer and is pretrained on larger
corpora. Liu et al. [25] reported improved results on various benchmarks using RoBERTa
over BERT.

4.1.3. Legal-BERT

Chalkidis et al. [16] proposed Legal-BERT by pretraining BERT from scratch on legal
corpora consisting of legislation, court cases and contracts. The sub-word vocabulary
of Legal-BERT was learned from scratch using the SentencePiece [30] tokenizer to better
support legal terminology. Legal-BERT was the best overall performing model in the
LexGLUE benchmark, as reported in Chalkidis et al. [7].

4.1.4. Legal-RoBERTa

Inspired by Legal-BERT, Geng et al. [26] proposed Legal-RoBERTa by further pre-
training RoBERTa on legal corpora, specifically patents and court cases. Legal-RoBERTa is
pretrained on less legal data than Legal-BERT while producing similar results on down-
stream fine-tuning legal domain tasks.

4.1.5. PrivBERT

Due to the scarcity of large corpora in the privacy domain, Srinath et al. [27] proposed
PrivaSeer, a novel corpus of 1M English language website privacy policies crawled from
the web. They subsequently proposed PrivBERT by further pretraining RoBERTa on the
PrivaSeer corpus.
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4.2. Task-Specific Approaches

Given the aforementioned models and tasks, we now describe our task-specific fine-
tuning and evaluation approaches. Given an input sequence s = {w1, w2, . . . , wN} con-
sisting of N sequential sub-word tokens, we feed s into a transformer encoder and obtain
a contextual representation {h0, h1, . . . , hN} where hi ∈ RD and D is the output dimen-
sionality of the transformer encoder. Here, h0 refers to the contextual embedding for the
starting token which is [CLS] for BERT-derived models and <s> for RoBERTa-derived
models. For PolicyQA and PrivacyQA, the input sequence s is composed by concatenat-
ing the question and context/answer pairs, respectively. The concatenated sequences are
separated by a separator token, which is [SEP] for BERT-derived models and </s> for
RoBERTa-derived models.

4.2.1. Sigmoid and Softmax Functions

We utilize the sigmoid (1) and softmax (2) functions in our task-specific approaches.
The sigmoid function is useful for binary-classification cases since it monotonically trans-
forms a single logit in R into probability space, that is, [0, 1]. The softmax function performs
a similar role by transforming a set of logits, each from R into probability space, such
that the individual probabilities sum up to unity. Both functions are differentiable and are
therefore useful for gradient descent techniques used in deep learning.

sigmoid(x) =
1

1 + e−x ∈ (0, 1), x ∈ R (1)

softmax(x)i =
exi

∑N
j=1 exj

∈ (0, 1), x = {x1, . . . , xN} ∈ RN (2)

4.2.2. Sequence Classification

The h0 embedding is fed into a class-wise sigmoid classifier (3) and softmax classifier (4)
for multi-label and binary/multi-class tasks, respectively. The classifier has weights
W ∈ RD×C and bias b ∈ RC and is used to predict the probability vector y ∈ RC, where
C refers to the number of output classes. We fine-tune models end-to-end by minimizing
the binary cross-entropy loss and cross-entropy loss for multi-label and binary/multi-class
tasks, respectively.

yi = sigmoid([W>h0 + b]i) (3)

y = softmax
(
W>h0 + b

)
(4)

We report the macro- and micro-average F1 scores for all sequence classification tasks,
since the former ignores class imbalance while the latter takes it into account.

4.2.3. Multi-Task Token Classification

Each hi ∈ {h1, h2, . . . , hN} token embedding is fed into J-independent softmax clas-
sifiers with weights Wj ∈ RD×Cj and bias bj ∈ RCj to predict the token probability vector
yij ∈ RCj , where Cj refers to the number of output BIO classes per subtask j ∈ {1, 2, . . . , J}.
We fine-tune models end-to-end by minimizing the cross-entropy loss across all tokens
and subtasks.

yij = softmax
(
W>j hi + bj

)
(5)

We report the macro- and micro-average F1 scores for all multi-task token classification
tasks by averaging the respective metrics for each subtask. Furthermore, we ignore cases
where B or I prefixes are mismatched as long as the main token class is correct.

4.2.4. Reading Comprehension

Each hi ∈ {h1, h2, . . . , hN} token embedding is fed into two independent linear layers
with weights Wj ∈ RD and bias bj ∈ R where j ∈ {1, 2}. These linear outputs are then
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concatenated per layer and a softmax function is applied to form a probability vector yj
across all tokens for answer-start and answer-end token probabilities, respectively. We
fine-tune models end-to-end by minimizing the cross-entropy loss on the gold answer-start
and answer-end indices.

yj = softmax
([

Wj · h1 + bj . . . Wj · hN + bj
])

(6)

Similar to SQuAD [24], we report the sample F1 and exact match accuracy for our
reading comprehension task. It is worth noting that Rajpurkar et al. [24] refer to their
reported F1 score as a macro-average, whereas we refer to it as the sample-average as we
believe this is a more accurate term.

4.3. Benchmark Configuration

We run PrivacyGLUE benchmark tasks with the following configuration:

• We train all models for 20 epochs with a batch size of 16. We utilize a linear learning
rate scheduler with a warmup ratio of 0.1 and peak learning rate of 3× 10−5. We
utilize AdamW [31] as our optimizer and use mixed 16-bit float precision for more
efficient training. Finally, we monitor respective metrics on the validation datasets
and utilize early stopping if the validation metric does not improve for five epochs.

• We use Python v3.8.13, CUDA v11.7, PyTorch v1.12.1 [32] and Transformers v4.19.
4 [33] as our core software dependencies.

• We use the following HuggingFace model tags: bert-base-uncased, roberta-base,
nlpaueb/legal-bert-base-uncased, saibo/legal-roberta-base, mukund/privbert for
BERT, RoBERTa, Legal-BERT, Legal-RoBERTa and PrivBERT, respectively.

• We use 10 random seeds for each benchmark run, that is, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. This
provides a distribution of results that can be used for statistical significance testing.

• We run the PrivacyGLUE benchmark on a Lambda workstation with 4 × NVIDIA
RTX A4000 (16 GB VRAM) GPUs, 125 GB RAM and Intel i9-10920X CPU (12 cores) for
∼180 h.

• We use Weights and Biases v 0.13.3 [34] to monitor model metrics during training
and for intermediate report generation.

5. Results

After running the PrivacyGLUE benchmark with 10 random seeds, we collect results
on the test-sets of all tasks. Figure 3 shows the respective results in a graphical form, while
Table A3 in Appendix C shows the numerical results in a tabular form. In terms of absolute
metrics, we observe that PrivBERT outperforms other models for all PrivacyGLUE tasks.
We apply the Mann–Whitney U-test [35] over random seed metric distributions and find
that PrivBERT significantly outperforms other models on six out of seven PrivacyGLUE
tasks with p ≤ 0.05, where Policy-Detection was the task where the significance threshold
was not met. We utilize the Mann–Whitney U-test because it does not require a normal
distribution for test-set metrics, an assumption which has not been extensively validated
for deep neural networks [36].

In Figure 3, we observe large differences between the two representative metrics for
OPP-115, Policy-Detection, PolicyIE-A, PrivacyQA and PolicyQA. For the first four of the
aforementioned tasks, this is because of data imbalance resulting in the micro-average
F1 being significantly higher since it can be skewed by the metric of the majority class.
For PolicyQA, this occurs because the EM metric requires exact matches and is therefore
much stricter than the sample F1 metric. Furthermore, we observe an exceptionally large
standard deviation on PI-Extract metrics compared to other tasks. This can be attributed
to data imbalance between the four subtasks of PI-Extract, with the NOT_COLLECT and
NOT_SHARE subtasks having less than 100 total examples each.
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Figure 3. Test-set results of the PrivacyGLUE benchmark where points indicate mean performance
and error bars indicate standard deviation over 10 random seeds; *** implies p ≤ 0.001 , ** implies
0.001 < p ≤ 0.01, * implies 0.01 < p ≤ 0.05 given an alternative hypothesis that PrivBERT has
a greater performance metric than all other models in a task using the Mann–Whitney U-test.

We apply the arithmetic, geometric and harmonic means to aggregated metric means
and standard deviations, as shown in Table 3. With this, we observe the following general
ranking of models from best to worst: PrivBERT, RoBERTa, Legal-RoBERTa, Legal-BERT
and BERT. Interestingly, models derived from RoBERTa generally outperformed models
derived from BERT. Using the arithmetic mean for simplicity, we observe that PrivBERT
outperforms all other models by 2–3%. As an additional point, we utilize the aggregated
metrics in Table 3 to rank the central tendencies of model performances.

Table 3. Macro-aggregation of means (µ) and standard deviations (σ) per model using the arithmetic
mean (A-Mean), geometric mean (G-Mean) and harmonic mean (H-Mean).

Model
A-Mean G-Mean H-Mean

µ σ µ σ µ σ

BERT 67.5 1.1 64.6 0.9 61.1 0.6

RoBERTa 69.0 1.2 66.4 0.7 63.2 0.3

Legal-BERT 67.9 1.1 64.9 0.8 61.2 0.4

Legal-RoBERTa 68.5 1.3 65.7 0.8 62.3 0.4

PrivBERT 70.8 1.2 68.3 0.8 65.2 0.5

6. Discussion

With the PrivacyGLUE benchmark results, we revisit our privacy vs. legal language
domain claim from Section 1 and discuss our model–pair agreement analysis for detecting
PrivacyGLUE task examples where models benefited from domain specialization.

6.1. Privacy vs. Legal Language Domain

We initially provided evidence from Figure 1 suggesting that the privacy language
domain is distinct from the legal language domain. We believe that our PrivacyGLUE
results further support this initial claim. If the privacy language domain was subsumed
under the legal language domain, we could have observed Legal-RoBERTa and Legal-
BERT performing competitively with PrivBERT. Instead, we observed that the legal models
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underperformed compared to both PrivBERT and RoBERTa, further indicating that the
privacy language domain is distinct and requires its own NLP benchmark.

6.2. Model–Pair Agreement Analysis

PrivBERT, the top-performing model, differentiates itself from other models by its
in-domain pretraining on the PrivaSeer corpus [27]. Therefore, we can infer that PrivBERT
incorporated knowledge of privacy policies through its pretraining and became specialized
for fine-tuning tasks in the privacy language domain. We investigate this specialization
using model–pair agreement analysis to detect examples where PrivBERT had a competitive
advantage over other models. Consequently, we detect examples where PrivBERT was
disadvantaged due to its in-domain pretraining.

We compare 10× 10 = 100 random seed combinations for all test-set pairs between
PrivBERT and other models. Each prediction-pair can be classified into one of four mutually
exclusive categories (B, P, O and N) shown below. Categories B and N represent examples
that are either not challenging or too challenging for both PrivBERT and the other model
respectively. Categories P and O are more interesting for us since they indicate examples
where PrivBERT had a competitive advantage and disadvantage over the other model,
respectively. Therefore, we focus on categories P and O in our analysis. We classify
examples over all random seed combinations and take the majority occurrence for each
category within its distribution.

Category B: Both PrivBERT and the other model were correct, that is, (PrivBERT,
Other Model)

Category P: PrivBERT was correct and the other model was wrong, that is, (PrivBERT, ¬
Other Model)

Category O: Other model was correct and PrivBERT was wrong, i.e., (¬ PrivBERT,
Other Model)

Category N: Neither PrivBERT nor the other model was correct, that is, (¬ PrivBERT,
¬ Other Model)

Figure 4 shows a relative distribution of majority categories across model–pairs and
PrivacyGLUE tasks. We observe that category P is always greater than category O, which
correlates with PrivBERT outperforming all other models. We also observe that category P
is often the greatest when compared against BERT, implying that PrivBERT has the most
competitive advantage over BERT. Surprisingly, we also observe category O is often the
greatest when compared against BERT, implying that BERT has the highest absolute advan-
tage over PrivBERT. This is an insightful observation since we would have expected BERT
to have the least competitive advantage given its lowest overall PrivacyGLUE performance.

To investigate PrivBERT’s competitive advantage and disadvantage against BERT,
we extract several examples from categories P and O in the PrivacyQA task for brevity.
Two interesting examples are listed in Table 4 and additional examples can be found in
Table A4 in Appendix D. From Table 4, we speculate that PrivBERT specializes in example
1978 because it contains several privacy-specific terms such as “third parties” and “explicit
consent”. On the other hand, we speculate that BERT specializes in example 33237 since it
contains more generic information regarding encryption and SSL, which also happens to
be a topic in BERT’s Wikipedia pretraining corpus as seen in Figure 1 and Table 2.

Looking at further examples in Table A4, we can also observe that all sampled category
P examples have the Relevant label, while many sampled category O examples have the
Irrelevant label. On further analysis of the PrivacyQA test-set, we find that 71% of
category P examples have the Relevant label and 61% of category O samples have the
Irrelevant label. We can infer that PrivBERT specializes in the minority Relevant label
while BERT specializes in the majority Irrelevant label as the former label could require
more privacy knowledge than the latter.
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Table 4. Test-set examples from PrivacyQA that fall under categories P and O for PrivBERT vs. BERT.

Category P Category O

ID: 1978
Question: Who can see my information?
Answer: We do not sell or rent your personal
information to third parties for their market-
ing purposes without your explicit consent.
Label: Relevant

ID: 33237
Question: Could the wordscapes app contain
malware?
Answer: We encrypt the transmission of all
information using secure socket layer technol-
ogy (SSL).
Label: Relevant

Figure 4. Model–pair agreement analysis of PrivBERT against other models over all PrivacyGLUE
tasks; bars represent proportions of examples per model–pair and task which fell into categories P
and O; all models on the x-axis are compared against PrivBERT.

7. Conclusions and Further Work

In this paper, we described the importance of data privacy in modern digital life and
observed the lack of an NLP benchmark in the privacy language domain despite its distinct-
ness. To address this, we proposed PrivacyGLUE as the first comprehensive benchmark
for measuring general language understanding in the privacy language domain. We re-
leased benchmark performances from the BERT, RoBERTa, Legal-BERT, Legal-RoBERTa and
PrivBERT transformer language models. Our findings showed that PrivBERT outperforms
other models by an average of 2–3% over all PrivacyGLUE tasks, shedding light on the im-
portance of in-domain pretraining for privacy policies. We applied model–pair agreement
analysis to detect PrivacyGLUE examples where PrivBERT’s pretraining provides a com-
petitive advantage and disadvantage. By benchmarking holistic model performances, we
believe PrivacyGLUE can accelerate NLP research into the privacy language domain and
ultimately improve general language understanding of privacy policies for both humans
and AI algorithms. Ultimately, this will support practitioners in selecting the best models to
use in applications that simplify privacy policies. An example of such an application could
be a browser plugin that actively condenses privacy policies into their most important parts
before presenting them to the user for their consent.

Looking forward, we envision several ways to further enhance our study. Firstly, we
intend to apply deep-learning explainability techniques, such as Integrated Gradients [37]
on examples from Table 4, to explore PrivBERT’s and BERT’s token-level attention attribu-
tions for categories P and O. Additionally, we intend to benchmark large prompt-based
transformer language models such as T5 [38] and T0 [39], as they incorporate large amounts
of knowledge from the various sequence-to-sequence tasks that they were trained on. Fi-
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nally, we plan to continue maintaining our PrivacyGLUE GitHub repository and host new
model results from the community.

8. Limitations

To the best of our knowledge, our study has two main limitations. While we provide
performances from transformer language models, our study does not provide human expert
performances on PrivacyGLUE. This would have been a valuable contribution to judge
how competitive language models are against human expertise. However, this limitation
can be challenging to address due to the difficulty in finding experts and high costs for
their services. Additionally, our study only focuses on English language privacy tasks and
omits multilingual scenarios.

9. Ethics Statement

In this section, we provide an overview of ethical considerations taken into account in
our study. These include original work attribution, social impact and software licensing.

9.1. Original Work Attribution

All datasets used to compose PrivacyGLUE are publicly available and originate from
previous studies. We cite these studies in our paper and include references for them in our
GitHub repository. Furthermore, we clearly illustrate how these datasets were used to form
the PrivacyGLUE benchmark.

9.2. Social Impact

PrivacyGLUE could be used to produce fine-tuned transformer language models,
which could then be utilized in downstream applications to help users understand privacy
policies and/or answer questions regarding them. We believe this could have a positive
social impact as it would empower users to better understand lengthy and complex privacy
policies. That being said, application developers should perform appropriate risk analyses
when using fine-tuned transformer language models. Important points to consider include
the varying performance ranges on PrivacyGLUE tasks and known examples of implicit
bias, such as gender and racial bias, that transformer language models incorporate through
their large-scale pretraining [40].

9.3. Software Licensing

We release the source code for PrivacyGLUE under version 3 of the GNU General
Public License (GPL-3.0) with all datasets retaining their original licenses, which could
differ from GPL-3.0. We chose GPL-3.0 as it is a strong copyleft license that protects user
freedoms such as the freedom to use, modify and distribute software.
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Abbreviations
The following abbreviations are used in this manuscript:

UN United Nations
AI Artificial Intelligence
NLP Natural Language Processing
GLUE General Language Understanding Evaluation benchmark
SuperGLUE Super General Language Understanding Evaluation benchmark
SOTA State of the Art
LexGLUE Legal General Language Understanding Evaluation benchmark
EURLEX European Legal Texts (Portal)
BERT Bidirectional Encoder Representations from Transformers
UMAP Uniform Manifold Approximation and Projection
PrivacyGLUE Privacy General Language Understanding Evaluation benchmark
OPP-115 Online Privacy Policies, set of 115
PI-Extract Personal Information Extraction
PolicyIE Policy Intent Extraction
PolicyQA Policy Questions and Answers
PrivacyQA Privacy Questions and Answers
RoBERTa Robustly Optimized BERT Pretraining Approach
GEM Generation, Evaluation and Metrics
XTREME Cross-Lingual Transfer Evaluation of Multilingual Encoders
XTREME-R Cross-Lingual Transfer Evaluation of Multilingual Encoder Revisited
BIO Beginning, Inside and Outside
NER Named Entity Recognition
SQuAD Stanford Question Answering Dataset
T5 Text-To-Text Transfer Transformer
T0 T5 for zero-shot task generalization

Appendix A. Detailed Label Information

Table A1. Breakdown of labels for each PrivacyGLUE task; PolicyQA is omitted from this table since
it is a reading comprehension task and does not have explicit labels like other tasks.

Task Labels

OPP-115

Data Retention, Data Security, Do Not Track, First Party Collection/Use,
International and Specific Audiences Introductory/Generic, Policy Change,
Practice not covered, Privacy contact information, Third Party
Sharing/Collection, User Access, Edit and Deletion, User Choice/Control

PI-Extract

Subtask-I: {B,I}-COLLECT, O

Subtask-II: {B,I}-NOT_COLLECT, O

Subtask-III: {B,I}-NOT_SHARE, O

Subtask-IV: {B,I}-SHARE, O

Policy-
Detection Not Policy, Policy

PolicyIE-A Other, data-collection-usage, data-security-protection,
data-sharing-disclosure, data-storage-retention-deletion

PolicyIE-B

Subtask-I: {B,I}-data-protector, {B,I}-data-protected, {B,I}-data-collector,
{B,I}-data-collected, {B,I}-data-receiver, {B,I}-data-retained,
{B,I}-data-holder, {B,I}-data-provider, {B,I}-data-sharer, {B,I}-data-shared,
storage-place, {B,I}-retention-period, {B,I}-protect-against, {B,I}-action, O

Subtask-II: {B,I}-purpose-argument, {B,I}-polarity, {B,I}-method,
{B,I}-condition-argument, O

PrivacyQA Irrelevant, Relevant
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Appendix B. PrivacyGLUE Task Examples

Table A2. Representative examples of each PrivacyGLUE benchmark task.

Task Input Target

OPP-115 Revision Date: 24 March 2015 Introductory/Generic,
Policy Change

PI-Extract

We may collect and share your
IP address but not your email
address with our business
partners.

Subtask-I: O O O O O B-COLLECT I-COLLECT
I-COLLECT O O O O O O O O O O
Subtask-II: O O O O O O O O O O B-NOT_COLLECT
I-NOT_COLLECT I-NOT_COLLECT O O O O O
Subtask-II: O O O O O O O O O O B-NOT_SHARE
I-NOT_SHARE I-NOT_SHARE O O O O O
Subtask-IV: O O O O O B-SHARE I-SHARE I-SHARE
O O O O O O O O O O

Policy-
Detection

Log in through another service:
* Facebook * Google Not Policy

PolicyIE-A To backup and restore your
Pocket AC camera log data-collection-usage

PolicyIE-B Access to your personal
information is restricted.

Subtask-I: O O B-data-provider B-data-protected
I-data-protected O B-action O
Subtask-II: B-method O O O O O O O

PolicyQA

Question: How do they secure
my data?
Context: Users can visit our site
anonymously

Answer: Users can visit our site anonymously

PrivacyQA
Question: What information will
you collect about my usage?
Answer: Location information

Relevant

Appendix C. PrivacyGLUE Benchmark Results

Table A3. Test-set results of the PrivacyGLUE benchmark; ] m-F1 refers to macro-average F1, µ-F1

refers to the micro-average F1, s refers to sample-average F1, EM refers to the exact match accuracy,
metrics are reported as percentages with the following format: mean±standard deviation.

Task Metric ] BERT RoBERTa Legal-BERT Legal-RoBERTa PrivBERT

OPP-115
m-F1 78.4±0.6 79.5±1.1 79.6±1.0 79.1±0.7 82.1±0.5

µ-F1 84.0±0.5 85.4±0.5 84.3±0.7 84.7±0.3 87.2±0.4

PI-Extract
m-F1 60.0±2.7 62.4±4.4 59.5±3.0 60.5±3.9 66.4±3.4

µ-F1 60.0±2.7 62.4±4.4 59.5±3.0 60.5±3.9 66.4±3.4

Policy-Detection
m-F1 85.3±1.8 86.9±1.3 86.6±1.0 86.4±2.0 87.3±1.1

µ-F1 92.1±1.2 92.7±0.8 92.7±0.5 92.4±1.3 92.9±0.8

PolicyIE-A
m-F1 72.9±1.7 73.2±1.6 73.2±1.5 73.5±1.5 75.3±2.2

µ-F1 84.7±1.0 84.8±0.6 84.7±0.5 84.8±0.3 86.2±1.0

PolicyIE-B
m-F1 50.3±0.7 52.8±0.6 51.5±0.7 53.5±0.5 55.4±0.7

µ-F1 50.3±0.5 54.5±0.7 52.2±1.0 53.6±0.9 55.7±1.3

PolicyQA
s-F1 55.7±0.5 57.4±0.4 55.3±0.7 56.3±0.6 59.3±0.5

EM 28.0±0.9 30.0±0.5 27.5±0.6 28.6±0.9 31.4±0.6

PrivacyQA
m-F1 53.6±0.8 54.4±0.3 53.6±0.8 54.4±0.5 55.3±0.6

µ-F1 90.0±0.1 90.2±0.0 90.0±0.1 90.2±0.1 90.2±0.1
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Appendix D. Additional PrivacyQA Examples from Categories P and O

Table A4. Additional test-set examples from PrivacyQA that fall under categories P and O for
PrivBERT vs. BERT; note that these examples are not paired and can therefore be compared in any
order between categories.

Category P Category O

ID: 9227
Question: Will the app use my data for
marketing purposes?
Answer: We will never share with or sell the
information gained through the use of Apple
HealthKit, such as age, weight and heart rate
data, to advertisers or other agencies without
your authorization.
Label: Relevant

ID: 8749
Question: Will my fitness coach share my
information with others?
Answer: Develop new services.
Label: Irrelevant

ID: 10858
Question: What information will this app
have access to of mine?
Answer: Information you make available to
us when you open a Keep account, as set out
above;
Label: Relevant

ID: 47271
Question: Who will have access to my
medical information?
Answer: 23andMe may share summary
statistics, which do not identify any
particular individual or contain
individual-level information, with our
qualified research collaborators.
Label: Irrelevant

ID: 18704
Question: Does it share my personal
information with others?
Answer: We may also disclose
Non-Identifiable Information:
Label: Relevant

ID: 54904
Question: What data do you keep and for
how long?
Answer: We may keep activity data on a
non-identifiable basis to improve our
services.
Label: Irrelevant

ID: 45935
Question: Will my test results be shared with
any third party entities?
Answer: 23andMe may share summary
statistics, which do not identify any
particular individual or contain
individual-level information, with our
qualified research collaborators.
Label: Relevant

ID: 57239
Question: Do you sell any of our data?
Answer: (c) Advertising partners: to enable
the limited advertisements on our service, we
may share a unique advertising identifier
that is not attributable to you, with our third
party advertising partners, and advertising
service providers, along with certain
technical data about you (your language
preference, country, city, and device data),
based on our legitimate interest.
Label: Relevant

ID: 50467
Question: Can I delete my personally
identifying information?
Answer: (Account Deletion), we allow our
customers to delete their accounts at any
time.
Label: Relevant

ID: 59334
Question: Does the app protect my account
details from being accessed by other people?
Answer: Note that chats with bots and
Public Accounts, and communities are not
end-to-end encrypted, but we do encrypt
such messages when sent to the Viber servers
and when sent from the Viber servers to the
third party (the Public Account owner
and/or additional third party tool (e.g., CRM
solution) integrated by such owner).
Label: Irrelevant
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