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Abstract: Knowing the importance of assuring their reliability and availability, prognosis and remain-
ing useful life calculation (RUL) concepts are highly suggested to be applied in critical applications
such as hybrid electric vehicles (HEV). In the electrical propulsion system of HEVs, the electrical
machine is one of the most critical elements considering its cost and function. Most electrical machines
used in HEVs are permanent magnet machines (PMM). Most severe faults in PMM that affect its
normal operation are the result of demagnetization. However, applying prognosis to a real prototype
to detect the presence of mechanical defects such as cracks in the magnet of PMM and calculating the
RUL of this defective element are challenging. In this paper, we are going to take advantage of a finite
element model already built for the PMM in the healthy state and the state where cracks of different
depths are integrated into the magnet. After that, relevant vital parameters that are affected when this
type of fault persists in the machine are collected. Then, prognosis is applied to detect the presence
of the crack in one piece of magnet in the electrical machine. Following this, the RUL calculation is
performed to predict the remaining time before the crack propagates and a total fracture occurs in the
magnet. The method used to execute the prognosis is the hidden Markov model (HMM). The RUL
calculation will be performed using Paris equation, being the most important equation that models
the growth and propagation of cracks

Keywords: hybrid electric vehicle; permanent magnet machine; demagnetization; remaining useful
life calculation; Paris equation; hidden Markova model

1. Introduction

Prognosis and RUL calculations are imperative perceptions to assure the healthy
operation of systems and predict its total failure long before it occurs [1–3]. Hence, applying
prognosis in critical applications such as HEV becomes mandatory [2]. There are three
categories of prognostic methods: heuristic, model-based, and data-based methods [4–9].

HMM is a useful data-based prognostic method to predict the sequence of state
changes in a system based on the sequence of observations. Hence, it is recommended
for systems having a finite internal states that generate a set of external observations. The
internal states of the system are invisible to an outward observer. The current state is
directly dependent on the immediate previous state; this sequence is called the Markov
process [10,11].

Many researchers started applying HMM for diagnosis and prognosis of electrical and
mechanical faults in electrical machines [12]; the considered mechanical fault is mainly a
crack in the bearing. However, none applied prognosis when faults such as demagnetiza-
tion, being the most severe fault in machines such as permanent magnet machines [13], are
integrated.

In paper [14], the author highlights the importance of detecting imminent faults in
electric machines used in critical applications such as hybrid electric vehicles and avionics.
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It proves that hidden Markov model, used in diagnostics, is useful to be used as a prognostic
technique. It presents two methods based on the hidden Markov models for the prediction
of coming faults. They are based on pattern recognition, which is a data-driven approach
commonly used in the field of faults recognition and diagnostic.

Paper [15] applies prognosis techniques to detect electrical faults using a hidden
Markov model and estimates the remaining useful life of relevant equipment using an
estimation approach based on the probability of state failure. The observables of the model
are time and frequency features extracted from the machine’s torque measurement. To train
the HMM, experimental observation probability densities are used due to limited available
data. The investigated fault is a turn-to-turn short circuit; the research aims to detect the
presence of turn-to-turn short circuits and estimate their severity from the extracted torque
features.

The author in [11] declares that HMM is an advantageous method in diagnosis, prog-
nosis, and condition monitoring fields. Currently, the wide availability of different types of
sensors (vibration, temperature, torque) encourage researchers to apply HMM. It has been
noted that HMMs can still be useful even if little training data and little prior knowledge
about the system exists. In this paper, the observed data are the current of the electric motor.
This measured parameter is used to detect the presence of faults, define the current state of
the machine, and predict its future state.

The remaining useful life calculation is a new important concept that is beneficial to
be applied in all electrical fields [16]. The RUL calculation and estimation for different
elements constituting the electrical system of electric and hybrid electric vehicles is relatively
new; however, it is becoming mandatory to assure health and proper operation [17–20].
In [21], the author highlights the importance of prognosis and RUL calculation specially
for particular systems such as electrical machines in industrial applications. A data-driven
prognostics method is used where a health index (HI) is proposed to predict the RUL of the
selected electrical machine. Results show the advantage of this method over the traditional
direct RUL prediction.

In hybrid electric vehicle applications, most researchers that discuss the RUL calcula-
tion apply it to the battery of the system. In [22], the RUL calculation is performed for a
lithium battery used in a hybrid electric vehicle. The RUL estimation evaluate consecutive
probability distributions of degrading battery states where a particle filter algorithm is
built.

Knowing the importance of electrical machines in the functional operation of the
electric propulsion system, prognosis and RUL calculations are crucial for hybrid electric
vehicles in general and for used electric machines specifically [23–25].

Permanent magnet machines are widely used and advantageous in HEV applica-
tions [26] compared to other types of electrical machines due to their high efficiency, high
power density, and simple construction [27–30].

It is hard to find a prototype for electrical machines where cracks are easily integrated
for the aim of monitoring and collecting data for selected parameters that are affected by
this type of fault, such as torque, current, temperature, and vibration [31–33] This is why
in [34–36], a finite element model (FEM) of surface PMM is built; the electromagnetic, ther-
mal, and vibration aspects of the machine are encountered. Additionally, in [37], a global
HMM is built with the aim of detecting several types of faults in PMM: demagnetization
represented by a crack in one piece of magnet in the machine, turn-to-turn short-circuit
faults in one slot and eccentricity faults.

In this paper, two novel ideas will be discussed. Firstly, we present a strategy for
computing the remaining useful life (RUL) related to a permanent magnet machine for the
case where there is a crack in one of the magnets of the machine. Secondly, it is typically
difficult to collect real-time data from a machine that gradually transitions from operating
normally to becoming faulty over time due to a primitive fault. To this end, we utilize the
finite element method for machines, as reported in [34–36]. The proposed FEM is validated
via comparisons with the analytical model of machines in [34]. The FEM is an accurate way
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to model the electrical machine but in a specific state with no change in the physical aspect
of the machine. To alleviate this problem, we combined this FEM with the Paris equation,
which is a mature model for crack propagation.

In this study we will consider the demagnetization fault where a tiny crack of 1 mm
will be integrated in one magnet of the PMM. Then, a remaining useful life calculation
strategy will be presented. This strategy will permit the calculation of the RUL before total
failure of the defective element occurs after detecting the presence of the elementary crack
using the HMM previously described in [37].

In Section 2, we will present the physical characteristics of the machine used. The
modeling of the crack growth will be shown in Section 3. In Section 4, estimation strategy
of RUL calculation will be discussed using a database model. In Section 5, the generated
model will be applied on the selected surface PMM where the results will be illustrated.

2. The Electrical Machine Used

The electrical machine used in this study is a 15 kW, 12-pole surface permanent magnet
machine used in medium hybrid electric vehicles [38]. The magnets have 4.5 mm radial
length and they are made of Neodymium iron boron.

The model of the machine is constructed using finite element analysis, which is a
widely used numerical model, being simple and accurate [31,39]. The electromagnetic,
thermal, and vibration models of the machine are built. The inputs of the prognostic model,
where the RUL will be calculated at its end, are torque, temperature, and vibration.

The model will be built for undamaged machines and for machines with radial cracks
of different depths in one of the 12 magnets.

A two-pole section of the healthy machine’s laminated sheet is shown in Figure 1; it is
developed using ‘MATLAB’. In Figure 2a, a meshed view of the laminated sheet with a
zoom on the cracked magnet is presented. The depth of the crack in Figure 2a is 1 mm. The
considered first faulty state of the machine is the machine with a 1 mm radial crack in one
magnet. A crack with depth less than 1 mm is not considered because it is at this depth
where a change in the air gap flux density, torque, temperature, and vibration is detectable
compared to the healthy state of the machine.

The radial length of the surface magnet is 4.5 mm; yet, we chose the final state of
the fault to be a radial crack of 4 mm depth in the magnet instead of 4.5 mm. Although a
4.5 mm crack depth is a representation of a total fracture of the magnet, modeling it will
cause a major change in the topology of the machine. In all cases, the end purpose of this
study is ‘prognosis’. Hence, the suggested approach is supposed to detect the presence of
this fault before a total failure occurs.

In Figure 2b, a meshed view of the laminated sheet where the crack deepens and
becomes 4 mm is presented.
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Figure 2. (a) Crack of 1 mm depth in the first magnet of pole 1 (meshed view). (b) Meshed laminated
sheet with 4 mm crack in the magnet.

In Figure 3, Figure 4a,b, and Figure 5a,b we are illustrating the air gap flux density, in
space, in the healthy case and in the case of 1 mm crack in the magnet as well as a 2 mm
crack, 3 mm crack, and 4 mm crack.
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Figure 5. (a) Air gap flux density with a 3 mm crack. (b) Air gap flux density with a 4 mm crack.

In Figure 3, Figure 4a,b and Figure 5a,b, we can see the change in air gap flux density
when the crack deepens to reach 4 mm depth. The torque of the machine is directly
proportional to the air gap flux density. Hence, this proves that the torque is a good
indicator for this type of fault.

In Figure 6, we are seeing the change in the vibration of the machine’s periphery, in the
space domain, for the healthy case and for the case of cracks in the magnet. In Figure 7, the
vibration in the case of 4 mm crack and the function of time are illustrated. Figures 6 and 7
show that the vibration is a good indicator for the presence of this type of fault.
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Figure 7. Vibration detected by the sensor in the case of 4 mm crack in the magnet.

In Figure 8, the temperature on the machine’s periphery is illustrated in the healthy
case and in the case of 1 mm crack in one magnet. A zoomed view of Figure 8 is shown in
Figure 9. In Figure 10, the variation in the temperature function of time in the presence of
one crack in one of the twelve magnets is shown. We mention that the data are collected
from a virtual sensor located at the outer periphery of the machine in the finite element
model.

Although the variation in the temperature is not highly detectable for demagnetization
fault, temperature will be considered as an input for the model because prognosis is
detecting the fault before it occurs or when it occurs at a very small scale. The incidence
of false alarm is high; accordingly, taking more than one indicator to figure out the type
of fault is mandatory. Although temperature is not a highly detectable indicator for
demagnetization fault, it is a high indicator for other types of faults such as turn-to-turn
short-circuits, as illustrated in [37]. This shows that not detecting changes in temperature
eliminates the prospect of certain types of faults and reduces the possibilities of machine
states to encounter demagnetization. With observing other types of parameters, such as
torque and vibration, the vision will become clearer and the right machine state will be
predicted. This is the function that performs the hidden Markov model.
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3. Modeling of Crack Growth

The study of crack propagation is of big interest in many applications. One of the
most important equations that models the growth and propagation of cracks is the Paris
equation.

In fact, there are several models for the growth of cracks, such as the Paris, Duggan,
Forman, and Tzamtzis models. Each one has its advantages and disadvantages. However,
the Paris equation is the simplest, most famous, well-known, and mature model [40].

In [41], the Paris law equation is used in aircraft application. They are concerned
with aging of critical material in aircraft function of time. Experimental testing of aircraft
material is very important; however, constant material properties are not enough to evaluate
materials in such critical applications. Hence, they evaluate materials according to their
dynamic capability to develop and propagate cracks.

The author in [42] used the Paris equation to study crack growth and predict the
remaining useful life of materials composing a magnet. In [43], the author use it for crack
propagation in microelectronic device applications.
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A crack growth rate is assessed for magnet systems in [44]. The paper was concerned
with studying cracks with different orientations and different shapes. To realize this delicate
modeling, the dual boundary element method and finite element method are coupled.

When applying the Paris equation for crack growth prediction, some assumptions
need to be made:

• The crack is not of constant amplitude; it is propagating a function of time;
• The crack is one-dimensional;
• The material where the crack exists has a certain elastic condition;
• The load range is relatively constant;
• Sensor data and offline signals have similar time stamps;
• The offline data set contains enough data that represent different degradation behaviors.

According to the Paris law equation, the general fatigue crack growth model is:

da
dNc

= C (∆K)n (1)

∆K = Kmax− Kop (2)

Kop = Q ∗ σ∗
√(

π
a
2

)
(3)

Q =
(

cos
( π∗ a

2 ∗W

))−( 1
2 ) (4)

‘ da
dNc ’ is the crack growth rate.

‘a’ is the depth of the crack. ‘Nc’ is the number of cycles.
‘C’ and ‘n’ are calibration parameters dependent on the type of material where the

crack is propagating. ‘C’ is called the Paris equation parameter or crack growth coefficient,
its unit is [mm/(MN m−3/2)n] per cycle. ‘n’ is called the Paris equation exponent or crack
growth exponent, and it is unitless.

‘∆K’ is the effective stress intensity factor. ‘Kmax’ is the stress intensity factor at the
peak load; it is a critical or a threshold value before the occurrence of a fracture. ‘Kop’ is
the operating stress intensity.

Maxwell stress tensor ‘σ’ will be calculated from the vibration FEM.
‘Q’ is a parameter dependent on the geometry of the system.
‘W’ is the radial length of the magnet.
A familiar relation between Nc and a is:

Nc =
1(

C ∆σ
√

π Q
)n ∗

1
n
2 − 1

∗
(

1

a0
n
2−1
− 1

a f
n
2−1

)
(5)

‘Nc’ is a cyclic loading, and it is a cycle representation of repetitive or inconsistent
stress intensities on a certain location. ‘a0’ is the current depth of the crack. ‘af’ is the final
depth that will reach the crack and at which the magnet is fractured.

Nc, calculated according to the above equation, is the RUL for the crack to move from
a0 to af depth.

If we aim to calculate the time needed for the crack to propagate from 1 mm depth to
a specific incremental depth, let us say 2 mm, the final state of the crack ‘f’ in this case is
2 mm.

4. Estimation Strategy of RUL Calculation Using Database Model
4.1. Description of the RUL Strategy

According to the literature, calculating RUL using database models consists of the
following steps [45]:

• First, an offline database is prepared where data related to each phase of fault is
encountered.
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• Second, a health assessment of the machine is conducted. In our case, the HMM model
performed this assessment [37].

• Third, the RUL calculation or prediction is executed.

At start, the offline database is elaborated from an executed simulation on real proto-
type or an equivalent model; in this research, we are going to use an already-built finite
element machine model. Then, during the condition monitoring of the system’s operation,
similarities between online and offline data sensors are tracked and detected. This can be
performed by classification or regression [46].

Classification consists of matching data coming from sensors to one of the training
data sets we already earned, where each set represents a specific state of the system [47].

Regression consists of predicting the real data from the sets of training data where
a relation between these training data are created since the system phase of each set is
known.

In our case, we will use ‘classification’ because online data coming from sensors can
be generated from the previously developed dynamic FEM model of the machine [34,35].

Although dynamic FEM is the best real-time representation of the machine perfor-
mance during healthy and faulty operation, alone it cannot generate online data useful
for RUL calculation. Offline data samples can be generated for different machine states
as much as needed. For example, the model can generate data representing vibrations
detected by a vibration sensor when the machine is healthy, when the machine encounters a
1 mm crack in one magnet, and when the machine encounters a 2 mm crack in one magnet.
However, when sampling data representing this vibration when the machine moves from
the healthy state to the state of 1 mm crack in one magnet, the state where the crack worsens
and becomes 2 mm is not possible. In other words, a model of the machine having any
depth of the crack is possible using FEM; however, the time needed for the machine to shift
from a faulty state with ‘x’ mm crack to a state with ‘y’ mm crack where y > x is not offered
in FEM. In FEM, there is no representation of the fault propagation function of time.

Hence, many researchers combine the database approach and model based approach
to build a rugged strategy for RUL calculation. Data sets for the database approach are
generated from analytical analysis and numerical analysis such as FEM. The model-based
method is formulated from the physical understanding of the system where a profound
knowledge and an accurate representation of the fault propagation, the function of time,
are presented.

If offline data correspond to the machine life cycle starting with its healthy state, then
during the existence of tiny cracks in the magnet until the cracks worsen and become a
fracture, the RUL calculation becomes easy. Such offline data could be represented in a
data matrix ODM as follows:

ODM =


DM01 DM02 . . . DM0n
DM11 DM12 . . . DM1n
DM21 DM22 . . . DM2n

...
...

. . .
...

DMm1 DMm2 . . . DMmn


In the above matrix, ‘n’ is the number of sampling points and ‘m’ is the number of

times, during the life cycle of the machine, the data sets are recorded.
The first row of the matrix ODM is the data set observed at t = t0, when the machine is

healthy. The second row is the data set observed at t = t1, when there is 1 mm crack in the
magnet. The mth row is the data set observed at t = tm, when the magnet is completely
fractured.

Different machine learning algorithm such as K-NN and Gaussian process regression
can be used to execute a health assessment of the system and then calculate RUL as proved
in paper [48].



Appl. Sci. 2023, 13, 3694 10 of 16

A comparison between the current measured data set and the offline data set will be
conducted. The most similar offline data set refers to the current machine state. We assume
that the future behavior of the current monitored system is the same as that acquired in the
offline system.

The RUL is calculated:
RUL = EOLselected − tm (6)

‘EOLselected’ is the end of life time of the system being in the current faulty phase
identified by the health assessment already conducted.

Such offline data are not available since they need a real monitored system that
contains this propagating fault we are interested in. Hence, a suggested strategy, inspired
from the above presented method, will be presented in the following section to calculate
the RUL.

4.2. Adaptation and Application of the Described RUL above on Our System

In this research, we will use the above-described strategy to calculate the RUL in the
case of cracks in one magnet; the system we are examining is a piece of a magnet in the
PMM. The first detection of the fault will be when a crack of 1 mm depth is detected. RUL
calculation is mainly the time needed for the faulty system to deteriorate. However, in our
study, the final set of data will be collected in the case of 4 mm crack depth which is a near
representation of the total fracture of the magnet.

First we will construct a synthetic offline database ‘SODM’. SODM will have the form
of a matrix, as shown below:

SODM =


DS01 DS02 . . . DS0t
DS11 DS12 . . . DS1t
DS21 DS22 . . . DS2t

...
...

. . .
...

DSm1 DSm2 . . . DSmt


SODM represents sensor data in the healthy case and the case of cracks in a magnet

inside the PMM. Its size is (m x t), where: ‘m’ is the number of states representing the
systematic propagation of the studied fault, and ‘t’ is the number of sampling points.

The first row of matrix SODM is the data set for the case of 1 mm crack in the magnet
along t sampling time. The second row is the data set for the case of 2 mm crack in the
magnet along t sampling time. The mth row is the data set for the case of em mm crack in
the magnet along t sampling time.

The difference between ODM and SODM is that the sets of data in ODM are extracted
at a specific time during the life cycle of the machine; however, in SODM, the sets of data
are extracted at an arbitrary time during a specific state of the machine.

Accordingly, each row of the SODM matrix is dedicated to sensor data at different
depths of the magnet’s cracks. We started with a 1 mm crack depth and increase this depth,
each time, by 1 mm until we reach em mm, which is the radial width of the magnet. At this
depth the magnet is fractured.

We mention that the sampling times for all data sets are similar.
After constructing SODM, the first part of the suggested RUL calculation strategy is

accomplished. The second part will be to find an appropriate equation that models the
incremental growth of this fault, the cracks, and the function of time. This will be presented
in the next section.

A block diagram illustrating the steps of the suggested strategy is illustrated in
Figure 11.
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5. The Application of the Strategy on the Selected System

In this research, we will consider a 4 mm depth as the final state of the magnet’s cracks
before fracture, as we mentioned before.

At a time, data coming from torque, temperature, and vibration sensors are collected;
their features will be inputs of the HMM model. These data are collected from dynamic
FEM of the permanent magnet machine previously mentioned. The machine has a 235 mm
outer diameter of stator, 145 mm outer diameter of rotor, and 195 mm axial length. The
simulation is performed for five revolutions. The rotating step angle is 0.9 degrees, and the
time step is 3.7425 × 10−5 s.

A decision will be generated from the HMM model; the state of the machine is either
healthy or faulty. We mention that a percentage of reading error is examined for these
selected sensors. The considered percentage error is ±0.5% for the torque sensor, ±0.55 ºC
for the temperature sensor, and ±0.06% for the vibration sensor [49,50].

When the detected fault is a crack in one magnet, the model will identify the depth of
the crack, and the RUL of the magnet needs to be calculated.

To perform this calculation, the vibration FEM is performed. Maxwell stress tensor ‘σ’
is computed from the vibration finite element model [35]. This calculated value is replaced
in Equation (5) to calculate the RUL of the magnet.

An illustrative example of RUL calculation in the case of demagnetization due to 1 mm
cracks in one magnet is presented in Figure 12.

In Table 1 and Figure 13, the RUL of the magnet, which is the remaining number
of cycles ‘Nc’ before the magnet reaches its final state, is illustrated for different crack
depths: 1 mm, 2 mm, and 3 mm. We notice that, as the cracks deepen, the number of cycles
decreases because the RUL, before reaching the final state, decreases.

Table 1. Magnet number of cycles versus crack depth.

Crack Depth RUL (Nc)

1 mm 334,840.68

2 mm 84,555.73

3 mm 1423.5

4 mm 0
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6. Conclusions

Many studies and statistics show that relying on hybrid electric vehicles will increase
in the coming years due to many reasons such as the depletion of conventional sources
of energy and environmental concerns. The causes of uneasiness regarding HEVs are
their reliability and availability. To overcome this worry, several researchers stated the
importance of detecting minor defects through prognosis and calculating the RUL of the
system.

RUL is one of the most important parameters to be calculated in the case of defects in
a system because it gives information on the time needed before this defect becomes a total
failure and affects the operation of the studied system. Additionally, it helps in generating
a decision on action needed after the occurrence of the defect. Answers to the following
questions will be elaborated: Should we stop the system immediately? Is it cost effective
to stop the system? How much time can this system still run before there is a total failure
where corrective action needs to be taken?

In our studied case, the defect is a minor crack in one magnet in a surface permanent
magnet machine used in hybrid electric vehicles. The health state of the magnet is very im-
portant in this application. The magnets are one of the essential elements in the permanent
magnet machine that support the air gap magnetic field; subsequently, they support the
generated torque and power.

The suggested RUL calculation study will calculate the time needed before the crack
deepens and reach a graver state. This is performed after the detection of its presence using
HMM model where torque, vibration, and temperature are used as model inputs.

The important factors for detecting the presence of preliminary cracks in the magnet
and calculating their RUL before a total fracture occurs are: first, to know how long this
machine can remain working, especially since a PMM with a crack in one magnet can still
operate but with a lower efficiency; second, the possibility of taking a corrective action,
which maybe repairing or replacing the cracked magnet.

The proposed strategy was able, after detecting the presence of preliminary cracks
in one magnet by HMM, to calculate the remaining useful life of the defective piece of
magnet.

In article [37], an RUL calculation for the same type of machine for the case of turn-
to-turn short-circuit faults is presented. In this article, an RUL calculation strategy is
suggested for the case of demagnetization faults. For the future, the work in this field to
elaborate a global RUL calculation model encountering different types of faults that may
occur in the electrical machine and in the whole electrical propulsion system of the vehicle
is continuous.
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