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Abstract: Establishing service-driven IoT systems that are reliable, efficient, and stable requires
building trusted IoT environments to reduce catastrophic and unforeseen damages. Hence, building
trusted IoT environments is of great importance. However, we cannot assume that every node in
wide-area network is aware of every other node, nor can we assume that all nodes are trustworthy
and honest. As a result, prior to any collaboration, we need to develop a trust model that can evolve
and establish trust relationships between nodes. Our proposed trust model uses subjective logic as a
default artificial reasoning over uncertain propositions to collect recommendations from other nodes
in the IoT environment. It also manages and maintains existing trust relationships established during
direct communications. Furthermore, it resists dishonest nodes that provide inaccurate ratings for
malicious reasons. Unlike existing trust models, our trust model is scalable as it leverages a Fog-based
hierarchy architecture which allows IoT nodes to report/request the trust values of other nodes.
We conducted extensive performance studies, and confirm the efficiency of our proposed trust model.
The results show that at an early stage of the simulation time (i.e., within the first 2% of the number
of transactions), our trust model accurately captures and anticipates the behavior of nodes. Results
further demonstrate that our proposed trust model isolates untrustworthy behavior within the same
FCD and prevents untrustworthy nodes from degrading trustworthy nodes’ reputations.

Keywords: artificial reasoning; Fog computing; Internet of Things; trust modelling

1. Introduction

The Internet of Things (IoT) system is a new ever-growing communication technology
in which various nodes such as sensors, smartphones, and devices communicate with one
another through the internet [1–4]. IoT environments’ continuous growth and advancement
have led to a higher level of availability, scalability, accessibility, and interoperability [1,5].
However, these systems are vulnerable to cyberattacks, and hence the number of attacks is
exponentially increasing due to various IoT devices and protocols, various attack surfaces,
and a lack of security and trust standardizations and requirements [6,7].

The rapidly growing concerns for security and trustworthiness of IoT-based sys-
tems/services have paved the way for researchers and practitioners to build trusted IoT
environments [8–12]. Cyber intelligence research groups [13–15] have likewise pointed
towards artificial intelligence as having a vital role in improving trust modeling and con-
sequently focusing on IoT cybersecurity, including artificial intelligence schemes, usually
in terms of modelling unusual behavior. When a separate entity holds each opinion, com-
bining several opinions into a single opinion is a common task for artificial reasoning
systems. Subjective logic, a framework for artificial reasoning [16,17], is applicable when
the situation to be analyzed is characterized by considerable epistemic vagueness resulting
from incomplete knowledge.
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One of the prerequisites to providing appropriate IoT service levels is the need to
consider the level of certainty and knowledge related to received information and the level
of trust we have in the information source. Maintaining and updating a trust parameter
specifically for the information source is one technique to ensure that [18,19]. Increasing
the amount of total work completed through the collection of resources is one of the goals
of resource sharing [20,21]. Sharing resources in a hostile environment necessitates strict
security precautions to safeguard customers and the resources [22]. The costs associated
with security provisioning may outweigh the performance benefits that resource sharing is
intended to achieve. The sharing relationships can be limited to mutually trusting entities if
the predicted trust levels between the various entities are known; as a result, the overhead
associated with security provisioning can be decreased. IoT systems provide customers the
right to access resources or services that would not otherwise be accessible to them [23,24].
However, the risk involved in the concept of sharing resources or services makes the idea
of having a virtual network structure unattractive [25]. Such clients choose to utilize their
own closed box due to the vitality and sensitivity of the data or information. This kind
of resource management is not only expensive but also ineffective. Clients and resources
perceive such an environment as providing both possibilities and risks [24,26]. Security
threats, privacy concerns, and susceptibility to harm from malicious attacks are factors that
impact people’s trust in entities [3,24,26]. Malicious nodes are not trustworthy as defined
in [3]. A node is trustworthy if there is a firm belief in the competence of the device to
act as expected such that this firm belief is not a fixed value associated with the device
but rather it is subject to the device’s behavior and applies only within a specific context
at a given time [3]. Trustworthiness-establishing techniques must be developed in this
world of risk and uncertainty. In order to help entities determine how much trust to place
in others, such techniques should be used. As a result, it is crucial to create trustworthy
IoT settings [4,9,11]. Building trustworthy IoT environments also reduces irreparable and
unforeseen losses, developing dependable, effective, and steady service-driven IoT systems.
We cannot assume that every node in widely distributed networks is aware of every other
node or that every node is reliable.

In this article, we use subjective logic to model trust relationships between IoT entities.
A standard task in artificial reasoning systems is to fuse opinions into a single opinion.
Artificial reasoning is also applicable when the situation to be analyzed is characterized
by considerable epistemic uncertainty due to incomplete knowledge. Subjective logic is
particularly appealing for applications in artificial intelligence as well as other fields such
as reliability analysis and information security due to its conciseness and simplicity [16,17].
Hence, the subjective logic method can be utilized for trust reasoning [17].

The rest of the article is organized as follows. Section 2 outlines the current IoT trust
models. For completeness and clarity purposes, we discuss the components of trust model
architecture in Section 3. Section 4 presents the subjective logic trust model for IoT systems.
The performance evaluation experiments are discussed in Sections 5 and 6. Finally, Section 8
concludes the article and envisions future directions.

2. Related Work

This section discusses the research progress of building trust models in Fog computing
environments. Recently, few studies have considered building trust models in Fog com-
puting environments. These studies use different approaches to manage trust functions
(e.g., trust computation and trust information records). These approaches can be broadly
classified into three categories: centralized, distributed, or hybrid. In the centralized ap-
proach, trust functions are managed by a Fog broker [27], Fog assist [28], or cloud [29].
In the distributed approach [10,30], however, the participated Fog nodes (either Fog or
thing node) are involved in handling the trust functions. In a sense, the participated nodes
calculate the trust level of other nodes of interest and maintain the trust table locally or
globally by sending it periodically or on-demand basis. In the Hybrid approach, the trust
functions are managed and deployed in the things layer, the Fog, or the cloud layer [31,32].
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2.1. Fog-Based Centralized Trust Models

Several studies use the centralized approach such as [27–29,33]. Rahman et al. [27] use
a central entity called a Fog broker to maintain and compute the trust level of the partic-
ipating nodes in a Fog computing environment. A fuzzy logic-based method evaluates
the trust level of a particular node. It is calculated based on QoS, availability, security
considerations, user feedback, and cost. The availability parameter of the node is used
in the evaluation process to provide end-users with an available trustworthy Fog that
satisfies their requirements. Junejo et al. [28] propose a trust management system for
Fog-enabled cyber-physical systems. The direct trust level of Fog nodes is assessed using
QoS and network-related parameters. In this study, trust computation is formulated as a
statistical regression problem. Subsequently, it is solved using random forest regression.
They conclude that the credibility and multi-factor trust evaluations enable precise and
accurate trust computation and guarantee a trustworthy Fog-enabled CPS system.

Zineddine et al. [33] developed a trust model using fuzzy neural networks and the
weighted weakest link (WWL) to evaluate the trustworthiness of Fog nodes. After passively
classifying all Fog nodes using a neuro-fuzzy classifier and the WWL algorithms, the results
are sent to a central entity called the Fog trust server. The used model enables the end-user
to select the most trusted node upon requesting a service of interest. The information of
all nodes needs to be collected and processed offline. Hosseinpour et al. [34] propose a
framework based on role-based access control and trust model for the Fog computing
environment. In this study, a new Fog node is assigned a trivial task, and the model
computes a node’s trustworthiness based on the allocated task’s satisfaction level. Once
the trusted Fog nodes are discovered, they are given more access privileges and roles.
The overall trust level of a Fog node is computed based on the composition of different
trust attributes such as reliability, availability, turnaround efficiency, and data integrity.

Guo et al. [29] propose a three-tier trust model, cloud-cloudlet-device, based on so-
cial relationships among IoT devices owners. The proposed model employs a cloudlet
as an intermediary layer for maintaining trust data. The calculation of the trustworthi-
ness of all involved IoT devices is performed by the cloud in the region of cloudlets.
Al Muhtadi et al. [35] propose a trust model to enhance IoT security based on subjective
logic. The proposed system computes the trust level for each Fog node and keeps the trust
level associated with Fog Id in the local list. Based on the aggregated trust values, the sys-
tem determines if a Fog node is a legitimate node or a rogue node. Zahra and Chishti [9]
develop a Generic and Lightweight Security mechanism utilizing artificial reasoning called
Fuzzy logic and Fog computing technology called GLSFIoT. It integrates the benefits of fog
computing and fuzzy logic into designing a minimal security solution for IoT. The cloud
layer nodes employ anomaly-based and fuzzy logic-based trust management and detection
techniques to spot malicious activity in the fog layer in the IoT environment and pinpoint
the most reliable fog nodes. Additionally, they stated that combining many edge nodes
with reliable fog nodes is crucial before implementing security measures to minimize load
and improve system performance. The trustworthy fog nodes carry out processes for
flagging and detecting unknown attacks.

2.2. Fog-Based Distributed Trust Models

Several studies use the distributed approach such as [10,30,36]. Al-Khafajiy et al. [30]
design a Fog COMputIng Trust manageMENT (COMITMENT) system. They consider
direct and indirect trust in calculating the overall trust level of the participating nodes. In the
direct trust, QoS (e.g., low latency) and quality of protection (QoP) (e.g., data protection)
metrics are used to assess the trust level of selected Fog nodes by adopting the Bayesian
network method. In the indirect trust, recommendations from neighboring Fog nodes are
used to assess the trustworthiness of participated Fog nodes by adopting the distributed
Collaborating Filtering method. In this system, two types of recommenders, namely trusted
Fog nodes and community Fog nodes, are considered to evaluate the relationships between
the trustor Fog node and the recommenders. If the recommender is a trusted Fog node
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with a satisfactory experience score, the recommendation will be considered; otherwise,
the recommendation will be ignored. Whereas if the recommender is a community Fog
node, it will be considered if it has similar standards (e.g., same QoS and QoP experience)
with the trustor.

Alemneh et al. [10] develop a two-way TMS based on subjective logic. In this study,
three QoS parameters were utilized by the service provider (Fog server) to evaluate the
truthfulness of the service requester (Fog client), namely friendship, honesty, and owner-
ship. At the same time, the Fog client evaluates the trust level of the Fog server in delivering
stable and secure services by utilizing three social relationship metrics: latency, ownership,
and packet delivery ratio.

Kouicem et al. [36] propose a hierarchical trust management architecture based
on blockchain with mobility support in the Internet of Everything (IoE)-based systems.
The trust values of IoT devices are stored in the blockchain maintained by distributed Fog
nodes. The trust model considers the honesty of IoT devices to report recommendations
to their managing Fog nodes about other service providers. So, they only focused on
recommendations and ratings.

Wang et al. [37] propose a TMS for mobile Fog computing services. In this model,
three parameters are used to evaluate the direct trust of sensor nodes: residual energy,
node communication interaction, and packet loss rate. The overall trust score considers
recommendations with direct trust.

Ogundoyin and Kamil [11] propose a bi-directional trust management system to
fulfill both secure offloading and fog-to-fog collaboration. The model allows a service
requester to calculate the trustworthiness of the service providers and vice versa before
any transaction. The proposed model uses QoS, level of security, and social relationships to
compute the trust level of a node by fusing these trust parameters with past reputation and
recommendations from other neighboring nodes.

Gao et al. [38] propose a lightweight multidimensional trust evaluation mechanism
in the service-oriented IoT edge environment. The overall trust in the proposed model
is developed to assess the IoT edge devices, which are divided into three parts: direct
trust, capability trust, and indirect trust from feedback. Furthermore, a double-filtering
mechanism based on multi-source feedback is developed to ensure the correctness and
reliability of indirect trust. Finally, the trust evaluation process is completed by IoT edge
devices and the edge server without the involvement of the cloud server.

Elmisery et al. [39] offer a Fog-based middleware in which trust agents compute
the approximated interpersonal trust between a Fog node and the Cloud. The entropy
definition is used to perform the trust computation in a decentralized manner. In order to
improve and maintain trust, the Fog architecture uses a service layer on top of the Fog.

Hussain and Huang [40] present a Trust and Reputation-based Model called TRFIoT
for Fog-based IoT to evaluate the trustworthiness of Fog nodes. They employed a multi-
source trust assessment that considered the reputation of participating nodes. Authors also
use periodic trust feedback to make the system trustworthy and reliable. The local content
is assessed in the Fog layer to inspect malicious nodes, while global content is assessed in
the cloud layer.

Singh et al. [41] propose a Robust Trust Management scheme for Edge of Things in
smart cities based on Bayesian learning and collaboration filtering. The evaluation feedback
from users and IoT devices is aggregated in the edge servers, and the final result is sent to
the cloud server.

Compared to existing trust mechanisms, Yuan et al. [42] present a reliable and lightweight
trust model specified for IoT edge devices by employing objective information entropy
theory. Their method for computing the global trust is based on fusing multi-source
feedback information. The broker and device layers complete the trust computation in this
case. The authors chose the lightweight trust evaluation method because it is well-suited
for large-scale IoT environments. Jain and Kumar [12] incorporated blockchain into an IoT
context with fog technology. They suggest a trusted task offloading system that ensures the
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quality of service for IoT consumers while operating in a decentralized manner. They used
subjective logic to calculate the trust value for the fog nodes.

2.3. Fog-Based Hybrid Trust Models

Wang et al. [31] propose a Fog-based hierarchical trust model to evaluate trustworthi-
ness in sensor-cloud systems. In this model, the behavior trust is formed among nodes in
the wireless sensor layer, and the data trust of nodes is formed in the Fog layer. The Fog
layer plays a significant role and acts as a trust buffer zone between the things layer and
the cloud layer. This model is based on direct interaction and recommendations from other
nodes. It constructs the trust level in the Fog layer as follows. First, the Fog layer obtains
the trust state of the IoT things periodically. Then, the Fog layer performs data analysis
to reveal hidden data attacks and ensure the credibility of edge nodes. Finally, the Fog
layer establishes trust relationships between cloud service providers and sensor service
providers through collecting pieces of evidence. Zhang et al. [32] propose a three-layer
Fog-based detection system that utilizes a trust evaluation method to detect and solve
hidden data attacks. The first is the direct trust layer in Wireless Sensor Networks (WSNs).
The second layer is the preliminary decision layer among underlying Fog nodes, and the
third layer is the data analysis layer in the Fog platform. Their approach for evaluating the
trustworthiness of nodes is based on direct trust and recommendation. The considered
trust metrics are packet success rate, forwarding delay, and routing failure rate.

Jabeen et al. [43] present a hybrid trust management system that uses centralized
and distributed techniques to assess the trustworthiness of nodes. The nodes execute in-
network processing and convey only the fine-grained values to the fog node for assessment
to satisfy the scalability requirement in the centralized method. The fog nodes forward their
calculated reputation values of IoT devices to the cloud for global reputation computation.
The proposed model meets the adaptivity, survivability, and scalability requirements of the
trust management system for the IoT environment.

A trust management method IoT edge computing system in smart cities is presented
by Wang et al. [44]. The evolutionary game theory improves the validity and stability
of the trust management system. The validity and stability of the trust management
system are proved using the Lyapunov theory. The suggested approach enhances IoT
device collaboration in edge computing. Their approach primarily examines the trust
relationships of end-users. The approach is then extended to include end users and Edge
service providers. They maintain a blocklist and allowlist methods as part of their method.
By the end nodes, the reputable nodes will be added to the allowlist, while the suspicious
nodes will be added to the blocklist. During path selection, the network tries to entail the
nodes in the allowlist.

2.4. Summary

To conclude, Table 1 gives a summary of the current Fog-based trust model approaches
that address the concept of trust. Models can be categorized in terms of (a) the hosting
environment or (b) the trust characteristics when calculating trust. Direct trust and/or
reputation are the two factors that trust models use to calculate trust. If reputation is
utilized to calculate trust level, filtering mechanisms are used to weed out recommenders
or adjust/shift recommendations. This filtering process can be based on attributes such as
accuracy and honesty. A trust model is utilized to specify, annotate and build trust relation-
ships between IoT nodes for the purpose of intelligent reasoning. There are different types
of intelligent reasoning methods and Table 2 classifies Fog-based trust models according
to these methods, while Table 3 identifies the tool used in simulating and evaluating the
proposed Fog-based trust model.
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Table 1. Fog-based Trust Models.

Hosting Environment Trust Characteristics

Ref., Year IoT Layer Architecture Trust Update Trust Components Trust Filtering Mechanisms

Things Fog Cloud Cen. Dis. Time Event Direct Reputation Recommenders Recommendations

[31], 2018 X X - X X X - X X X X
[37], 2019 - X - - X - X X X X -
[28], 2019 X X - X - - X X - - -
[30], 2020 - X - - X X - X X X X
[10], 2020 - X - - X - X X X X X
[27], 2020 - X - X - X - X X - -
[33], 2020 - X - X - - - X X X -
[34], 2017 - X - X - - - X - - -
[32], 2018 X X - X X - - X - - -
[36], 2018 X X - - X - - - X X -
[29], 2017 - - X X - - X X X X -
[35], 2021 - X - X - - X - X - X
[11], 2021 X X - - X - X X X X -
[39], 2017 - X X - X - X - X - -
[40], 2018 - X - - X X - X X - -
[43], 2021 X X - X X - X X X X -
[41], 2021 - X - - X X - X X X -
[42], 2018 X X - - X X - X X - -
[44], 2020 X X - X X X - X X - X
[12], 2022 - X X - X - X X X - X
[9], 2022 - - X X - - X X X - -

Ours, 2022 X X - X X - X X X - X

Ref. = Reference, Cen. = Centralized, Dis. = Distributed.

Table 2. Fog-based Trust Models: Reasoning Methods.

Reasoning Method

Bayesian Fuzzy Subjective Entropy Game Beta Not
Systems Logic Logic Theory Theory Distribution Applicable

Ref. [30] [9,11,27,33] [10,12,35] [39,42] [44] [38] [28,29,31,32,34,36,37,40,43]

Table 3. Fog-based Trust Models: Simulation Tools.

Simulation Tool

Matlab iFogSim NS3 SystemC NetLogo Cooja Not Mentioned

Ref. [11,27,30–33,37,38,40] [28,35] [11,29,43] [34] [38,42] [9] [10,12,36,39,41,44]

3. Trust Model Architecture Components
3.1. Trust Representation and Usage

The fundamental trust model concepts have been identified and published in our
previous articles [3,25]. These fundamental trust model concepts are: (a) behavior trust,
(b) reputation, (c) honesty and (d) accuracy. The trust model elements are organized to
function and evolve trust in a fully distributed manner, and no entity is omniscient. Rather,
each entity x has its opinion of how trustworthy other entities are and stores this knowledge
in its direct trust table (DTTx) that contains trust levels for nodes with which x had prior
direct experience. For example, x trusts node y to act as expected within context c at time t.

Similarly, each node cooperates with other nodes by sharing information in the form
of recommendations. In the trust model, node x maintains a recommender trust table (RTTx)
that associates trust levels for node y based on prior direct experience for node y with other
nodes. For example, Tc

ry means that x associates a trust level for y based on recommen-
dation received from recommender r based on prior direct experience for y with n. This
recommendation is for context c.

3.2. Trust Model Mapping

Since IoT systems can have a large number of nodes, it is not desirable to consider
each IoT node as an entity since this will impact the proposed trust scalability. As such and
as shown in Figure 1, the IoT system is aggregated into Fog Computing Domains (FCDs).
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During this aggregation process, each FCD elects one coordinator. The coordinator repre-
sents the entire FCD in the trust modeling process, and it is held responsible for managing
its FCD members to maintain a high reputation for its FCD within the IoT environment.

For example, assume that an FCD with six member nodes and one of the members is
the coordinator. We will refer to the Fog coordinator as FC. The FC has the complete trust
levels of the members within its FCD. Suppose a new node needs to join the FCD. The FC
will request it to provide references from prior associations with other FCDs. The objective
of the FC is to show its resources as highly trustworthy to other FCs because the value
of highly trustworthy resources is higher than the less trustworthy resources. Therefore,
the FC does not want to overestimate or underestimate the trust level of a member node
because the FC and hence its FCD’s reputation will suffer.

Figure 1 shows that each FCD is a collection of member nodes (IoT things) which
are a mixture of clients and resources. These members collectively contribute to the
overall trustworthiness of their FCD. In contrast to the reputation of other FCDs, which
is maintained in RTTFCD, the trust records that an FCD believes in other FCDs with
whom it has had direct interactions are maintained in DTTFCD. These two data structures,
associated with each FCD, are maintained by the FC. The member nodes are where the
real interaction between two FCDs takes place. The FC also maintains internal trust table
ITTFCD that contains the trust levels for the members of FCD. By obtaining feedback from
FCDs that utilized the service provided by its member node, the FC modifies the member
node’s trust level in the ITTFCD each time it takes part in a transaction.

Figure 1. Trust model architecture components.

Figure 2 illustrates the operations of the trust model. Assume a source (i.e., FC) wants
to determine the trust level of a target (i.e., FC). The source determines the target’s trust
level by combining its direct trust (i.e., its own experience) with the target as well as the
target’s reputation. From its DTT, the source obtains its direct trust in the target. The tar-
get reputation is obtained by the source contacting its recommenders in RTT. After the
recommendations are received, the source can compute the target reputation.

After that, and as shown in Figure 2, the source computes the target trust level by
combining its direct trust level in the target and the target reputation. Based on the
computed target’s trust level, the source can decide to go ahead or reject the transaction
with the target. After the transaction is finished, the followings are performed: (a) the
source can update its RTT by evaluating its recommenders; (b) the source can update its
DTT; and (c) the target can update its ITT to reflect the trustworthiness of its member node.
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Figure 2. Trust and reputation operational cycle.

4. Subjective Logic Trust Model
4.1. Trust Attributes

Many behavioral characteristics can be observed to evaluate nodes trust level during
the nodes interaction process. In the following, we discuss these trust attributes and provide
how we calculate them.

Availability: As stated in [34,45,46], it is a measure to ensure that node j is operational
and accessible to legitimate nodes whenever needed in a reasonable time to achieve the
expectations. Node j might be unavailable if (1) it is busy processing other requests or (2)
it refuses to respond to requested task. Availability At

i,j denotes the availability of j, as
observed by i at time t. At

i,j is calculated as follows:

At
i,j =

Accepted tasks
Total tasks

(1)

Reliability: As stated in [34,45,46], it is a measure to ensure that node consistently
operates as per its specifications in a defined time. Reliability Rt

i,j represents j’s success rate
in the completion of the tasks that it has accepted from i. Rt

i,j is computed based on the
following equation:

Rt
i,j =

Successful performed tasks
Accepted tasks

(2)

Turnaround Efficiency: As stated in [34,46], it is a quality measure that ensures j
performs a requested task within the time that it promises to i. Irregularities and high
latency in response time predict potential intrusions in the system. Turnaround is a
time frame that begins when i sends a processing task to j until j accomplishes the task
successfully and sends it back to i. Turnaround Efficiency Et

i,j of j at time t is computed
based on the following equation:

Et
i,j =

Promised Turnaround time
Actual Turnaround time

(3)

If the promised turnaround time is greater than the actual turnaround time, the turnaround
efficiency is 1.

Ownership: Every node in the Thing/Fog has an owner. The inclusion of this measure
is based on the belief that devices belonging to the same owner have mutual trust. As a
result, the value of the trust attribute Oi, j is set to 1 if a node comes across another node
that the same owner owns; otherwise, it becomes 0.

4.2. Subjective Logic

Subjective logic is emerging as a reasoning method to express trust relationships
as a subjective opinion with a degree of uncertainty. Subjective logic, a type of belief
theory, is based on the idea that trust is subjective and that everyone experiences it dif-
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ferently [10,17,35]. Subjective logic is suggested to be the most appropriate for modeling
trust in the Fog computing environment [10,47] as each node computes another node’s
trust value it encounters subjectively. It is impractical for nodes to include all relevant trust
metrics when determining node’s trust rating. This means that trust is calculated based
on a lack of proof, and that each node calculates its subjective trust levels for each node
it meets [10,35]. Opinions are used as input and output variables in the subjective logic
method. An opinion ωx [48] is defined as:

ωx = (bx, dx, ux, ax) (4)

where bx denotes the degree of belief that x is trustworthy, dx denotes disbelief, ux denotes
uncertainty of trust relation, and base rate ax, atomicity, indicates the prior probability of x
in the absence of evidences. The summation of variables bx, dx and ux equals 1.

The node computes the aforementioned subjective trust tuple values using the ac-
quired observations and reported experiences from other nodes, as shown in the equations
below (5)–(7).

bx =
pos

pos + neg + k
(5)

dx =
neg

pos + neg + k
(6)

ux =
k

pos + neg + k
(7)

where the pos and neg denote positive and negative acquired observations, respectively,
and k = 1.

The discount operator ⊗ is used to weigh the node’s recommendations with the past
opinion about the recommender. For example, the discount operator is used when node i
intends to compute the reputation values for node j based on a recommendation from the
intermediate node k as shown in Figure 3a. In this situation, high trust values are a direct
effect of the weight of trusted recommenders and vice versa. Two opinions are averaged
using the consensus operator ⊕, which is shown in Figure 3b. For more details about ⊗
and ⊕ refer to [4].

Figure 3. (a) Discounting operator, (b) Consensus operator, (c) Computation of reputation.

Reputation can be acquired by carrying out both operators, ⊗ and ⊕, on the collected
recommendations as a subjective trust. This scenario has been illustrated in Figure 3c.
Suppose node i has a list of recommenders with the following trust levels at time t
as Tt

i,r1, Tt
i,r2, . . . , Tt

i,rn and these recommenders have trust levels about j at the time t as
Tt

r1,j, Tt
r2,j, . . . , Tt

rn,j, then once the discounting and consensus operators have been applied,
the reputation of j is calculated as:

Rt
i,j =(Tt

i,r1 ⊗ Tt
r1,j)⊕ (Tt

i,r2 ⊗ Tt
r2,j) ⊕ . . .⊕ (Tt

i,rn ⊗ Tt
rn,j) (8)
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In order to calculate the direct trust of the j, the aforementioned trust attributes are
utilized. The direct trust of j as evaluated by i at time t is computed utilizing the following
Formula (9):

Tt
i,j = βAt

i,j + γRt
i,j + δEt

i,j + ηOi,j (9)

where 0 6 (β, γ, δ, η) 6 1 and (β + γ + δ + η) = 1. The weighting factors of availability
and reliability should be set to high values to encourage nodes to provide a reliable service
whenever needed. The detailed steps of the trust computation and updating trust-related
tables are described in Algorithm 1. The trust level Ψj

i is in range of [0 , 1], where 1 indicates
complete trust and 0 is complete distrust.

Algorithm 1 Computing and Updating Trust-related Tables.

Require: Node i as source, Node j as target, Si as service, λ, Threshold
Ensure: Trust Level of j

1: Retrieve list of js that provide Si
2: for each j do
3: for each r ∈ RTTi do
4: Acquiring recommendations for j
5: Apply discounting operator
6: Apply consensus operator
7: Apply discounting and consensus operators using Equation (8)
8: Ψj

i = λ× Tt
i,j + (1− λ)× Rt

i,j . calculate trust level Ψj
i by combining the direct trust

and reputation
9: if Ψj

i > Threshold then
10: Do transaction with j
11: Go to line 12
12: Compute direct trust Tt+1

i,j using Equation (9)

13: if Tt+1
i,j > Threshold then

14: posi,j = 1
15: else
16: negi,j = 1

17: if j /∈ FCDi then
18: Send feedback to FCj
19: Update ITT by FCj

20: Tt
i,j = λ× Tt

i,j + (1− λ)× Tt+1
i,j . update DTTi

21: for each r ∈ RTTi do . update RTTi
22: Update trust level for r

Algorithm 1 starts with the member node that wants a specific service by contacting
its coordinator and asking for service providers that provide the required service. The coor-
dinator utilizing the inter-ring, sends a lookup query and gets a list of all service providers.
The coordinator selects a trustworthy provider by consulting its DTT and the recommen-
dations from its recommenders. Next, the coordinator receives the recommendations in
the form of opinions. These recommendations are weighted and combined to get the
final reputation of the coordinator of the service provider by applying discounting and
consensus operators together. Then, the coordinator computes the trust level Ψj

i based
on the reputation and the direct trust with the coordinator of the service provider. Based
on the aggregated results, the coordinator decides to go with the transaction or not if
Ψj

i > Threshold. After doing the transaction, the Tt+1
i,j of the service provider is computed

using Equation (9). If the Tt+1
i,j > Threshold, it assigns positive feedback; otherwise, it

assigns negative feedback. Then, the feedback is sent to the Fog coordinator of the service
provider to update its internal trust table. Finally, the coordinator of i updates its DTTi
and RTTi.
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4.3. Trust Model Elements

Tables 4–6 represent the tables maintained by each FC, namely DTTFC, RTTFC and
ITTFC. These tables utilize subjective logic parameters to compute and update trust levels.
Table 4 is maintained by Fog Coordinator x (FCx) for Fog Coordinator y (FCy). Similarly,
Tables 5 and 6 are maintained by FCx.

Table 4. Direct Trust Table maintained by FCx for FCy.

Context
Number of

Transactions Subjective Logic Parameters Trust
Level

Time
Stamp

+ − Belief Disbelief Uncertainty Atomicity

C1 Py
C1

Ny
C1

By
C1

Dy
C1

Uy
C1

Ay
C1

TLy
C1

TSy
C1

...
...

...
...

...
...

...
...

...
Ci Py

Ci
Ny

Ci
By

Ci
Dy

Ci
Uy

Ci
Ay

Ci
TLy

Ci
TSy

Ci

Table 5. Recommender Trust Table maintained by FCx for nodes directly interacted with FCy.

Context Recommender
Subjective Logic Parameters Trust

Level
Time

StampBelief Disbelief Uncertainty Atomicity

C1
R1 B1y

C1
D1y

C1
U1y

C1
A1y

C1
TL1y

C1
TS1y

C1
...

...
...

...
...

...
...

Rn Bny
C1

Dny
C1

Uny
C1

Any
C1

TLny
C1

TSny
C1

...
...

...
...

...
...

...
...

Ci
R1 B1y

Ci
D1y

Ci
U1y

Ci
A1y

Ci
TL1y

Ci
TS1y

Ci
...

...
...

...
...
...

...
...

Rn Bny
Ci

Dny
Ci

Uny
Ci

Any
Ci

TLny
Ci

TSny
Ci

Table 6. Internal Trust Table maintained by FCx.

FCDx Members
Subjective Logic Parameters Trust

LevelBelief Disbelief Uncertainty Atomicity

1 B1 D1 U1 A1 TL1
...

...
...

...
...

...
j Bj Dj Uj Aj TLj

5. Performance Evaluation
5.1. Goals of the Simulation

Cross-ratings are a key component of trust-based systems, and since these systems are
built on communities that might contain untrustworthy nodes, it is essential for any trust
model to predict the trust level among nodes accurately. Therefore, the first objective is
to distinguish between trustworthy and untrustworthy nodes. As a result, a node will be
able to conduct transactions with trustworthy nodes and stay away from untrustworthy
ones. We investigated this attribute in our trust model and in simulations by evaluating the
accuracy of our trust model in predicting the trust between nodes. In addition, we vary
the weight of direct trust versus reputation to scrutinize the agility of the trust model in
detecting untrustworthy nodes. Furthermore, we vary the number of dishonest nodes to
study the resilience of the trust model to dishonest nodes that give incorrect reviews to
mislead predicting the future behavior of nodes for malicious reasons. Hence, the goals of
the simulation can be summarized as follows:

• Examine the agility of the trust model in detecting untrustworthy nodes
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• Study the effect of dishonest nodes that give incorrect reviews.

5.2. Simulation Environment

The trust model is implemented using Contiki OS version 3.0, and the evaluation
is performed through the Cooja emulator. For a deployed architecture, we run a set
of experiments that follow the same methodology to ensure their valid comparability.
The phases of running experiments start by utilizing the Cooja simulator to:

• Select a radio medium model such as distance/constant loss Unit Disk Graph Model (UDGM),
Directed Graph Radio Medium (DGRM), or Multi-path Ray-tracer Medium (MRM).

• Select a mote type from the supported motes such as Z1, Wismote, MicaZ, or SKY mote
and select the number of motes. In our study, we have used Wismote and SKY mote.

• Select a network topology such as uniformed 2D-Grid or random positioning. More
detail about our selected topology comes later.

• Select the transmission range for the populated nodes.

Then, the modules of the trust model are implemented in Cooja and follow Algorithm 1
for constructing the model by computing and updating trust-related tables. After select-
ing the performance evaluation metrics, Cooja simulation scripts and other tools such as
Gnuplot were used to collect, save, analyze, and display simulation results.

Regarding the network topology, we consider the topology shown in Figure 4 as a physical
topology for the scenarios under study. The network consists of 4 nodes as FCs and 16 nodes as
members of the FCDs. The nodes are deployed in an area of size 150 m× 150 m. The UDGM is
used with a transmission range of 50 m and an interference range of 100 m. At the transport
layer, UDP is used as a default protocol. The Wisemote platform is used for experimenting
with Fog coordinators, while the Sky mote platform is used for experimenting with members
of FCDs.

Figure 4. Network Topology.

The simulated environment consists of three FCDs. The first FCD has 10 members
(i.e., IoT devices) and one FC (i.e., node id 27). There are 3 members in each of the other
two FCDs having FCs 6 and 17. Various experiments have been conducted to evaluate the
evolution of trust based on different scenarios. Each point in the figures is the result of five
simulation runs. Table 7 shows the design parameters used in the simulation.
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Table 7. Design parameters used in the simulation.

Symbol Definition Design Parameter Values

FCDnum Number of FCDs 3
Nodesnum # of members 16

B Belief 0.5
D Disbelief 0.5
U Uncertainty 0.5
A Atomicity 1
λ Direct trust weight [0.0, 0.5, 0.7, 0.9]

Disnum # of dishonest nodes [0%, 10%, 30%, 50%]
Untnum # of untrustworthy nodes [0%, 10%, 30%, 50%]

6. Results and Discussion
6.1. Agility of the Trust Model

Figure 5 shows the trust evolution when all recommenders are honest. In these
experiments, FC17 predicts the trust level of FC27. During these sets of experiments, we
also varied the value of λ and the percentages of malicious (i.e., untrustworthy) nodes. It
should be noted that GT-Normal means all nodes are trustworthy and GT-Malicious means
all node are malicious (i.e., untrustworthy).

(a) (b)

(c) (d)

Figure 5. For zero dishonest nodes, evolution of trust where λ value is: (a) 1, (b) 0, (c) 0.5 and (d) 0.7.

Since there are zero dishonest recommenders, it can be observed that combining
direct trust and reputation (i.e., when λ 6= 0) outperforms trust prediction when λ = 0.
Because all recommenders are honest, reputation reinforces direct trust, and therefore
combining these two components yields a higher trust level prediction than relying on only
one of them. For example, when λ = 0.5 and 0.7, the trust level converges much faster than
when λ = 0.

It should be noted that this fact holds true for all percentages of malicious (i.e., un-
trustworthy) nodes. Since we are relying on honest recommenders (i.e., recommenders that
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do not lie), reputation reports are not false and therefore the trust level computation is not
polluted. Ideally, trust models wants to hinder dishonest recommenders from contributing
to trust level calculation. As such, the impact of λ is almost negligible on predicting the
trust level. This is inline with our expectation since the environment under study consists
of honest recommenders.

In the next set of experiments (i.e., Figure 6), we investigate the impact of dishonest
recommenders that attempt to contaminate the IoT environment by intentionally providing
fake recommendations. We measure such impact while varying the value of λ. In these
experiments, we evaluated the Global (i.e., combining direct trust and reputation), Direct
(i.e., only using the direct trust component), and Reputation (i.e., only using the reputation
component). This is basically the evaluation of Algorithm 1 line #9. The reason for this is to
evaluate the effect of the two components (i.e., direct trust and reputation) on the prediction
of the trust level (Global). Fog 6 is configured as a dishonest recommender, and all member
nodes of FCD27 are malicious (i.e., untrustworthy).

(a) (b)

(c) (d)

Figure 6. Evolution of trust when there are dishonest recommenders where λ value is: (a) 0.1, (b) 0.3,
(c) 0.5 and (d) 0.9.

From the obtained results, increasing λ reduces the effect of dishonest recommenders
as shown in Figure 6d. On the other hand, when λ = 0.1 (shown in Figure 6a), the predicted
trust level of FCD27 is above 0.75 meaning that FCD27 is trustworthy while all of FCD27
members are untrustworthy. This wrong prediction is caused by giving more weight to the
reputation component in calculating FCD27 trust level.

Therefore, we can conclude that relying on direct trust converges to an acceptable
predicted trust level. Relying on direct trust, however, does not exploit cooperation which
is a main goal of IoT systems. On the other hand, a reputation-based model can converge
to a high success rate but as the number of dishonest recommenders increases, the trust
model becomes sensitive to these dishonest recommendres.
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6.2. Evolution of Internal Trust

In this section, we have conducted a set of experiments based on one scenario where
there are 50% malicious (untrustworthy) member nodes in one FCD to evaluate the effect
of the internal trust levels of the member nodes of the FCD. Whenever a member node
takes part in a transaction, its FC updates the member node’s trust level in its ITT utilizing
EWMA after discounting the received feedback. The discounting process is based on direct
trust with the FC who sent the feedback. We have simulated this scenario in Figure 7.

Figure 7 shows that the network exhibits two types of behaviors. We plot the behavior
of trustworthy member nodes of FCD27 in Figure 7a. According to the results, the trust-
worthiness of these trustworthy node members is increasing as the number of transactions
increases, and this increase is unaffected by the other 50% unreliable node members in the
same FCD (i.e., FCD27).

We then plot the behavior of untrustworthy member nodes of FCD27 in Figure 7b.
The results show that as the number of transactions increase, the trust level of these untrust-
worthy node members is decreasing and this decrease is not affected by the trustworthy
behavior of the other 50% trustworthy node members in the same FCD (i.e., FCD27).

This is an important result that shows that the individual behavior of member nodes
are captured and isolated their FC. Hence, an incentive (i.e., reward/punishment) mech-
anism can be utilized by the FC to further discourage or even prevent untrustworthy
behavior in its FCD.

(a) (b)

Figure 7. Evolution of internal trust of members, (a) Trustworthy Members (b) Untrustworthy Members.

7. Trust Model Realism Furthermore, Limitations

For scalability purposes, the IoT system is aggregated into FCDs. The trust model is
designed with the scalability factor in mind. The trust model elements such as DTT, RTT,
and ITT are designed to operate and evolve trust in a purely distributed manner. There is
no FCD that is omniscient. Rather each FCD: (a) has its own view of how trustworthy other
FCDs are and keeps this information in DTT (b) controls the monitoring process of its own
transactions using its FC, (c) maintains RTT using its own FC.

The size of RTT is small since it contains information about the FCD recommenders
which is a small set of the total number of FCDs. On the other hand, DTT contains one entry
for each of the FCDs that this particular FCD directly interacted with. Hence, as the direct
interaction with different NCDs increase, the size of DTT increases in a linear fashion.

A potential implementation problem with our trust model is ensuring that the iden-
tities of FCDs cannot be created trivially. This is crucial since reputation can get erased
if an FCD changes its identity. Hence, an untrustworthy FCD can use this trick to start
fresh every time it builds up a bad reputation history. Further, FCDs may expect their
recommendation requests to be fulfilled by others. However, when it comes to others
asking for recommendations, this particular FCD chooses not to give recommendations by
simply returning −1 (i.e., do not know) or basically ignoring the request. That is, FCDs
may refuse to give recommendations for various reasons. Further, by isolating dishonest
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recommenders and routing the recommendation requests to only honest recommenders,
a tedious task can be potentially created by bombarding these honest recommenders with
a rather huge volume of recommendation requests. As a result, an honest recommender
might be inclined to refuse giving recommendations to avoid the extra work. To remedy
this problem, incentives should be provided to encourage and reward these cooperative
FCDs. As such, more explicit incentives should be provided by our trust model. For exam-
ple, cooperative FCDs should be given reduced cost when using resources or should have
a higher priority when submitting tasks.

Another limitation of our trust model that we foresee is the potential creation of perfor-
mance bottlenecks. Because every FCD wants to keep honest recommenders, the majority,
if not all, of the recommendation requests will be routed to the honest recommenders. This
not only creates a tedious task that can be bothersome for these honest recommenders,
but also can create a potential performance bottleneck. Therefore, responses to recommen-
dation requests can experience a longer delay.

8. Conclusions and Future Directions

In this article, we proposed a system to model trust relationships in IoT environments.
The proposed trust model uses subjective logic since it is particularly appealing for ap-
plications in artificial intelligence as well as other fields such as reliability analysis and
information security due to its conciseness and simplicity. Hence, the subjective logic
method is utilized in our proposed model for trust reasoning.

We conducted extensive performance evaluation experiments to measure the agility as
well as the trust level prediction of our trust model. Results indicate that our trust model is
capturing and correctly predicting the behavior of nodes at an early stage of the simulation
time (i.e., within the first 2% of the number of transactions). Results also show that within
the same FCD, our proposed trust model isolates untrustworthy behavior and prevents
untrustworthy nodes from affecting the reputation of trustworthy nodes.

As for future directions, we are working on integrating incentive mechanisms to
discourage or even prevent untrustworthy behavior. Since honest recommenders are
important and vital component in any trust model, incentive mechanisms can be used to
encourage honesty and reward honest recommenders.
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