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Abstract: Glycated hemoglobin (HbA1c) is the most important factor in diabetes control. Since HbA1c
reflects the average blood glucose level over the preceding three months, it is unaffected by a patient’s
activity level or diet before a test. Noninvasive HbA1c measurement reduces both the pain and
complications associated with fingertip piercing to collect blood. Photoplethysmography is helpful
for measuring HbA1c without blood samples. Herein, only two wavelengths (615 and 525 nm) were
used to estimate HbA1c noninvasively, where two different ratio calibrations were applied and their
performances were compared to a work that used three wavelengths. For the fingertip type, the
Pearson’s r values for HbA1c estimates were 0.896 and 0.905, considering the ratio calibrations for
the blood vessel and whole finger models, respectively. Using another value (HbA1c) calibration in
addition to the ratio calibrations, we could improve this performance such that the Pearson’s r values
of the HbA1c levels were 0.929 and 0.930 for the blood vessel and whole finger models, respectively.
In a previous study, using three wavelengths, the Pearson’s r values were 0.916 and 0.959 for the
blood vessel and whole finger models, respectively. Here, the RCF of the SpO2 estimation was 0.986
when the SpO2 ratio calibration was applied, while in a previous study, the RCF values of the SpO2
estimation were 0.983 and 0.986 for the blood vessel and whole finger models, respectively. Thus, we
have shown that HbA1c estimation using only two wavelengths has a comparable performance to
previous studies.

Keywords: glycated hemoglobin; HbA1c; diabetes; noninvasive; photoplethysmography

1. Introduction

Traditional blood glucose testing often requires blood samples, which can be uncom-
fortable for a patient and increase the risk of skin and red-blood-cell-life abnormalities. On
the other hand, the glycated hemoglobin (HbA1c) value reflects the average blood glucose
level over the previous three months, and it is unaffected by physical activity or food intake
for several hours leading up to measurement. High levels of HbA1c indicate poor blood
glucose control. As a result, it is used as the most fundamental indicator of the degree of
blood glucose control over a period of time and to predict the onset of long-term issues due
to diabetes. Human blood consists of 55% yellow liquid plasma, 44% solid red blood cells,
and 1% white blood cells and platelets. Hemoglobin is a type of protein found in the red
blood cells that plays an important role in transporting oxygen by binding to the oxygen
in the blood and to the glucose contained in blood cells. Hemoglobin bound to glucose
is called glycated hemoglobin. Regarding glycated hemoglobin, the more glucose there
is in the blood, the more the hemoglobin in the red blood cells that binds to the glucose,
resulting in higher blood glucose levels. The glycated hemoglobin level is the ratio of
glycated hemoglobin to total hemoglobin in the blood. Because the normal lifespan of red
blood cells is approximately 4 months and the lifespan of individual red blood cells can
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vary widely, this test can only provide the HbA1c estimate over the preceding 3 months.
People with diabetes are at increased risk of developing additional medical complications,
such as heart diseases, kidney failure, stroke, cataracts, and/or premature death. Therefore,
the early diagnosis of diabetes in the prediabetic stage is crucial for preventing deterioration
of the blood sugar regulation system. This can be achieved through various blood-based
tests, such as the random, oral, and fasting blood glucose tests or the glycated hemoglobin
(HbA1c) test. These tests are used to detect the levels of glucose in the blood, which is a
key indicator of diabetes. In diagnosing diabetes, the HbA1c test is known to have a better
performance than the plasma glucose test [1].

Many enzymatic and nonenzymatic electrochemical glucose sensors [2–7] have been
created over the past few decades; however, these approaches are invasive. Immunoassay,
ion-exchange high-performance liquid chromatography (HPLC), boronated affinity chro-
matography, and capillary electrophoresis (CE) are the four most commonly used methods
for estimating HbA1c [8]. Both HPLC-electrospray mass spectrometry (HPLC-ESI/MS)
and HPLC-capillary electrophoresis-ultraviolet (HPLC-CE-UV) are recommended by the
International Federation on Clinical Chemistry and Laboratory Medicine (IFCC) for mea-
suring HbA1c levels in human blood [9]. All of these methods still require blood samples.
However, the development and practical use of noninvasive HbA1c estimation tests have
been of increasing interest recently. One study [10] only addressed photoplethysmography
(PPG) sensor design and did not consider noninvasive in vivo estimation techniques while
discussing the estimation of in vitro HbA1c levels. Based on the measurement conditions
related to hyperglycemia, researchers have divided mouse models into diabetic, obese,
and normal control categories [11]. In [12], the authors reported that individuals could be
divided into diabetic and non-diabetic categories using PPG signals. In another study [13],
the HbA1c levels were calculated by also taking into account the acetone levels in the breath.
In our previous study [14], we estimated HbA1c noninvasively using the Beer–Lambert
law-based model with three wavelengths. However, the three wavelengths used made
the model complicated and inconvenient for the user, as well. To address these issues, a
noninvasive estimation strategy using PPG signals with only two wavelengths is proposed
herein. In this study, we used a white LED to provide signals at three wavelengths (465,
525, and 615 nm); of these, red (615 nm) and green (525 nm) were selected to prove the
proposed method. Although any two of the three wavelengths can be used, the essence
of this study did not change, and a detailed explanation for choosing the wavelength pair
(525 and 615 nm) is given in Appendix A.

2. Background
2.1. Beer–Lambert Law

The Beer–Lambert law specifies the attenuation of light passing through a sample [15].
In most cases, the Beer–Lambert law is suitable for quantifying the concentration of a com-
pound remaining in a sample. Accordingly, the attenuation of light is directly proportional
to the concentration of the residual compounds in the sample. The practical expression of
the Beer–Lambert law is given in Equation (1):

A = ε × c × d , (1)

where A is the total absorption, ε is the molar absorption coefficient (L·mol−1·cm−1), c is
the concentration of the attenuating species (mol·cm−1), and d is the optical path length
(cm). Equation (1) can also be expressed in terms of the incident light intensity on the
sample and the transmitted light intensity through the sample, as follows:

A = log
I0

I
, (2)

where I0 is the intensity of light incident on the sample and I is the intensity of the
transmitted light through the sample.
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2.2. Finger Type Models: Blood Vessel and Whole Finger Models
2.2.1. Blood Vessel Model

The blood vessel model was created using the assumption that the diameter of a vessel
increases slightly to accommodate the volume of blood as it enters the vessel and decreases
as the blood leaves the channel. This is illustrated in Figure 1.
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Considering Equation (1), blood can be defined as a homogeneous solution of HbA1c,
HbO, and HHb. Hence, the total absorption at wavelength λ can be expressed as

A = (εHbA1c(λ)× cHbA1c + εHbO(λ)× cHbO + εHHb(λ)× cHHb)× d, (3)

where εHbO(λ), εHHb(λ), and εHbA1c(λ) are the molar absorption coefficients at the
wavelengths λ for HbO (oxygenated hemoglobin), HHb (deoxygenated hemoglobin), and
HbA1c, respectively, and c represents the molar concentration of each element while d is the
distance traveled by light.

The formulas for %SpO2 and %HbA1c can be described as follows:

%SpO2 =
cHbo

cHbO + cHHb
× 100% and (4)

%HbA1c = PHbA1c × 100% . (5)

The partial molar concentrations of HbO, HHb, and HbA1c can be expressed as PHbO,
PHHb, and PHbA1c, respectively, as follows:

PHbO =
cHbO

cT
, (6)
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PHHb =
cHHb

cT
, (7)

PHbA1c =
cHbA1c

cT
, and (8)

cT = cHbO + cHHb + cHbA1c. (9)

From Equations (6)–(9),

PHHb = 1 − (PHbO + PHbA1c). (10)

Equation (4) can be expressed in terms of the partial molar concentration as follows:

%SpO2 =
PHbo

PHbO + PHHb
× 100% . (11)

When the blood vessel expands, Equation (3) becomes

∆A = (εHbO(λ)× cHbO + εHHb(λ)× cHHb + εHbA1c(λ)× cHbA1c)× ∆d, (12)

where ∆A = A1 − A2 and ∆d = d1 − d2; A1 represents the absorbance when blood enters
the vessel; and A2 represents the absorbance when the blood flows out from the vessel.
The variables d1 and d2 represent the diameters of the blood vessel as blood enters and
leaves the vessel, respectively.

For the two wavelengths considered in this study (i.e., λ1 = 525 nm and λ2 = 615 nm),
Equation (12) can be expressed as

∆Aλ1 = (εHbO(λ1)× cHbO + εHHb(λ1)× cHHb + εHbA1c(λ1)× cHbA1c)× ∆d (13)

∆Aλ2 = (εHbO(λ2)× cHbO + εHHb(λ2)× cHHb + εHbA1c(λ2)× cHbA1c)× ∆d. (14)

From Equations (13) and (14), a ratio equation can be obtained to estimate the unknown
parameter PHbA1c. The ratio equation can be expressed as

R =
∆Aλ2

∆Aλ1
=

(εHbO(λ2)× cHbO + εHHb(λ2)× cHHb + εHbA1c(λ2)× cHbA1c)× ∆d
(εHbO(λ1)× cHbO + εHHb(λ1)× cHHb + εHbA1c(λ1)× cHbA1c)× ∆d

. (15)

Replacing the molar concentration with the partial molar concentration, we obtain

R =
∆Aλ2

∆Aλ1
=

(εHbO(λ2)× PHbO + εHHb(λ2)× PHHb + εHbA1c(λ2)× PHbA1c)

(εHbO(λ1)× PHbO + εHHb(λ1)× PHHb + εHbA1c(λ1)× PHbA1c)
. (16)

Equations (13) and (14) can be expressed in the form of Equation (2) as follows:

∆Aλ1 = ∆
[

log
I0

I

]
λ1

and (17)

∆Aλ2 = ∆
[

log
I0

I

]
λ2

. (18)

Now, Equation (16) can be expressed by combining Equations (17) and (18). Therefore,
the ratio can be calculated directly from the light received at the fingertip and follows:

R =
∆
[
log I0

I

]
λ2

∆
[
log I0

I

]
λ1

=

[
log I0(d1)

I(d1) − log I0(d2)
I(d2)

]
λ2[

log I0(d1)
I(d1) − log I0(d2)

I(d2)

]
λ1

=

[
log I(d1)

I(d2)

]
λ2[

log I(d1)
I(d2)

]
λ1

. (19)

Using Equations (10) and (11), we obtain

PHbO = SpO2 ∗ (1 − PHbA1c). (20)
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Equation (10) can be expressed in terms of SpO2 and PHbA1c as

PHHb = 1 − (PHbO + PHbA1c) and
= (1 − SpO2 ) ∗ (1 − PHbA1c).

(21)

Solving for the values of PHbO and PHHb, the following equation is obtained:

R =
PHbA1c[ εHbA1c(λ2)− εHHb(λ2)× (1− SpO2)− εHbO(λ2)× SpO2] + [ εHHb(λ2)× (1− SpO2) + εHbO(λ2)× SpO2]

PHbA1c[ εHbA1c(λ1)− εHHb(λ1)× (1− SpO2)− εHbO(λ1)× SpO2] + [ εHHb(λ1)× (1− SpO2) + εHbO(λ1)× SpO2]
, (22)

or

PHbA1c =
[ εHHb(λ2)× (1− SpO2) + εHbO(λ2)× SpO2]− R[ εHHb(λ1)× (1− SpO2) + εHbO(λ1)× SpO2]

R[ εHbA1c(λ1)− εHHb(λ1)× (1− SpO2)− εHbO(λ1)× SpO2]− [ εHbA1c(λ2)− εHHb(λ2)× (1− SpO2)− εHbO(λ2)× SpO2]
. (23)

The values of the molar absorption coefficients of HbA1c, HbO, and HHb for the
two different wavelengths (525 and 615 nm) are given in Table 1. The molar absorption
coefficients of HbA1c were taken from Hossain et al. [16] and those of HbO and HHb were
considered from [17].

Table 1. Molar absorption coefficients for the blood vessel model.

Substance
Molar Absorption Coefficient (cm−1·M−1)

λ1 = 525 nm λ2 = 615 nm

HbA1c 455,139.5677 170,555.4218

HbO 30,882.8 1166.4

HHb 35,170.8 7553.4

2.2.2. Whole Finger Model

The whole finger model considers the lumped fingertip constituents as a homogeneous
mixture. The blood entering this model will increase the fractional volume of arterial blood.
Considering only the increase in the arterial fraction, the equation for the absorption
coefficient becomes [14]:

Ca =
(

Vaµart
a (λ) + Vvµvein

a (λ) + Vwµwater
a (λ) + (1 − (Va + Vv + Vw)

)
× µbaseline

a ). (24)

Equations (25) and (26) can be easily obtained [14] after replacing the values of PHbO
and PHHb from Equations (20) and (21), as follows:

µart
a =

{
PHbA1c

(
µHbA1c

a (λ)− µHbO
a (λ)SpO2 − µHHb

a (λ)(1 − SpO2)
)
+ µHbO

a (λ)SpO2 + µHHb
a (λ)(1 − SpO2)

}
and (25)

µvein
a =

{
PHbA1c

(
µHbA1c

a (λ)− µHbO
a (λ)SpO2 − µHHb

a (λ)(1 − SpO2)
)
+ µHbO

a (λ)SpO2 + µHHb
a (λ)(1 − SpO2)

}
. (26)

Now, considering the arterial fraction increment, the absorption coefficient equation is
as shown in Equation (27). Here, ∆Ca represents the change in the absorption coefficient
due to a change in the arterial blood volume:

Ca + ∆Ca =
(
(Va + ∆Va)µ

art
a (λ) + Vvµvein

a (λ) + Vwµwater
a (λ) + (1 − (Va + ∆Va + Vv + Vw)

)
× µbaseline

a ). (27)

After subtracting Equation (24) from (27), we obtain

∆Ca = ∆Va(µ
art
a (λ)− µbaseline

a (λ)). (28)

From the Beer–Lambert law, we obtain

I = Io × 10−Cad. (29)
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Equation (29) must be differentiated in terms of Ca to find the relationship between
the physical light intensity and Equation (28):

dI
dCa

= − ln(10)Iod × 10−Cad and (30)

dI
dCa

≈ ∆I
∆Ca

. (31)

From Equations (30) and (31), we obtain

∆I ≈ − ln(10)Io∆Cad × 10−Cad. (32)

Now, the AC–DC intensity ratio is generated by the assumption IAC
IDC

= ∆I
I . Hence,

dividing Equation (32) by Equation (29) provides

∆I
I

≈ − ln(10)∆Va

(
µart

a (λ)− µbaseline
a (λ)

)
d. (33)

Thus, the ratio equation becomes

R =

[
∆I
I

]
λ2[

∆I
I

]
λ1

=
µart

a (λ2)− µbaseline
a (λ2)

µart
a (λ1)− µbaseline

a (λ1)
. (34)

After solving Equation (34) for PHbA1c, we obtain Equation (35):

PHbA1c =
µHbO

a (λ2)·SpO2 + µHHb
a (λ2)·(1 − SpO2)− µbaseline

a (λ2)− R·
(
µHbO

a (λ2)·SpO2 + µHHb
a (λ2)·(1 − SpO2)− µbaseline

a (λ2)
)

R·
(
µHbA1c

a (λ1)− µHbO
a (λ1)·SpO2 − µHHb

a (λ1)·(1 − SpO2)
)
−
(
µHbA1c

a (λ1)− µHbO
a (λ1)·SpO2 − µHHb

a (λ1)·(1 − SpO2)
) . (35)

The values of the molar absorption coefficients of HbA1c, HbO, HHb, skin baseline, and
water for the two wavelengths (525 and 615 nm) are given in Table 2. The molar absorption
coefficients of HbA1c, HbO, and HHb were considered from the study mentioned before,
and the skin baseline and water values were considered from the studies by Saidi [18] and
Segelstein [19], respectively.

Table 2. Absorption coefficients for the whole finger model.

Substance
Absorption Coefficient (cm−1)

λ1 = 525 nm λ2 = 615 nm

HbA1c 1058.4641 396.6405

HbO 71.8205 2.7126

HHb 81.7926 17.566

Skin Baseline 1.0966 0.6552

Water 0.0003927 0.0027167

2.3. SpO2 Calculation

To calculate the SpO2 values from the PPG signals, we followed the method in [20].
The ratio RSpO2 was calculated from the ratio of the normalized intensity of the received
green light (Inλ1 ) to red light (Inλ2 ), which is expressed as Equation (24):

RSpO2 =
∆Aλ2

∆Aλ1
=

ln(Inλ2)

ln(Inλ1)
. (36)

As light passes through the additional optical path ∆d at systole, from Equation (11),
it is written as

d1 = d2 + ∆d. (37)
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The normalized intensity of the received light at wavelength λ can be expressed as

Inλ
=

I
IHd2

, (38)

where I represents the light intensity received by the photodetector (PD) and IHd2 represents
the highest intensity at diastole. The absorbance at wavelength λ can be found using the
concentrations of oxyhemoglobin and deoxyhemoglobin as follows:

∆Aλ = (εHbO(λ)× cHbO + εHHb(λ)× cHHb)× ∆d. (39)

Now, replacing cHbO and cHHb in Equation (39) using Equation (4), we obtain

∆Aλ = (εHbO(λ)× SpO2(cHbO + cHHb) + εHHb(λ)(1 − SpO2)(cHbO + cHHb))× ∆d or
∆Aλ = (εHbO(λ)× SpO2 + εHHb(λ)(1 − SpO2))× (cHbO + cHHb)× ∆d.

(40)

Now, (36) can be expressed as

RSpO2 =
∆Aλ2

∆Aλ1
=

(εHbO(λ2)× SpO2 + εHHb(λ2)(1 − SpO2))× (cHbO + cHHb)

(εHbO(λ1)× SpO2 + εHHb(λ1)(1 − SpO2))× (cHbO + cHHb)
. (41)

Finally, the oxygen saturation (SpO2) can be calculated as

SpO2 =
εHHb(λ2)− (εHHb(λ1)× RSpO2)

(εHHb(λ2)− εHbO(λ2)) +
(
εHbO(λ1)− εHHb(λ1)× RSpO2

) . (42)

3. Methodology

To estimate the HbA1c value noninvasively, in this study, two different ratio calibra-
tions were applied. Each ratio equation used for the calibration of the SpO2 and HbA1c
estimation is defined differently. In the ratio calibration, two XGBoost models were used
for calibrating the ratio values for estimating SpO2 and HbA1c. If necessary, value (HbA1c)
calibration can be used in addition to ratio calibrations to improve the accuracy. We note
that value (HbA1c) calibration can be optionally adopted when the desired performance
cannot be achieved with only ratio calibrations.

3.1. Dataset-Related Information

To evaluate the accuracy of the model and validity of the theory, we proceeded
using the same data from the 20 subjects noted in [14]. Of these, thirteen were pre-
diabetic, three were diabetic, and four were normal. The participants ranged in age from
25 to 55 (31.6 ± 10) years. Five of the subjects were female and fifteen were male. The mean
and standard deviation (SD) of the finger widths and BMIs in the dataset were 1.30 ± 0.13
and 28.86 ± 3.74, respectively.

In this study, devices such as the Schiller Argus OXM Plus and invasive Bio-Hermes
A1C EZ 2.0 were used to collect the %SpO2 and the data on the National Glycohemoglobin
Standardization Program (NGSP) %HbA1c levels, respectively. The study also involved
recording a 4 min PPG signal, with 2 min being transmissive and the remaining 2 min
being reflective measurements. The transmissive PPG signal was chosen for the study as it
aligned with the theoretical derivation used in the research.

The Institutional Review Board (IRB) of Kookmin University in Seoul, Korea, provided
guidelines for the study protocol. The IRB procedures of Kookmin University were followed
in conducting this study. Additionally, all participants gave their permission in advance for
the data to be used academically. More details on the clinical dataset information can be
found in [14]. Statistical summaries of the entire dataset used in this study are shown in
Figure 2 and Table 3.
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A workflow diagram of the proposed method is shown in Figure 3.
Data acquisition and data preprocessing were performed similar to [14]. For data

acquisition, we used the commercial sensor module DFRobot SEN0212 comprising a color
sensor (TCS34725) and a set of four white LEDs [14]. TCS34725 is a highly sensitive sensor
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with three wavelengths (465, 525, and 615 nm). Although the device used here could
capture both the transmissive and reflective signals of all three wavelengths, only the
transmissive signals of two wavelengths (525 and 615 nm) were considered in this study.
The PPG waveform was then preprocessed by filtering through a second-order Butterworth
lowpass filter with a cutoff frequency of 8 Hz. As can be seen in Figure 3, two XGBoost
calibration models were used here for the ratio calibrations of SpO2 and HbA1c. We note
that in [14], the SpO2 and HbA1c estimates were obtained by simultaneously performing
two ratio calibrations using three wavelengths, whereas in this study, the different ratio
calibrations were separately performed using only two wavelengths to obtain the SpO2
and HbA1c estimates sequentially.
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3.3. Calibration

Calibration was performed after the dataset creation and data preprocessing. For this
reason, first the ratio values were calculated directly from the input intensity values. The
ratio value for SpO2 was calculated using Equation (36) from the input PPG signals. The
ratio values for HbA1c were calculated using Equations (19) and (34) for the blood vessel and
whole finger models, respectively. Then, the reference ratio values for SpO2 were inversely
calculated from the reference SpO2 values using Equation (42). The reference ratio values
for HbA1c were also inversely calculated in a similar way using Equations (23) and (35) for
the blood vessel and whole finger models, respectively. This process of calibrating the ratio
values was essential because different people have different finger widths and skin and
fat layer qualities. This calibration method is used to reduce the effects of skin, fat layer,
and finger widths on the PPG signal amplitude. When performing the calibration, the
inputs are the ratio values calculated directly from the PPG signal and the corresponding
finger widths and BMIs, while the target (reference) values are inversely calculated from
the reference HbA1c values. The calibrated ratio values are then used to estimate the SpO2
and HbA1c values. Here, to obtain the HbA1c estimated value, the estimated SpO2 value
was applied, and if the reference SpO2 value was available, this reference value could be
used instead of the SpO2 estimate. After the ratio calibrations, additional value (HbA1c)
calibrations could be conducted, if necessary. In the value calibrations, the HbA1c values
estimated from the ratio calibration models could be further calibrated to improve the
performance. Finger widths and BMIs were also considered as features in this case.



Appl. Sci. 2023, 13, 3626 10 of 17

For the calibration, the XGBoost model was used. The leave-one-out cross validation
(LOOCV) approach was implemented to evaluate the calibration results. LOOCV is a tech-
nique for evaluating a machine learning model’s performance. In the LOOCV technique,
the model is trained on all but one of the data points before being evaluated on the remain-
ing data point. This procedure is repeated for each data point, with each point serving as
the test set exactly once. The model’s overall performance is then determined by averaging
the performances of all iterations. LOOCV is a special case of the k-fold cross-validation,
where k is equal to the number of data points. As we focused on estimating HbA1c from the
PPG signals using the Beer–Lambert-based model, implementing LOOCV in the regression
was reliable and unbiased for achieving the desired model performance.

4. Results and Discussion
4.1. Blood Vessel Model

After performing the ratio calibrations, Clarke’s error-grid analysis (EGA) [20,21] and
Bland–Altman analysis plots were used for the performance analysis of the estimated
HbA1c values. As seen in Figure 4, from the EGA, Zone A contained 15 samples (75%;
clinically accurate), Zone B contained 5 samples (25%; data outside of 20% of the reference
but would not lead to inappropriate treatment), and Zone C contained 0 samples (0%; data
that would lead to inappropriate treatment). The Bland–Altman analysis indicated that the
blood vessel model provided a bias of −0.15998 ± 0.961, and the limits of agreement ranged
from −1.12 to 0.80. For the estimated %HbA1c values, statistical analysis using mean square
error (MSE), mean error (ME), mean absolute deviation (MAD), root mean square error
(RMSE), and Pearson’s r yielded 0.266, −0.1599, 0.423, 0.5156, and 0.8959, respectively.
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(considering ratio calibrations only).

We considered value (HbA1c) calibrations in addition to ratio calibrations, and the
EGA and Bland–Altman analysis results are shown in Figure 5. From the EGA, Zone A
contained 17 samples (85%), Zone B contained 3 samples (15%), and Zone C contained 0
samples (0%). The Bland–Altman analysis indicated that the blood vessel model provided
a bias of −0.029 ± 0.8598, and the limits of agreement ranged from −0.89 to 0.83. For the
estimated %HbA1c values, statistical analysis using MSE, ME, MAD, RMSE, and Pearson’s
r yielded 0.259, −0.0118, 0.4366, 0.5087, and 0.8873, respectively.
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(considering both ratio and value calibrations).

4.2. Whole Finger Model

After performing the ratio calibrations considering the whole finger model, the results
are shown in Figure 6; from the EGA, Zone A contained 16 samples (80%), Zone B contained
4 samples (20%), and Zone C contained 0 samples (0%). The Bland–Altman analysis
indicated that the bias was −0.0718 ± 0.9260, and the limits of agreement ranged from
−1.00 to 0.85. The limits of agreement of the whole finger model were smaller than
those of the blood vessel model. For the estimated %HbA1c values, statistical analysis
using MSE, ME, MAD, RMSE, and Pearson’s r yielded 0.224, −0.0559, 0.3914, 0.4736, and
0.9052, respectively.
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calibrations only).

We considered value (HbA1c) calibrations in addition to ratio calibrations, and the
EGA and Bland–Altman analysis results are shown in Figure 7. From the EGA, Zone A
contained 17 samples (85%), Zone B contained 3 samples (15%), and Zone C contained
0 samples (0%). The Bland–Altman analysis indicated that the bias was 0.0066 ± 0.8623,
and the limits of agreement ranged from −0.86 to 0.87. For the estimated %HbA1c values,
statistical analysis using MSE, ME, MAD, RMSE, and Pearson’s r yielded 0.194, 0.0066,
0.3662, 0.4400, and 0.9296, respectively.
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4.3. SpO2 Estimation

For the estimated SpO2 values obtained through the ratio calibration, the scatter plot
and Bland–Altman analysis results are plotted in Figure 8. The Bland–Altman analysis
provided a bias of −0.0894 ± 3.293, and the limits of agreement ranged from −3.38 to 3.20.
For the estimated %SpO2 values, statistical analysis using MSE, ME, MAD, and RMSE
yielded 2.831, −0.089, 1.392, and 1.683, respectively. The reference closeness factor (RCF),
defined as Equation (43), was found to be 0.986, as shown below:

RCF =
1
N ∑N

i=1

1 −

∣∣∣SpORe f
2 (i)− SpOEst

2 (i)
∣∣∣

100

 . (43)
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4.4. Performance Comparisons Using the Evaluation Metrics

Table 4 shows the performance comparison results for the accuracy of the HbA1c
estimates between the previous study [14] using three wavelengths and this study using
only two wavelengths. We can see that in the HbA1c estimation, even though only two
wavelengths were used, the performance was comparable to (though slightly worse than)
that of the previous study when only ratio calibrations were applied, and when value
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(HbA1c) calibration was applied in addition to ratio calibrations, the performance was
almost equal to or slightly better compared to that of the previous study [14].

Table 4. HbA1c estimation performance comparison between this study and the previous study.

Method

Metric
MSE ME MAD RMSE Pearson’s r

Blood vessel [14] 0.211 −0.031 0.375 0.459 0.916
Whole finger [14] 0.110 −0.065 0.271 0.332 0.959

Blood vessel (Proposed1) 0.266 −0.159 0.423 0.515 0.896
Whole finger (Proposed1) 0.224 −0.055 0.391 0.473 0.905
Blood vessel (Proposed2) 0.193 −0.029 0.363 0.439 0.929
Whole finger (Proposed2) 0.194 0.007 0.366 0.440 0.930

Proposed1: using ratio calibrations only; Proposed2: using both ratio calibrations and value (HbA1c) calibrations.

Table 5 shows the EGA-based comparison between the previous study [14] for esti-
mating HbA1c using three wavelengths and this study using only two wavelengths. The
number inside the table indicates the number of points (%values inside bracket) in the
corresponding zone. For the whole finger model, the performances of Proposed1 and Pro-
posed2 were similar. However, for the blood vessel model, the performance of Proposed2
was slightly better, with 80% of the data points inside Zone A. Compared with the previous
study [14], the Proposed2 method performed better.

Table 5. EGA-based comparison between this study and the previous study.

Method

Zone
A B C

Blood vessel [14] 15 (75) 5 (25) 0 (0)
Whole finger [14] 18 (90) 2 (10) 0 (0)

Blood vessel (Proposed1) 15 (75) 5 (25) 0 (0)
Whole finger (Proposed1) 17 (85) 3 (15) 0 (0)
Blood vessel (Proposed2) 16 (80) 4 (20) 0 (0)
Whole finger (Proposed2) 17 (85) 3 (15) 0 (0)

Proposed1: using ratio calibrations only; Proposed2: using both ratio calibrations and value (HbA1c) calibrations.

Table 6 summarizes the Bland–Altman-analysis-based comparison between the pre-
vious study [14] for estimating HbA1c using three wavelengths and this study using only
two wavelengths. We can see that the limits of agreement for the proposed methods are
not very different compared to those of the previous method [14]. The 95% limits of agree-
ment should contain the difference between the estimates and the reference for 95% of the
measurements. In the previous study [14], considering the whole finger model, only one
data point was found outside this limit. Similarly, in the proposed method here, there was
only one data point outside the limit.

Table 6. Bland-Altman-analysis-based comparison between this study and the previous study for
estimating HbA1c.

Method
Metric

Bias
Limit of Agreement (95%;

1.96 SD)
Data Points Out of Limit

of Agreement

Blood vessel [14] −0.03 ± 0.458 −0.93 to 0.87 0
Whole finger [14] −0.06 ± 0.326 −0.70 to 0.57 1

Blood vessel (Proposed1) −0.16 ± 0.961 −1.12 to 0.80 0
Whole finger (Proposed1) −0.072 ± 0.926 −1.00 to 0.85 0
Blood vessel (Proposed2) −0.029 ± 0.859 −0.89 to 0.83 1
Whole finger (Proposed2) −0.0066 ± 0.862 −0.86 to 0.87 1

Proposed1: using ratio calibrations only; Proposed2: using both ratio calibrations and value (HbA1c) calibrations.
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The SpO2 estimation performance comparison using the evaluation metrics is sum-
marized in Table 7. We can see from Table 7 that the RCF score of SpO2 estimated in this
study was almost the same as that of the previous study (whole finger). Considering other
statistical analyses, we can see that the overall performance of the SpO2 estimation in this
study was slightly better compared to that of the previous study [14].

Table 7. SpO2 estimation performance comparison between this study and the previous study.

Method

Metric
MSE ME MAD RMSE RCF

Previous (blood vessel) [14] 4.038 0.178 1.676 2.010 0.983
Previous (whole finger) [14] 2.924 −0.246 1.395 1.710 0.986

Proposed 2.831 −0.089 1.392 1.683 0.986

Table 8 summarizes the comparisons based on the Bland–Altman analysis between
the previous study [14] and this study in estimating SpO2. From this, it is clear that the
proposed method performed well in comparison with the previous study.

Table 8. Bland-Altman-analysis-based comparison between this study and the previous study for
estimating SpO2.

Method
Metric

Bias
Limit of Agreement

(95%; 1.96 SD)
Data Points Out of
Limit of Agreement

Previous (blood vessel) [14] −0.178 ± 2.002 −3.74 to 4.10 0
Previous (whole finger) [14] −0.246 ± 1.690 −3.56 to 3.07 0

Proposed −0.0894 ± 3.293 −3.38 to 3.20 0

5. Conclusions

In this study, we used the Beer–Lambert law to estimate HbA1c noninvasively from
the fingertip by considering only two wavelengths. In our previous work [14], three
wavelengths were used, which made the system relatively complex. Obtaining nearly
the same performance, as seen from Table 4, while reducing complexity was the main
contribution of this study. To this end, two ratio calibrations were used to obtain results
comparable to those of the previous study. In the ratio calibrations, two XGBoost models
were used: one for SpO2 and the other for HbA1c. The Pearson’s r values for the estimated
HbA1c values were 0.896 and 0.905 considering the ratio calibrations with the blood vessel
and whole finger models, respectively.

When value (HbA1c) calibrations were applied in addition to ratio calibrations, we
could further improve the performance, and the Pearson’s r values of the estimated HbA1c
levels were 0.929 and 0.930 for the blood vessel and whole finger models, respectively.
Further, as in the previous study, the whole finger model performed slightly better than
the blood vessel model, as shown in Table 4. We also showed that the RCF score of
SpO2 estimated in this study was nearly the same as that of the previous study (whole
finger model).

We expect that further studies using larger datasets and deep learning techniques can
improve these results. The performance can also be improved by calibration in a more
controlled manner, paying more attention to factors such as light scattering, finger-width
variability, and data filtering. We also note that there is considerable potential for further
research on the noninvasive estimation of HbA1c.
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Appendix A

The hardware device that we implemented provides three wavelengths (465, 525, and
615 nm), and we would like to provide a rationale for the selection of two out of the three
wavelengths. For selecting the proper wavelength pair, Mh and Ms were calculated using
Equations (A1) and (A2) according to [21]. The wavelengths used here are 465 nm (blue),
525 nm (green), and 615 nm (red). These results are summarized in Table A1.

Mh =
∑2

i=1
dRi

dHbA1c
2

(A1)

Ms =
∑2

i=1
dRi

dSpO2

2
(A2)

Table A1. Mh and Ms statistics.

Blood Vessel Model Whole Finger Model

GR BR BG GR BR BG

Mh 0.342204 0.45122 0.03224 0.34758 0.39087 0.00068
Ms 1.964076 1.95179 1.97210 1.93640 0.19509 0.31324

GR: Green-Red; BR: Blue-Red; BG: Blue-Green.

The larger Mh and Ms values, the more sensitive each wavelength pair is to changes
in its parameters (HbA1c and SpO2). That is why the higher the values of Mh and Ms, the
better the performance is. Table A1 shows that for the blue-red pair, both models have the
highest Mh values, while the Ms values of both models are not good. For the blue-green
pair, only the Ms value for blood vessel model is the best, but the rest are poor. Note that,
in the case of the green-red pair, it can be seen that the overall result is relatively good.
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Table A2 shows the results of the EGA-based comparison of HbA1c estimation for
different wavelength pairs of the Proposed1 method. We can see that the green-red pair
performs better than the other pairs since most of the data points were found in zone A for
both blood vessel and whole finger models.

Table A2. EGA-based comparison of HbA1c estimation for different wavelength pairs.

Wavelength Pair
Method

Metric
A B C

GR
Blood vessel (Proposed1) 15 (75) 5 (25) 0 (0)
Whole finger (Proposed1) 17 (85) 3 (15) 0 (0)

BR
Blood vessel (Proposed1) 14 (70) 6 (30) 0 (0)
Whole finger (Proposed1) 15 (75) 5 (25) 0 (0)

BG
Blood vessel (Proposed1) 12 (60) 7 (35) 1 (5)
Whole finger (Proposed1) 14 (70) 6 (30) 0 (0)
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