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Abstract: Assigning predefined classes to natural language texts, based on their content, is a necessary
component in many tasks in organizations. This task is carried out by classifying documents within
a set of predefined categories using models and computational methods. Text representation for
classification purposes has traditionally been performed using a vector space model due to its good
performance and simplicity. Moreover, the classification of texts via multilabeling has typically been
approached by using simple label classification methods, which require the transformation of the
problem studied to apply binary techniques, or by adapting binary algorithms. Over the previous
decade, text classification has been extended using deep learning models. Compared to traditional
machine learning methods, deep learning avoids rule design and feature selection by humans, and
automatically provides semantically meaningful representations for text analysis. However, deep
learning-based text classification is data-intensive and computationally complex. Interest in deep
learning models does not rule out techniques and models based on shallow learning. This situation
is true when the set of training cases is smaller, and when the set of features is small. White box
approaches have advantages over black box approaches, where the feasibility of working with
relatively small sets of data and the interpretability of the results stand out. This research evaluates a
weighting function of the words in texts to modify the representation of the texts during multilabel
classification, using a combination of two approaches: problem transformation and model adaptation.
This weighting function was tested in 10 referential textual data sets, and compared with alternative
techniques based on three performance measures: Hamming Loss, Accuracy, and macro-F1. The best
improvement occurs on the macro-F1 when the data sets have fewer labels, fewer documents, and
smaller vocabulary sizes. In addition, the performance improves in data sets with higher cardinality,
density, and diversity of labels. This proves the usefulness of the function on smaller data sets.
The results show improvements of more than 10% in terms of macro-F1 in classifiers based on our
method in almost all of the cases analyzed.

Keywords: text representation; machine learning; multilabel; text classification

1. Introduction

In the age of information explosion, processing and classifying enormous amounts of
text data manually is time-consuming, and it is a huge challenge to automate this task using
computational methods. Furthermore, the performance of manual text classification can be
easily influenced by human factors such as experience and fatigue. This requires the use
of machine learning methods to speed up text classification processing and to obtain less
subjective and more reliable results. In addition, this can also aid in improving efficiency in
information retrieval and to alleviate the problem of information overload in locating the
required information.

The problems related to the classification of multilabel text exists in different domains.
Even though the basic models normally assume the existence of two classes, they have
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been extended to problems with more than two classes and multilabel, which are closer to
real applications.

Although there has been an exponential increase in the number of publications based
on deep learning models in recent years, it is not possible to completely rule out the
techniques and models based on shallow learning. Today there is a debate between the
“white box” vs. “black box” approaches, with advantages and disadvantages for both.
Superficial learning highlights the feasibility of working with relatively small data sets and
interpretability. Deep learning models stand out for their robustness and good performance.

The aim of this research is to evaluate a new term weighting function called relevance
frequency for a label (r f l), initially introduced in [1] for tf-rfl, and extended and deepened
in [2] as bin-rfl. This document presents greater maturity than previous papers, which were
previously presented at conferences and in journals, and has a better foundation as well as,
a better description of the proposed modification and an improved analysis of the results.
Likewise, the analysis of relevant characteristics in the data sets is deepened for a better
understanding of the method and choice of the representation. The impact of rendering is
shown by considering different performance measures for multilabel classification problems.
For this, two types of linear classifiers used in these type of problems were used; these are:
Linear Support Vector Machine (SVM) and one-layer artificial neural networks (ANN). The use
of linear classifiers allows for the evaluation of the improvements in the performance of the
algorithms just by modifying the input space by means of the new representation.

The contribution of this research lies in the proposal of a simple and interpretable
representation that combines ensemble machine learning and shallow classification models.
The aim of this new representation is improved classifier performance. Testing of the
proposed representation was carried out on ten multilabel text data sets that are widely
referenced in the literature, obtaining alternate performance measurements.

This document is structured as follows. In Section 1, the subject is introduced, in
Section 2, the state of the art is presented. In Section 3, the proposal is presented, and in
Section 4, the applied methodological framework is described. The experimental results
are described in Section 5, where the results are discussed and the performance of the
proposal is compared with other models. The Section 6 presents the final conclusions and
future work.

2. Related Work
2.1. Text Classification Problem

Text classification (TC), also known as text categorization, is the activity of assigning
labels to natural language texts based on a set of predefined categories. TC was created
in the early 1960s, but only in the early 1990s did it become an important subfield of the
information systems discipline, thanks to the wide field of applications and the growth in
computing power.

The main goal of classification is to take a vector x as input and to assign it to one of
the K discrete classes Ck where k = 1, . . . , K. In the most common scenario, the classes are
taken to be disjointed [3] such that each entry is assigned only one class. Therefore, the
input space is split into decision regions whose boundaries are called decision boundaries
or decision surfaces.

Text data are different from numeric, image [4,5], or signal data [6] and others data
type [7–10]. Therefore, texts must be preprocessed using Natural Language Processing (NLP)
methods in order to be delivered to the model. Shallow learning models generally need to
obtain good features from the examples using different methods and then to classify them with
classical machine learning algorithms. Therefore, the effectiveness of the classification method
is largely dependent on the extraction of text features. Unlike shallow models, however,
deep learning integrates feature extraction into the model fitting process by learning a set of
nonlinear transformations that are used to assign features directly to the results.

From the 1960s to the 2010s, shallow learning-based text classification models dom-
inated. In [11] it is stated that the first methods based on statistical models (shallow
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learning), such as Naive Bayes [12], K-Nearest Neighbor [13], and Support Vector Ma-
chine [14] dominated up to the year 2010. Compared with previous rule-based methods,
this method has obvious advantages in terms of Accuracy and stability. This approach
needs to perform feature selection, which can be time consuming and costly. Since the 2010s,
text classification has been evolved through the use of deep learning models. Compared to
methods based on shallow learning, deep learning methods avoid the design of rules and
features by humans, and automatically provide semantically meaningful representations
for text analysis. However, deep learning-based text classification is data intensive and
computationally complex.

TC is now being applied in many contexts, ranging from document indexing based
on a controlled vocabulary, to automated metadata generation, word sense disambiguation,
document filtering, the hierarchical catalog population of web resources, and, in general, any
application that requires document organization or adaptive document selection and dispatch.

Shallow learning-based methods learn from data, where the representation of text fea-
tures is very important for achieving good classification performance. However, it requires
the development of feature selection. Before training the process used for the classifier, we
need to gather knowledge or experience to extract features from the original text. Shallow
learning methods train the initial classifier based on various textual features extracted from
the raw text. For small data sets, shallow learning models generally outperform deep learning
models under the limitation of computational complexity. Therefore, some researchers have
studied the design of shallow models for specific domains with less data. Furthermore, deep
learning models can learn feature representations directly from the input without almost any
manual intervention and prior knowledge. However, the deep learning methodology is a data-
driven method, which generally needs a large amount of data to achieve high performance.
Typically, much more data are required than traditional machine learning algorithms, which
means that this technique cannot be applied to classification tasks on small [15] data sets. In
addition, the huge amount of data required for deep learning classification algorithms further
exacerbates the computational complexity during the [16] training step. Finally, the lack of
interpretability of these models does not make them comparable with superficial models to
explain why and how it works well.

Both shallow and deep models can achieve good performance in most text classifica-
tion tasks. However, the interpretation of the deep models is still a challenge.

In recent years, researchers have developed many approaches to improve the accuracy
of text classification models. However, when there are some complex examples in the data
sets, the performance of the model decreases significantly. Consequently, the relationship
between effectiveness and efficiency in models, and how to improve the robustness of
models, is a challenge and a focus of current research.

Deep learning models have unique advantages in feature extraction and semantic mining,
and have achieved excellent results in text classification tasks. However, deep learning is a
black box model, the training process is difficult to reproduce. Likewise, the understanding of
the implicit semantics and the interpretation of the results are pending challenges.

Shallow learning models improve text classification performance primarily by improv-
ing the feature extraction scheme and classifier design. In contrast, the deep learning model
improves performance by learning the implicit features of the raw data and the structure of
the model, as well as additional data and the knowledge that it uses in previous phases.

Moreover, the interpretability of deep learning models, especially Deep Neural Network,
has always been a limiting factor for use cases that require explanations of the features
involved in the modeling, and such is the case for many prescriptive models applied to
healthcare [17] or in automations that may affect the freedom of people [18,19]. The weights
in neural network models are a estimation of how strong each connection is between each
neuron in finding the important feature space. As a result, complex algorithms such as
deep learning are difficult to understand.
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2.2. Multilabel Text Classification

Traditionally, the classification (or categorization) of texts has been defined as assigning
a Boolean value (true or false) to each pair

(
〈dj, ci

)
〉 ∈ D× C, where D is the domain of

the documents (corpus) and C =
(

c1, . . . , c|c|
)

is the set of default labels (classes). If a
document is categorized under only one label, that is, in some partition of the set of classes
(non-overlapping categories) or under multiple labels at once (overlapping categories),
it is called a ‘one-label problem’ or a ‘multilabel problem’, respectively [20]. The most
commonly studied case to solve text classification problems is that of ‘one-label’, and the
main approach is the so-called Binary Classification (BC), where a document is classified
either to the category ci or its complement (¬ci). This approach can be extended and used
to solve problems with more categories.

Interest in the classification of multilabel texts has increased in recent years. Among the
proposals presented by [21], the most commonly used approach is the so-called transfor-
mation of the problem. In a multilabel problem, there exists a finite number of labels
L = {λj : j = 1. . . l}, where λj corresponds to the j-th label, and to the set of documents
labeled D = { f {xi, Yi : i = 1. . . d}}, where xi represents the feature vector and Yi ⊂ L is
the set of labels for the i-th text.

Table 1 presents an example of multilabel texts. It represents that Text 1 belongs to the
classes ‘Sports’ and ‘Politics’, that Text 2 belongs to the classes ‘Sciences’ ‘Politics’, that Text
3 belongs only to the class ‘Sports’, and finally that Text 4 belongs to the classes ‘Religion’
and ‘Sciences’.

Table 1. Representation of a Set of multilabeled Examples.

Texts (d)
Label (l) Sports Religion Sciences Politics

Text 1 x x
Text 2 x x
Text 3 x
Text 4 x x

The approaches to solving this problem can be classified into two approaches: the
transformation of the problem and the adaptation of the model [21]. The transformation
approach to the problem is algorithm-independent, that is, it transforms the multilabel
learning task into a single-label classification task. Consequently, this technique may be
used via current methods. The most common problem transformation method, called
Binary Relevance (BR), learns |L| binary classifiers H(λj)

: X → {λj,¬λj}, one for each
different label λj in L. Through the use of Binary Relevance, the original data set is trans-
formed into |L| data sets Dλj . Each Dλj labels each instance of text in D with λj if λj is
contained in the instance, or λj if the text example does not contain the tag. BR provides
the same solution for both single-label problems and multilabel problems using binary
classifiers. For the classification of a new instance x, this method generates a set of labels as
the union of the labels generated by the classifier |L|, HBR(x) = ∪(λj∈L) {λj} : Hλj(x) = λj.
This is usually the most common transformation, and it is the same solution used when
trying to deal with a multi-class classification problem using binary classifiers (see Table 2).

Another type of transformation of the problem is called a Label Powerset (LP). In this
transformation, each set of labels is considered as a new category. Then, if we have LP
combinations, it is possible to use |LP| binary classifiers, one for each new label. The data
set is handled as a single-label type, and then a single-label classifier with multiple disjoint
classes is built (see Table 3).
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Table 2. Resulting Transformation using Binary Relevance.

Texts
Label

Sports No Sports
Texts

Label
Religion No Religion

Text 1 X Text 1 X
Text 2 X Text 2 X
Text 3 X Text 3 X
Text 4 X Text 4 X

Texts
Label

Politics No Politics
Texts

Label
Sciences No Sciences

Text 1 X Text 1 X
Text 2 X Text 2 X
Text 3 X Text 3 X
Text 4 X Text 4 X

Table 3. Resulting Transformation using Label Powerset.

Example

Label
Sports Sports and

Politics
Sciences and

Politics
Sciences and

Religion

Text 1 x
Text 2 x
Text 3 x
Text 4 x

The second method deals with adapting some specific learning models and algorithms
so that they can handle the multilabeled data directly. These adaptations are achieved
thanks to model adjustments, such as modifications to the classical formulations of statistics
or information theory. The preprocessing of the documents to achieve a better representa-
tion can also be considered within this type of transformation.

The classification of multilabel texts has also been approached by means of algorithms,
which directly capture the characteristics of the multilabel problem. The authors of [22]
propose a method based on fuzzy logic, where a multilabeled text can belong to one, or
more than one category. The authors state that by incorporating fuzzy techniques, the
method can overcome problems caused by high memory requirements or low performance.
The authors of [23] focus on solving the limitations of the Backpropagation Learning algorithm
so that it can work with multilabeled data, and propose Backpropagation Multilabel Learning
(BP-MLL). In this proposal, a very simple neural network approach is used for large-scale
multilabeled text classification tasks.

The authors of [24] propose a model based on graph attention networks to capture the
dependency structure between labels (MAGNET). The results of the proposed model are
validated on five real-world MLTC data sets. The proposed model achieves a similar or
better performance compared to the previous models of the latest generation. The MAGNET
model framework uses attention layer graphs for classification to generate the inputs for
a BiLSTM to generate the feature vectors that are encoded by the embeddings of the
BERT [25] model. The input to the attention network graph is an adjacency matrix and
the label vectors. The GAT output are label features that are applied to the feature vectors
obtained with BiLSTM. It uses performance metrics that does not allow a person to evaluate
its performance on unbalanced data sets. MAGNET’s proposal improved performance
marginally over traditional models, such as Binary Relevance and Chain Classifiers.

In [26], the Label-Wise Pre-Training (LW-PT) method is suggested for obtaining a doc-
ument representation that includes label information. It is expected that the linked labels
always co-occur in related documents, and for this, a multilabel document is represented
as a composite of various label representations. By creating document-label classifiers
and instructing document-label coders, LW-PT puts this concept into practice. The previ-
ously trained label encoder fine-tunes. The experimental results support the suggested
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approach in two sets of data, and only a few evaluation measures are used to compare it to
conventional approaches.

On the other hand, ref. [27] proposes a global hierarchical model for the classification of
multilabeled texts, which seeks to take advantage of the dependency relationships between
labels. In line with the exploitation of Deep Learning, ref. [28] proposes a model for extreme
multiple label text classification, facing the problem of assigning to each document the
most relevant subset of class labels of an extremely large collection of labels, where the
number of labels could reach hundreds of thousands or millions. The work in [29] also
uses an estimation of the distribution of categories in a non-linear embedding space in a
model called Prototypical Networks for multilabel Learning (PNML), and [24] proposes
Classification Neural Networks (CNN), different from Convolutional Neural Networks, as
a new approach based on deep learning to face the label hierarchy problem.

Regardless of the solution approach to the multilabel problem and the algorithms that
solve it, according to [14], any text classification task has complexities because the feature
space is highly multidimensional, a heterogeneous use of the terms, and a high level of
redundancy. Multilabel problems have additional complexities, including a large number
of labels and the imbalance of labels across the document set.

Although traditional measures of evaluating the performance of classifiers, such as
the macro-F1 and Hamming Loss measures are useful in multilabel cases, new evaluation
measures have also emerged with the intention of analyzing the performance of classifiers,
and the performance in assigning the set of labels that correspond to each document, such
as the accuracy of the set of labels, a measure called Label-Set Accuracy [30].

2.3. Text Representation

The performance of a case-based reasoning system depends largely on the represen-
tation of the problem. The same task can be easy or difficult, depending on the way it is
described [31]. The explicit representation of relevant information tends to increase the
performance of machine learning. In this way, through a more complex representation,
better results could be obtained with simpler algorithms. In line with this, mechanisms that
allow for the selection and weighing of the characteristics that improve the performance of
a classifier in specific contexts are being proposed [32]. Likewise, this is the case with those
who propose the analysis of the visual elements of the text as an additional feature [33].

In the particular case of documents, the representation of the text has a high impact
on the [34] classification task. The vector space model is one of the most commonly
used models for information retrieval, mainly because of its conceptual simplicity and
the attractiveness of its underlying metaphor of using spatial proximity for semantic
proximity [35]. In the vector space model (VSM), the contents of a document are represented
by a vector of terms d = w1, . . . , wk, where k is the size of the set of terms wi (or features).
Some elements used in the representation of a text are the N-grams, words, phrases, the
logic of terms and declarations, or any other lexical, semantic, and/or syntactic unit that
can be used to represent the content of the text.

Regardless of the characteristics used to represent a text, from the existence of these
characteristics, it will be determined as to which classes the text belongs. If only the
existence of the characteristic is considered or if the frequency of occurrence of that charac-
teristic is considered, then two models can be distinguished, which [36] calls the Bernoulli
Multivariate Model and the Multinomial Model, respectively.

The Multinomial Model indicates that a document is represented by the set of occurrences
of terms in the document. The order of the terms is lost; however, the number of occurrences
of each term in the document is captured. If a Bayesian model is used, when calculating
the probability of a document, the probability that the terms appear is multiplied. Here, the
occurrences of individual terms can be understood as the events, and the document as the
collection of term events. The most widely used measure is the relevance indicator f(t,d),
which is used to represent how much the feature or term t contributes to the semantics of the
document d, and it can have values of between zero and one ([0, 1]).
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For its part, the Bernoulli Multivariate Model specifies that a document is represented
by a vector of binary attributes that indicates which terms occur and which terms do not
occur in the document. The number of times a term appears in a document is not captured.
As in the previous case, if a Bayesian model is used, when calculating the probability of a
document, the probability of all attribute values is multiplied, including the probability of
the non-occurrence of terms that do not appear in the document. Here, it can be understood
that the document is the event and the absence or presence of terms as attributes of the
event. This describes a distribution based on a Multivariate Bernoulli Event Model. In this
case, the flag bin(t,d) is used, which takes the value of 1 when the term t exists at least once
in the document d; that is, it can have a value of zero or one ({0, 1}). The factor based on the
Bernoulli Multivariate Model is called a Binary Representation or a Boolean Model. Many
problems, either by their nature or by the measurements that can be obtained from them,
use the representation model based on the Bernoulli Multivariate Model [36].

There are different ways to describe the features of a text so that different text classifiers
can work on them. Refs. [14,37], for example, combine transformations with different kernel
functions on Support Vector Machines. On the other hand, according to [38], two important
decisions must be made when choosing the representation based on the vector space model.
(1) What should a term consist of? What should be a root word, a word, a set of words,
or their meaning? (2) How should the term’s weighting scheme be? Weighting could be
achieved via a binary or inverse document frequency (t f -id f ) function developed by [39] using
feature selection metrics such as chi-squared (χ2), information gain (IG), reason or profit ratio
(GR), etc. Term weighting methods improve the effectiveness of text classification through
an appropriate selection of term weights. Although text classification has been studied for
several decades, term weighting methods for text classification are often taken from the field
of information retrieval (IR), including, for example, the Boolean model, t f − id f , and its
variants. In general, to weight the terms in the vector space model, the frequency of the terms
or the frequency of the documents containing a term can be used.

According to [40], many investigators have worked on the technique of extracting text
features trying to maintain the syntactic and semantic relationship that is lost when only
words are considered. Additionally, although many researchers have tried novel techniques
to solve this problem, they still have limitations. A simple but expensive solution to the
syntactic problem is to use the n-gram technique for feature extraction.

Term Frequency (TF)—which assigns each word a number according to the number of
times that term appears in the whole corpus—is the most fundamental type of weighted
word feature extraction. Word frequency is typically used as a logarithmically scaled or as
the Boolean weight in techniques that scale TF findings. In all word weighting methods,
each document is translated into a vector (with a length equal to that of the document)
containing the frequency of the words in that document. Although this approach is
intuitive, it is limited by the fact that certain commonly used words in the language can
dominate such representations. In contrast, weighted word functions are based on word
counts in documents and can be used as a simple word representation scoring scheme.
Each technique presents unique limitations. Weighted words calculate document similarity
directly from the word count space, increasing the computation time for large vocabularies.
While single word counts provide independent evidence of similarity, they do not account
for semantic similarities between words. Word embedding methods address this problem,
but they are limited by the need for a huge corpus of text data sets for training. As a result,
scientists prefer to use pre-trained word embedding vectors. However, this approach
cannot work for words that are missing from these text data corpora.

2.4. Ensemble Methods

Ensemble training studies the use of integrating an ensemble of models to build a
predictor that improves performance over a single, more complex model.

According to [41], there are two assumptions underlying model ensemble algorithms:
the first is that a more accurate predictor can be built by combining models, rather than
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using a more complex model. Thus, the weighted average of the results of a collection of
models could improve the prediction performance of a data set as a linear combination of
them, and could generate a lower bias than any of the individual predictors (even being
able to choose the best predictor individual).

The second premise suggests that the performance of an ensemble is better than a
predictor based on a model. Usually, measures of loss, for example, quadratic loss, are
not affected by a change in the model (if its predictions remain unchanged). Individual
predictions are compared with each other, since they only depend on prediction and
observation. In contrast, model-based approaches could violate the preeminence principle
by confusing predictor construction with its performance.

Using multiple copies of an individual classifier produces no real improvement in the
generalization of the ensemble and, therefore, it seems intuitive that when the predictors
are combined, they need to have some degree of heterogeneity or diversity. The diversity of
an ensemble can be implicitly promoted by modifying the data set for training the classifier,
by modifying the architecture of the predictors, or by modifying the learning parameters.
In contrast, explicit methods for constructing ensembles use a diversity metric that depends
on the other members of the ensemble, though diversity is not necessarily guaranteed to
contribute to improved ensemble performance.

Ensemble’s methods can differ over the course of three different stages: base classifier
manipulation, data manipulation, and in the function that the committee uses to generate
the consensus output.

3. Label-Dependent Representation

Although in recent years there has been a growth in the interest of the scientific com-
munity in deep learning models, there is a debate between the “white box” vs. “black box”
approaches, with advantages and disadvantages of both approaches. Superficial learning
highlights the feasibility of working with relatively small data sets and interpretability.
Deep learning models stand out for their good performance and robustness. Therefore, it
is not possible to completely rule out techniques and models based on shallow learning,
especially when the set of training cases does not have a large volume of data and the set of
features is not very extensive.

As already mentioned, in this approach, it is planned to use classification methods
based on shallow learning combining representation modification with problem transfor-
mation. Although this research does not use classification methods based on deep learning,
such as BERT and its variants, it would also be possible to use this approach to modify
the characteristics of the representation of the original texts and generate to new layers or
inputs to deep learning methods, especially when working with small data sets. This would
also give better interpretability to the deep learning models.

On the other hand, in the case of the problem of multilabeled texts, the classification
models must deal with data sets with a high cardinality, density, and diversity of labels.
Cardinality measures the average number of labels associated with each document, density
is the cardinality divided by the number of labels, and diversity represents the percentage
of label sets present in the corpus divided by the number of possible label sets. In this work,
we use data sets with a cardinality of between 1.18 and 3.28, a density of between 0.014 and
0.098, and a diversity of between 0.041 and 0.442.

In this section, the well-known tf-idf [39] representation is explained, and our proposed
function for the weighting of rfl terms is presented. Based on the latter, we propose two new
representations, one based on the Multivariate Bernoulli model called bin-rfl, and another
based on the Multinomial tf-rfl model. In this type of representation, the indicator ft,d can
have values of between zero and one ([0, 1]), is called the Multinomial Model by [36], and
is different from the Bernoulli Multivariate Model, where the indicator is bint,d, which is
represented by one when the term t exists at least once in the document d; that is, it can
have a value of zero or one ({0, 1}). The factor based on the Bernoulli Multivariate Model is
called a Binary Representation or Boolean Model. Many problems, either by their nature or
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by the measurements that can be obtained from them, use the representation model based
on the Multivariate Bernoulli Model.

This raises the hypothesis that a supervised modification to the text representation that
considers frequency representations or binary representations, together with a function for
the supervised weighting of the terms that is based on the known examples, according to
their labels, could improve the performances of the classifiers significantly. When referring
to supervised modification, what we are proposing is a modification of the representation
based on the analysis of the labeled examples of the training set, which is why it is super-
vised. For the term weighting method for multilabel problems, we will use as variables
those described in Table 4: at,λj , which represents the number of documents in the category
λj containing the term t and dt,λj representing the number of documents in the category λj
that do not contain the term t.

Table 4. Variables used for weighting in a multilabel problem, given a term t and 4 categories.

Example (d)
Label (l)

Sports (1) Religion (2) Sciences (3) Politics (4)

t (contain the term) at,1 at,2 at,3 at,4
t̄ (does not contain

the term) dt,1 dt,2 dt,3 dt,4

3.1. Term Frequency-Inverse Document Frequency (t f -id f ) Representation

According to [20], the most widely used text representation for text classification is
t f -id f from [39]. This is where each component of the vector is calculated according to
Equation (1):

t f -id ftd = ft,d × log10

(
N
Nt

)
, (1)

where ft,d is the frequency of the term t in the document d. For the two-category problem,
N = (at,λ1 + dt,λ1 + at,λ2 + dt,λ2) is the number of documents, and Nt = (at,λ1 + at,λ2) is the
number of documents that contain the term t.

The main contribution of this representation is that it weights with less importance
the terms that are very frequent in the collection of documents through the factor N/Nt.

3.2. Term Frequency-Relevance Frequency for a Label (t f -r f l) Representation

In the research carried out by [1], the preliminary results of the representation Relevance
frequency for a label, tf-rfl were presented. This representation is described in the following
equation, as a new representation for multilabel problems.

t f -r f ltdl = ft,d × log2

(
2 +

at,l

max(1, mean(at,λj/l ))

)
, (2)

where ft,d is the frequency of the term t in the document d, at,l is the number of documents
under the category under the evaluation l that contain the term t, and mean(at,λj/l ) is the
average number of documents containing the term t among the set of documents labeled
in a category other than l, i.e. at,λj/l = {at,λ1 , . . . , at,λl−1

, at,λl+1
, . . . , at,|L|}.

The constant value of 2 on the right-hand side of the formula is assigned because the
base of the logarithmic operation is 2. Without the constant 2, it could have the effect of
setting the other terms to zero. Other bases could be used for the logarithm function, which
would also imply a modification of the value of this parameter.

The main contribution of this representation is that it weights with less importance
the terms that are equally frequent in the different categories, and weights with greater
importance the terms that are more frequent in the category under evaluation.

It is also possible to use bin-id f based on the Bernoulli Multivariate Model, instead of
t f -id f , based on the Multivariate Model. In this case, instead of using ft,d, bint,d is used.
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In order to evaluate the performance improvement due to the use of r f l weighting,
this paper will present a new representation based on the occurrence of terms in each
document; that is, Binary Representation or Boolean Representation. This representation,
based on the Multivariate Bernoulli Model, uses less information than the one based on the
Multinomial Model, since only information on the existence or not of a word in the text is
used, and not its frequency of appearance.

3.3. Multivariate Bernoulli Model—Label-Dependent (bin-r f l) Representation

A new representation for the multilabel problem, which is proposed in this work,
called bin-r f l, is based on a representation of the Multivariate Bernoulli Model that is
weighted using the frequency term of a label, and calculated as in Equation (3):

bin− r f ltdl = bint,d × log2

(
2 +

at,1

max(1, mean(at,λj/l))

)
, (3)

where bint,d takes the value of 1 if the term t is present in the document d, and 0, if the term
t is not present in the document d; at,l is the number of documents in the category under
evaluation that contain the term t, and mean(at,λj/l ) is the average number of documents
that contain the term term t for each set of tagged documents other than l. This new
representation helps to make a better distinction of the terms, which is reflected in a better
performance classification, as will be seen in Section 5.

The term t weighting method here considers each term occurrence frequency within
each group of documents with labels that are different from those of the document under
evaluation. The occurrence measurement rfl, mean(at,λj/l ) will be larger if term t is appears
with higher frequency in documents with label λj = l than in documents with other λj/l
labels. Moreover, the occurrence measurement will be lower if term t appears with higher
frequency in documents with labels other than I. Therefore, the weighting rfl results a
better discriminator among categories.

The modification of the representation based on this method allows the binary classi-
fiers that will evaluate whether the texts should be classified in each l label to have better
information to recognize the patterns and for each classifier to specialize in each l label.

This research proposes a representation method based on bin-rfl and tf-rfl as well as
binary classifiers based on the problem transformation Binary Relevance and Label Powerset.
The method transforms the multiple labeling problem into binary problems and then
generates bin-r f l representations for each label in each document d and classifies them.
Each document is represented with a different vector when evaluating each label due to
the dependency on the weighting factor.

3.4. Probabilistic Interpretation

A probabilistic interpretation of this representation is that ft,d is an estimate of P(ti/dj);
that is, of the probability that the term i is in the document collection j. Likewise, the
weighting id f = log10(N/Nt) is a function of the 1/P(ti/N), that is, of the probability that
the term i is in the documentset, that is, P(ti). So, the t f -id f function is given by:

t f -id ftd =
P(ti/dj)

log(P(ti/N))
. (4)

Note that the idf weighting factor does not take into account that documents may have
multiple categories.

For the case of the weighting function rfl, it can be considered that it is an estimate of
the P(ti/Nl)/P(ti/Nj/l), that is, of the probability that the term i is in the set of documents
labeled under the label l, over the probability that it is in the set of documents labeled in
other label, different from l. So, the function t f -r f l can be represented as:

t f -r f ltdl =
P(ti/dj)

log
(

P(ti/Nl)
P(ti/Nj/l)

) . (5)
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With this, a term weighting function r f l is proposed that addresses the classification
problem with multiple labels, something that id f does not consider.

3.5. Ensemble Interpretation

Following the taxonomy proposed by [42], it can be argued that our proposal intro-
duces greater diversity through two routes. First, from the manipulation of the training set,
information from the domain of the labels for each member of the ensemble is incorporated
by processing different previously manipulated inputs. Second, from specializing each one
of the members of the committee of classifiers in each one of the labels l of the training set.

The rfl representation modifies the training sets by incorporating information about
the features that differentiate the instance sets of different labels. In turn, each classifier uses
these examples through binary classifications of each label l: belongs or does not belong.

The following scheme represents our proposal as an ensemble:
Figure 1 outlines how each text is modified according to the label that will be submitted

for evaluation. In this way, before each text is input to a classifier, it will be submitted to a
supervised modification and adjusted to the label under evaluation.

Figure 1. View as an Ensemble.

3.6. Geometric Interpretation

Based on the Vector Space Model, we can interpret that each feature of a document is
represented as a dimension of the feature vector.

The rfl modification considers the relationship between the features of the documents
belonging to the label under classification and the features of the documents belonging to
other labels, different from the l label under evaluation.

By applying the weight at,l/µ(at,λj/l ), it is sought that the value corresponding in the
vector to the characteristic t increases when that characteristic occurs more in the set of
documents labeled under l than in the rest of the labels, and in turn, that it decreases when
t occurs less in l than in the rest of the labels.

The geometric interpretation is that the value in dimension t of the vector increases,
that is, it moves away from the other vectors corresponding to the other labels. This is
exemplified in the following graph.

Figure 2 shows how under the logic of the Vector Space Model, every time a repre-
sentation is modified, depending on the label to which it will be evaluated, the texts will
“move away” from each other, facilitating the search for the separating hyperplane.
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Figure 2. Geometric interpretation.

4. Experimental Method

This section presents the classification method, the data sets, and the performance
measurements of the evaluation.

4.1. Classification Method

The computational experiments considered 10 widely available data sets. Firstly,
each multilabeled data set was preprocessed for conversion into single-label data sets
using Binary Relevancy and Label Powerset transformations. New representations were
obtained for each post-processed data set. Secondly, classification of the newly generated
data sets was accomplished by means of binary machine learning techniques. Thirdly, the
classification performance was analyzed. The whole procedure is graphically presented in
Figure 3.

Figure 3. Text processing flow.

4.2. Data Sets

There are many standardized data sets for the testing models; the top 10 multilabeled
textual data sets are: REUTERS-21578, OHSUMED, ENRON, SLASHDOT, LANGLOG, BIB-
TEX, TMC, Yahoo Education, Yahoo Science, and MEDICAL. For REUTERS-21578, which is
a set of news texts, a modified subset that was proposed in [30] was considered in order to
be able to obtain comparative performance measures. The OHSUMED data set is a partition
of the MEDLINE database, which is a library of scientific articles published in medical
journals. The OHSUMED collection has also been reduced from 50,216 to 13,929 texts.
This subset contains the 10 most representative categories of the original 23 categories.
The Enron data set is a collection of texts created by the CALO (Cognitive Assistant that
Learns and Organizes) project, containing 1702 email messages and 52 categories. Finally, the
Medical data set was created by the Computational Medicine Center, 2007, for the Language
Processing Challenge, 2007; it contains 978 clinical texts of radiology reports and considers
45 categories of medical codes. TMC2007 is a subset of the Aviation Safety Reporting
System data set. Finally, we use real web pages linked from the ”yahoo.com” domain,
specifically comparing “Science” and “Education”. Table 5 presents the characteristics of
the preprocessed data set.
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Table 5. Characteristics of the Preprocessed Data Set. Cardinality (Card) measures the average
number of labels associated with each document. Density (Dens) is defined as the cardinality divided
by the number of labels. The Diversity (Div) represents the percentage of label sets present in the set
divided by the number of possible label sets. Vocabulary Size considers the volume of distinct words.

Data Set Num of Num of Size Card Dens Div
Labels Docs of Voc

Enron 52 1.702 1.001 3.378 0.064 0.442
Bibtex 159 7.395 1.836 2.402 0.015 0.386

TMC2007 22 28.600 49.060 2.158 0.098 0.047
Ohsumed 23 13.929 1.002 1.663 0.072 0.082
Education 33 12.030 27.530 1.463 0.044 0.042

Reuters 103 6.000 500 1.462 0.014 0.135
Science 40 6.428 37.490 1.450 0.036 0.071
Medical 45 978 1.449 1.245 0.028 0.096
Slashdot 22 3.782 1.079 1.181 0.054 0.041
Langlog 75 1.460 1.004 1.180 0.016 0.208

4.3. Performance Measures

Traditional evaluation measures such as the F measure, Hamming Loss, and Accuracy
are useful in the case of multilabeled sets.

To describe the performance measures, the following notation was used: considering
the vector Yi ∈ [0, 1]|L| : i = 1. . . d, then each label will be relevant if yi,j = 1, and for its
part, the prediction of the classifier will be y′i,j = 1, where d is the number of documents
and |L| is the number of possible labels.

Based on the notation above, Hamming Loss is defined as in Equation (6):

Hamming-Loss(Y, Y′) =
1
d

1
|L|

d

∑
i=1

|L|

∑
j=1

∣∣∣y′i,j∆yi,j

∣∣∣ (6)

where y′i,j∆yi,j represents the difference between the labels assigned by the classifier and
the actual labels. This measure seeks to measure the difference between each label that the
texts actually have, with each label that the classifier assigned to said texts. The lower the
value obtained, the better the performance.

Another multilabel measure is the label set precision (Accuracy), and this is defined as
in Equation (7):

Accuracy(y, y′) =
1
d

d

∑
i=1

1(yi = y′i). (7)

This average performance allowed us to measure, for each text, the correctly assigned
labels. In multilabel classification, the function returns the precision of the subset. If the
entire set of predicted labels for a sample strictly matches the actual set of labels, then
the subset precision is 1; otherwise, it is 0. The higher the returned value, the better
the performance.

The F measure, commonly used in information retrieval, is very popular in multil-
abeled text classification. The measure F is the harmonic mean between precision and com-
pleteness (recall). The measure F (F1) for each label was calculated as shown in Equation (8):

F1(Yi, Y′i ) =
2× precision× recall

precision + recall
, (8)

where Accuracy is the fraction of the predictions that are actually relevant, and recall is the
fraction of actual relevance with respect to the predictions. The higher the value of F, the
better the performance.
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For the multilabel case, it is necessary to combine the different F1 of each evaluation of
the label. For that we use macro-F1, which is the average of F1 for each label.

5. Results and Discussion

In order to compare the effects of using the r f l function to modify the representation,
we carried out different classification experiments using 10 different data sets widely
worked on in the literature (Reuters, Ohsumed, Enron, Slashdot, Langdot, Bibtex, Medical,
TMC2007, and Science and Education), using bin-rfl and bin-idf representations, both with
the Binary Relevance and Label Powerset transformations, and with two different linear
classifiers (SVM and ANN). The objective of using these linear classifiers was to evaluate
the modification, independent of the classification model.

The impact of modifying the representation can be assessed using shallow learning
models, which work well under conditions of limited computational complexity, as they do
not require prior domain knowledge or experience to extract features from the original text.
In turn, smaller data sets of the multilabel classification problem are used, which are widely
known in the literature. These sets had already been preprocessed in the standard way.

Tables 6–11 show the different methods and their performances in terms of the different
performance measures described previously.

Regarding the classifiers, the results of the SVMs are at odds with those of the ANNs.
Binary Relevance in general performs better than Label Powerset, unless the evaluation is in
terms of Accuracy, where some LP data sets perform better than BR.

Regarding rendering, in almost all cases, the bin-rfl rendering has improvements to
bin-idf. As shown in Tables 6 and 7, an average improvement of over 15% (with SVM) and
40% (with ANN) is obtained in terms of Accuracy. Similarly, improvements of 12% in terms
of Hamming Loss are obtained with ANN, as shown in Tables 8 and 9.

In [24], the Classification Neural Networks (CNN) model was used, and it was tested
in the following data sets: Enron, and Medical and Science, among others. From this,
we can compare the results in terms of Hamming Loss. A value of 0.046 is reported for
Enron, 0.013 for Medical, and 0.031 for Science. In this comparison, our proposal receives
a Hamming Loss value of 0.039, 0.013, and 0.027, respectively. In all three data sets, the
proposal evaluated in this research is better than CNN.

Finally, as can be seen in Tables 10 and 11, the performance improvement in terms of
macro-F1 are 40% (with SVM) and 50% (with ANN), averaged using the bin-representation
rfl instead of bin-idf and the Binary Relevance transformation.

Here, it can also be mentioned that from [29], performance measures are reported
using the same data sets used in this research: Science, Education, and Enron and Bixtex,
comparing their PNML proposal, achieving a macro-F1 of 0.298, 0.31, 0.262, and 0.418,
respectively. In this comparison, our proposal achieves a macro-F1 of 0.461, 0.285, 0.319,
and 0.423, respectively. From the above, it is possible to appreciate that superficial learning
models can deliver better results than some deep learning models, in 3 of the 10 data
sets compared.

Table 6. Experimental results of different transformations of the problem (PT: BR and LP), and
Representations with SVM in terms of Accuracy.

PT Repr. Reuters Ohsumed Enron Slashdot Langlog

BR bin-idf 0.247 0.402 0.080 0.257 0.240
BR bin-rfl 0.200 0.414 0.105 0.325 0.334
LP bin-idf 0.353 0.381 0.163 0.424 0.313
LP bin-rfl 0.350 0.401 0.212 0.442 0.519

PT Repr. Bibtex Medical TMC2007 Science Education

BR bin-idf 0.122 0.577 0.220 0.290 0.242
BR bin-rfl 0.138 0.413 0.216 0.293 0.171
LP bin-idf 0.230 0.628 0.126 0.342 0.281
LP bin-rfl 0.300 0.681 0.243 0.526 0.451
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Table 7. Experimental results of different transformations of the problem (PT: BR and LP), and
Representations with ANN in terms of Accuracy.

PT Repr. Reuters Ohsumed Enron Slashdot Langlog

BR bin-idf 0.298 0.388 0.097 0.302 0.240
BR bin-rfl 0.373 0.395 0.225 0.416 0.334
LP bin-idf 0.358 0.373 0.122 0.352 0.313
LP bin-rfl 0.462 0.388 0.212 0.489 0.519

PT Repr. Bibtex Medical TMC2007 Science Education

BR bin-idf 0.172 0.573 0.265 0.286 0.297
BR bin-rfl 0.214 0.584 0.282 0.385 0.261
LP bin-idf 0.138 0.537 0.175 0.370 0.310
LP bin-rfl 0.245 0.663 0.323 0.508 0.488

Table 8. Experimental results of different transformations of the problem (PT: BR and LP), and
Representations with SVM in terms of Hamming Loss.

PT Repr. Reuters Ohsumed Enron Slashdot Langlog

BR bin-idf 0.017 0.064 0.065 0.063 0.018
BR bin-rfl 0.018 0.063 0.050 0.054 0.017
LP bin-idf 0.017 0.060 0.056 0.052 0.020
LP bin-rfl 0.019 0.059 0.057 0.055 0.017

PT Repr. Bibtex Medical TMC2007 Science Education

BR bin-idf 0.018 0.014 0.073 0.037 0.048
BR bin-rfl 0.018 0.021 0.076 0.049 0.063
LP bin-idf 0.016 0.014 0.156 0.057 0.068
LP bin-rfl 0.019 0.014 0.124 0.040 0.051

Table 9. Experimental results of different transformations of the problem (PT: BR and LP), and
Representations with ANN in terms of Hamming Loss.

PT Repr. Reuters Ohsumed Enron Slashdot Langlog

BR bin-idf 0.015 0.067 0.057 0.055 0.016
BR bin-rfl 0.013 0.064 0.039 0.042 0.012
LP bin-idf 0.016 0.062 0.056 0.062 0.027
LP bin-rfl 0.014 0.060 0.062 0.051 0.022

PT Repr. Bibtex Medical TMC2007 Science Education

BR bin-idf 0.013 0.013 0.064 0.027 0.040
BR bin-rfl 0.014 0.013 0.063 0.029 0.047
LP bin-idf 0.023 0.020 0.100 0.046 0.053
LP bin-rfl 0.020 0.014 0.077 0.038 0.040

Table 10. Experimental results of different transformations of the problem (PT: BR and LP), and
Representations with SVM in terms of macro-F1.

TP Repr. Reuters Ohsumed Enron Slashdot Langlog

BR bin-idf 0.230 0.379 0.223 0.312 0.075
BR bin-rfl 0.239 0.426 0.230 0.377 0.279
LP bin-idf 0.236 0.361 0.182 0.336 0.062
LP bin-rfl 0.222 0.420 0.220 0.346 0.179

TP Repr. Bibtex Medical TMC2007 Science Education

BR bin-idf 0.322 0.379 0.492 0.286 0.236
BR bin-rfl 0.351 0.345 0.527 0.293 0.210
LP bin-idf 0.272 0.359 0.278 0.222 0.140
LP bin-rfl 0.300 0.367 0.336 0.325 0.226



Appl. Sci. 2023, 13, 3594 16 of 21

Table 11. Experimental results of different transformations of the problem (PT: BR and LP), and
Representations with ANN in terms of macro-F1.

TP Repr. Reuters Ohsumed Enron Slashdot Langlog

BR bin-idf 0.240 0.350 0.229 0.337 0.081
BR bin-rfl 0.297 0.411 0.319 0.439 0.307
LP bin-idf 0.220 0.349 0.166 0.284 0.052
LP bin-rfl 0.268 0.402 0.199 0.364 0.126

TP Repr. Bibtex Medical TMC2007 Science Education

BR bin-idf 0.325 0.381 0.527 0.383 0.304
BR bin-rfl 0.423 0.408 0.544 0.461 0.284
LP bin-idf 0.167 0.328 0.370 0.215 0.198
LP bin-rfl 0.222 0.398 0.453 0.313 0.285

To present the impact of the r f l function on the experimental results, Figure 4 graphi-
cally shows how, in almost all cases, the bin-rfl representation presents significant improve-
ments in relation to bin-idf. This percentage is calculated as the ratio between the difference
of the metric with the new representation and the old representation. It can be seen from
the figure that the improvements, in many cases, are greater than 20%, in terms of macro-F1.

Figure 4. Percentage performance improvement in terms of macro-F1.

In order to analyze the relationship between the performance improvements intro-
duced by the r f l function in the different evaluated metrics—Hamming Loss, Accuracy,
and macro-F1, with the different characteristics of the sets of documents analyzed (number
of labels, number of documents, number of terms in the vocabulary, cardinality, density
and diversity)—a correlation analysis of the metrics and characteristics was carried out,
identifying the relationships that are explained below. A correlation analysis was carried
out by analyzing the output of each classifier and the input characteristics as variables.
The proximity of the correlation coefficient is to +1 or −1 indicates a positive (+1) or nega-
tive (−1) correlation between variables. A positive correlation means that if the values in
one matrix increase, the values in the other matrix also increase. A correlation coefficient
that is closer to 0 indicates no correlation or a weak correlation.

Remember that the cardinality metric is calculated as the average number of labels
that a document has, density as the cardinality divided by the total number of labels, and
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diversity as the percentage of label sets present in the split document set, by the number of
possible label sets.

First, the relationship was analyzed in the Hamming Loss metric, as shown in Figure 5.
In this analysis, it was possible to identify an inverse correlation between the use of SVM
with the transformation of the Label Powerset problem with the number of labels and with
the diversity of labels. In addition, a direct correlation exists between this transformation
of the problem and the number of documents, vocabulary size, label density, and label
diversity. Likewise, it is possible to appreciate that there is an inverse correlation between
the use of ANN with the transformation of the Label Powerset problem with the cardinality
and diversity of the document set.

Figure 5. Correlation between performance improvements in terms of Hamming Loss and the
different characteristics of the data set (number of labels, number of documents, number of vocabulary
terms, cardinality, density, and diversity).

Secondly, the relationship in the Accuracy metric is analyzed, which, as shown in
Figure 6, presents an inverse correlation with the number of documents and a direct
correlation with the diversity of labels. It can also be seen that using SVM with the Label
Powerset transformation obtains better performances with fewer documents, a smaller
vocabulary size, and a lower value of the label cardinality and density measures.

Figure 6. Correlation between performance improvements in terms of Accuracy and the different
characteristics of the data set (number of labels, number of documents, number of vocabulary terms,
cardinality, density, and diversity).
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Third, as shown in Figure 7, the relationship in the macro-F1 metric with the different
sets of documents was analyzed. In this performance measure. it is possible to identify a
negative correlation of the two classifiers (SVM and ANN) with the two transformations of
the problem (BT and LP) with the number of labels, the number of documents, and the size
of the vocabulary. Likewise, a direct correlation with the cardinality, density, and diversity
of labels is presented. This can be interpreted as the smaller the number of documents or
the smaller the vocabulary, the greater the improvement introduced by the r f l function.
Additionally, it shows that with the greater the cardinality of labels, the diversity of labels
and, to a lesser extent, the density of labels, the improvement introduced by the r f l function
is greater in the macro-F1 measure.

Figure 7. Correlation between the performance improvements in terms of macro-F1 and the different
characteristics of the data set (number of labels, number of documents, number of vocabulary terms,
cardinality, density, and diversity).

To evaluate the results as in [1], a test based on a two-tailed paired t-test at the 5% sig-
nificance level was implemented. According to these results, the transformation of the
Binary Relevance problem with ANN and bin-rfl is better than Binary Relevance with ANN
and bin-idf in all measures (p = 0.0103 for Accuracy, p = 0.0491 for Hamming Loss, and
p = 0.0078 for F1). The p value shown in parentheses provides additional quantification of
the significance level.

6. Conclusions and Future Scope
6.1. Conclusions

The growth of interest in deep learning models does not rule out the techniques and
models based on shallow learning, especially when the set of training cases is smaller and
the set of features is not very extensive. The “white box” versus the “black box” approaches
have some advantages, especially the feasibility of working with relatively small data sets
and the interpretability of the results. Issues in some fields of application are fundamental.

Classification with multiple labels is an important topic in information retrieval and
machine learning, which has become more relevant in recent years. Text representation
and classification have traditionally been handled using t f -id f , due to its simplicity and
good performance. However, the t f -id f representation does not take into account that
the examples may have different labels. The latter is very relevant in data sets with high
cardinality and label diversity.

Changes in the input representation to classifiers can use knowledge about the prob-
lem, its domain, a particular label, or the category to which the document belongs. The r f l
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function can be written to solve a particular problem directly and without complex problem
transformations, using the information from the examples and their different labels.

In this work, we have introduced the r f l function to build new text representations
for the multilabel classification approach. This function allows for discriminating the terms
that best describe a category, in contrast to other categories, thus taking advantage of the
characteristics of the domain of documents that make up the corpus.

This proposal was evaluated using two different linear classifiers, Artificial Neural
Networks (ANN) and Support Vector Machines (SVM), with the aim of evaluating the
impact of the function on simple classifiers. In turn, the impact was evaluated on 10 different
sets of texts, which correspond to medical scientific articles, journalistic documents, medical
diagnostic reports, email messages, and web pages. A comparison with bin − id f was
made, and two transformations of the multilabeling problem were used (Binary Relevance
and Label Powerset).

The performance of this function shows an improvement in almost all cases, using
the Binary Relevance transformation and Support Vector Machines. Only to the extent of
Hamming Loss was it better to use Label Powerset and Support Vector Machines.

The greatest impact of using the r f l function occurs on the macro-F1 performance
metric when the data sets have fewer labels, fewer documents, and smaller vocabulary
sizes. In addition, this measure improves on data sets with higher cardinalities, densities,
and diversities of labels. This reflects the utility of the function on smaller data sets.

We believe that the contribution of the use of the r f l function, when using it as a
weighting factor to modify the multilabel representation, is due to a better resolution of the
considered problem, since it is capable of making a better identification of the terms in the
documents, which is reflected in a better performance of the classification models. From the
perspective of machine learning applications and the increasing rate of their adoption in the
industry, one must consider the need to develop computationally lightweight models that can
be implemented under affordable technological conditions for companies of different sizes.

6.2. Future Scope

In future studies, we plan to use the r f l function for the task of selecting features or for
identifying the most significant attributes to discriminate. In addition, other representations,
e.g., Part of Speech or N-grams, or based on other probability distributions, could be used to
construct a label-dependent representation.

We will also take an in-depth look at the impact of the r f l function on the performance
of non-linear classifiers, such as Random Forest and Decision Tree. Previous results show
important improvements in these non-linear classifiers, and the challenge is to understand
how these classifiers recognize the changes caused by the r f l function to improve their
performance.

We will also use the r f l function to process the outputs of more complex learning
models—for example, with word2vec—in order to improve its performance, starting from
the incorporation of information from the labels to weight the synthesized concepts.

Another line of work is to incorporate weights into the r f l function that allow the
attacking of the imbalance problem, which is very common in multilabel classification.
This can be achieved by adding the number of documents for each label in relation to the
total number of documents and labels as a parameter of the r f l function.

Finally, we will use the representation to perform sentiment analysis, email classifica-
tion, and other pattern recognition applications.
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