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Featured Application: A support tool for the image recognition of microstructures for quality
control in carbon-steel manufacturing.

Abstract: This work aims to compare the effectiveness of different machine-learning techniques for
the image classification of steel microstructures. For this, we use a set of samples of hypoeutectoid
steels subjected to three heat treatments: annealing, quenching and quenching with tempering.
Logically, the samples contain the typical constituents expected, and these are different for each
treatment. Images are obtained by optical microscopy at 400× magnification and from different
low-carbon steels to generate the data with some heterogeneity. Learning models are created with an
image dataset for classification into three classes based on the respective heat treatments. Likewise,
we develop two kinds of models by using, on the one hand, classical machine-learning methods
based on the “bag of features” technique and, on the other hand, convolutional neural networks
(CNN) with a transfer-learning approach by using GoogLeNet and ResNet50. We demonstrate the
superiority of deep-learning techniques (CNN) over classical machine-learning methods.

Keywords: machine learning; transfer learning; low-carbon steels; optical microstructure

1. Introduction

In recent years, different investigations have been conducted on the identification and
classification of material microstructures. Studies can be found with different approaches
and results based on classical machine-learning algorithms and neural networks applied to
optical microscopy analysis or SEM images. The random forest technique is used as the base
algorithm to obtain classifiers in the experiments performed. Thus, Bulgarevich et al. [1]
developed an analysis of steel images and classified ferrite–pearlite, ferrite–pearlite–bainite
and bainite–martensite microstructures. In a subsequent publication, [2], the selection of
models was improved by extracting different statistical attributes from the dataset, thereby,
obtaining a precision of 90%.

Muller et al. [3] studied the classification by using a support vector machine algorithm,
SVM, of pearlite, martensite, transformed pearlite, debris of cementite, residual austenite
and upper and lower bainite by using SEM images. Their results showed an acceptable
accuracy of 82%. They also implemented an inference method for obtaining the area (%)
that the corresponding phase occupies, finding, by the end of the experiment, an accuracy
of 89%.

Other studies have directly addressed the problem of image segmentation with an
optical image dataset. Thus, Kim et al. [4] identified ferrite, pearlite and martensite by
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using a convolutional neural network, CNN, to obtain parameters and the simple linear
iterative clustering algorithm, SLIC, for segmentation. They achieved efficient performance.
Other approaches to the classification problem can be found from images taken from optical
microscopy. Nishiura et al. [5] investigated a system for automatically estimating the steel
quality level with a model based on the VGG16 neural network [6] and obtained a success
rate of 92.5%.

Regarding datasets that consist of images obtained with an electronic microscope
(SEM, EBSD), several works can be found, such as Tsutsui et al. [5], where kernel-averaged
misorientations were used as parameters to classify bainite and martensite with the classical
SVM and random-forest algorithms, achieving acceptable results. Different works with
these types of images have created models with deep-learning techniques, such as that of
Maemura et al. [7] where eight types of steel microstructures were classified: upper bainite,
martensite and their hybrid structures. They used the pre-trained network ResNet50 as a
classifier, obtaining accuracies of up to 97% using a voting method to analyze the results by
means of a local interpretable model-agnostic explanation, LIME.

Zhu et al. [8] established a comparative method of two algorithms for feature ex-
traction, one with VGG16 pre-trained with ImageNet and another one with a gray-level
co-occurrence matrix, GLCM. They concluded that the best combination for classification
was VGG16 as a feature extractor with an SVM classifier. In this case, their research was
applied to hot stamping ultra-high-strength steels.

A segmentation technique with electronic images was addressed by Motyl et al. [9],
where, through the use of U-NET [10], they searched for the detection of pearlite islands
in biphasic ferrite–pearlite steels, reaching estimates between 79% for EBSD images and
87% for SEM images. Likewise, Breumier et al. [11] dealt with the subject of segmentation
with U-NET; however, in this case, the different constituents involved were identified using
the band contrast, BC, grain boundary misorientations and kernel average misorientation
(KAM) maps.

De-Cost et al. [12] researched a different approach to steel image segmentation by
working with the VGG16 pre-trained network and PixelNet [13] over the Ultra High Carbon
Steel Dataset [14]. Rather than training two separate CNNs, they demonstrated that intro-
ducing a single CNN in a multi-task setting was more appropriate. Thus, microstructures
were mapped to a common numerical representation before the corresponding classification
of microconstituents.

Other investigations approached the recognition of microstructures from the point of
view of the inference of material properties, as in the case of Wang et al. [15,16], where steel
properties, such as the stress–strain behavior, and particularly, the UTS and the total elon-
gation, were obtained from micrographs of different steels using deep-learning techniques.

Many papers have tackled classification problems using deep-learning and tradi-
tional machine-learning approaches, in different contexts for performance comparison.
Dhola et al. [17] used deep learning for sentiment analysis and showed better accuracy
compared with traditional machine-learning models. Other studies, such as Wang et al. [18],
evaluated SVM and a narrow CNN (two dense layers) for two different datasets, and they
concluded that, for a large dataset (MNIST) the deep-learning approach performed bet-
ter than traditional ML; however, when using a small sample dataset (COREL1000), the
accuracy of SVM was slightly better than the CNN.

Amri et al. [19] reviewed the effects of imbalanced data disparity with a MINST
handwritten dataset. In the experiments, a deep belief network (DBN) is used, and the
results were compared with conventional ML algorithms, such as backpropagation neural
network, SVM, decision trees and naïve Bayes. This research concluded that DBN achieved
a high accuracy rate and low error according to the performance metrics as compared to
the other ML algorithms, which are more affected by data imbalance.

As seen so far, there are several ways to approach the classification of steel microstruc-
tures using machine-learning models. Each research work proposes one or several models
with different levels of success. However, it is difficult to determine the best algorithm to be
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used with steel microstructures because the data are obtained with different technologies
(optical or electronic) and are not sufficiently extensive and homogeneous to create models
that manage to generalize the predictions and avoid overfitting. In this work, we take into
consideration optical images and compare classical and deep-learning models to obtain the
best strategy to be established as a starting point for future research.

Thus, the present work aims to perform experiments for creating different models
generated by supervised machine-learning techniques to classify the microstructures of
steels that have been subjected to several thermal treatments. We create our dataset based
on previously labeled steel microstructures, and all the images are taken using optical
microscopy. The experiments are on the one hand, based on six classic machine-learning
(ML) algorithms and, on the other hand, by working with a transfer learning scheme based
on the deep-learning networks “GoogLeNet” and “ResNet50”.

The images for creating the machine-learning models were obtained from three sets of
hypoeutectoid carbon steel specimens subjected to annealing, quenching and quenching
plus tempering heat treatments. Image classification was performed for the three cate-
gories, one for each heat treatment, based on the hypothesis that each treatment has a
characteristic microstructure.

2. Materials and Methods
2.1. Steel Samples and Image Data Setting

Low-carbon steels subjected to different heat treatments were considered, and the
chemical compositions are indicated in Table 1.

Table 1. Chemical composition (weight %) of low-carbon steel samples according to ISO 683-1:2019
and ISO 683-2:2019 standards. Number of samples for each heat treatment: annealing (A), quenching
(Q) and tempering (T).

Steel Samples Chemical Composition Weight %

Mo Si Mn P S Cr Mo Ni

C22E 0A 1Q 0T 0.17 0.6
C45E 4A 1Q 2T 0.45 0.65
37Cr4 1A 1Q 2T 0.37 0.75 1.05

34CrMo4 1A 0Q 0T 0.35 0.75 1.05
40NiCrMo6 0A 1Q 1T 0.4 0.7 0.8 0.25 1.8

Metallographic samples were investigated by the authors for this research, according
to well-established procedures. In this way, no adversarial attacks are expected regarding
model creation [20].

These steels can present different microstructures depending on the type of heat treat-
ment that has been undergone. In the case of annealing, the observable microconstituents
are ferrite and pearlite. Martensite is the dominating phase that appears after quenching.
Depending on the steel composition, some minor quantities of retained austenite can appear.
Tempering after quenching provides different microstructures depending on the temper-
ature; however, for tempering at intermediate temperature, the typical microstructure is
composed by tempered martensite that is contoured with a thick coating of precipitated
cementite. For annealing, quenching and quenching–tempering, other constituents than
those mentioned can appear depending on the steel composition and the way in which the
heat treatment is performed. In Figures 1–3, representative microstructures corresponding
to some of the experimented steels are shown. All the steel samples were prepared for the
optical microanalysis at 400×, which was performed using an inverse microscope Nikon
equipped with a Nikon FX-35WA camera.
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Figure 3. Typical microstructures after quenching + tempering at 450 ◦C for steels C45E (a),
40niCrMo6 (b) and 37Cr4 (c); (d) corresponds to a tempering temperature of 650 ◦C for a C45E steel.

This procedure permitted digital images to be taken at a resolution of 2080 × 1542 pix-
els. Optical microscopy under those conditions is a typical microstructure characterization
technique. Steel microstructures were selected taking into consideration several criteria.
Although the expected microstructures should be similar in all steels, some heterogeneities
can be considered. In Figure 1a, we observe perlite (dark areas) and ferrite (white areas) as
the typical constituents of an annealing structure of a low-carbon steel. Perlite is a lamellar
structure of alternative bands of ferrite and cementite; however, for many islands of perlite,
this structure cannot be resolved due to the microscope augmentation, and these islands
appear as dark areas.

This lack of uniformity of perlite is due to the fact that annealing is performed with a
progressive cooling, and the temperatures at which perlite is formed are not uniform in
all areas of the piece. In addition, the different plane orientation of the perlite respect to
the observation one, led to a different appearance of this constituent. The microstructure
of Figure 1b presents a similar aspect to Figure 1a but with a different perlite–ferrite
proportion. In Figure 1c, a very fine troostitic perlite can be observed. Finally, Figure 1c
corresponds to an annealing treatment for which only ferrite and cementite appear, since
perlite was transformed into these two phases. Nevertheless, we can suppose that the
isles of perlite are a consequence of the difficulties of atomic migration in solid state, i.e.,
diffusion phenomenon.

Figure 2 corresponds to microstructures of quenching, that is, the predominant con-
stituent is martensite; however, again, some differences exist between them. The most
typical microstructures are those corresponding to Figure 2b–d. In these structures, bainite
frequently appears in low proportion, and it is difficult to identify it. However, even
in these cases, martensite can be colored in a different way. Thus, the clear areas in the
microstructures along with the dark ones of Figure 2b–d are martensite.

Sometimes, the general aspect of the micrograph can be changed by using, for example,
an optical filter, as seen in Figure 2b, which includes this effect in the machine-learning
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techniques experimented herein. Finally, Figure 2a corresponds to an incomplete quenching
of a low-carbon steel. Due to that, although the predominant phase is martensite, some other
constituents exist, notably ferrite, and it is clear that the visual aspect of this micrograph is
somewhat different to the rest of them.

Figure 3 presents typical microstructures of quenching and tempering at medium
temperature, Figure 3a–c, and at high temperature, Figure 3d. Tempering at low tempera-
tures was discarded because the microstructure is so similar to the quenching one, that it is
typically necessary to support the microstructural analysis with other techniques. For an
intermediate tempering treatment, at 400–500 ◦C, the steel microstructure is characterized
by the transformation of martensite into what is usually called tempered martensite.

This new constituent consists of cementite precipitation into a ferrite matrix that
adopts the shape of a thick continuous coating contouring the antique martensite borders.
If tempering is performed at high temperature, 600 ◦C, martensite decomposes to ferrite,
and cementite appears as a globular precipitate. Nevertheless, considering again the
limitations of atomic migration in these processes, the structure is characteristic and presents
differences with those obtained in other heat treatments; however, visually, some affinities
can be observed to those corresponding to the intermediate tempering.

Different steels and microstructures were selected in order to introduce some degree
of heterogeneity to the classification techniques to be considered in the present work. For
each of the samples indicated in Table 1, ten different pictures were obtained. This means
that, for each steel, we randomized selected different microstructural areas, attempting
to consider, as much as possible, the heterogeneities existing in the corresponding steel,
while avoiding overlapping of the characteristic features involved. To reinforce this effect,
in some cases, several different samples were considered, i.e., C45E and 37Cr4 steels.

To sum up, an image dataset was created composed of 80 images for annealing,
40 for quenching and 50 for quenching and tempering samples. Nevertheless, the number
of images for each class in the datasets should be balanced to improve the machine-learning
performance. Thus, to match and extend the amount of data and to fit the transfer-learning
network requirements, the original 2080 × 1542-pixel images were cropped.

At this point, the question was which resolution to choose for cropping the images.
If images were split up in a low-resolution range, the performance time in Classic ML
algorithms would significantly increase. However, in that case, a high number of files
would be disposed of in the input training, which is suitable for deep learning [21–25].
Thus, authors considered establishing different image resolutions for each training model.
In the case of the transfer-learning approach, it is mandatory to have an input image
resolution of 224 × 224 pixels due to its architecture. When running Classic ML algorithms,
there are no restrictions regarding the image resolution.

However, it is necessary to find a trade-off between the model accuracy and cost
in training time. In this research, the classic ML models were trained with two picture
datasets: one with 6400 images per class cropped to 224 × 224 pixel resolution and another
with 400 images per class cropped to a 520 × 514 pixel size. The number of images
and their resolution are summarized in Table 2. It is essential to emphasize that the
method of cropping images does not provide a scale reduction but only their division into
smaller areas.

Table 2. Composition of the image data sets in machine-learning and deep-learning techniques.

Experiment ML Technique # Images Resolution (px)

1 Classic ML 1200 520 × 514
2 Classic ML 19,200 224 × 224
3 Deep Learning 19,200 224 × 224
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2.2. Computing Tools and Codes

The complete development of this work was computed on an Intel(R) Core(TM)
i7-5930K CPU @ 3.50 GHz, DIMM 64 GB RAM with NVIDIA® GFORCE RTX 3080 (10 GB)
equipment. All the results were obtained using the MATLAB® deep-learning app for trans-
fer learning and the classification learner app for classic supervised learning algorithms.
All codes performed for this research are available upon request to the authors.

2.3. Classic Machine-Learning Methods

All the models were created with the Computer Vision Tool- box and MATLAB
Classification Learner app by performing the method of “bag of features” for image classi-
fication [26–28]. This technique is adapted to computer vision from the world of natural
language processing, which creates a “vocabulary” of visual words as descriptors of repre-
sentative features of each image category. To select ML classifiers and considering that they
are sensitive to the hyper-parameters, different possibilities were considered.

In Appendix A, the different models and presets experimented are established, indi-
cating the corresponding hyperparameters. This information is offered for both resolutions
considered here, i.e., 224 × 224 px and 520 × 514 px. Then, six different ML classifiers
and/or presets were selected among the most relevant in the literature to create the clas-
sification models considering the most accurate of them, Table 3. In all cases, the bag of
features was fixed to 400 elements, since it was determined, after preliminary tests with
different numbers, that 400 features led to a good balance between time performance
and accuracy. When this number was increased or decreased, no significant advantages
were found.

Table 3. Accuracy (%) in classic ML models.

224 × 224 px 520 × 514 px

Model Validation Test Validation Test

Ensemble 70.1 39.1 87 36.4
Decision Tree 65.3 36.8 67.5 31.9

SVM 79.3 34.1 86.8 40.8
Naive Bayes 72.7 35.4 79.5 46.1

KNN 62.8 38.9 82.4 40.8
Logistic Regression Kernel 80.6 34.7 89 45.3

The image dataset was split into two subsets, one for training with 840 images (70%)
and another with 360 images for testing. For each image, key points are selected, and
feature extraction was performed. The detection method used was Speeded-Up Robust
Features (SURF) [29] due to the optimum efficiency and computing speed for this extractor.
Then, for all the datasets, a bag of feature objects, i.e., visual words, was created. Since
the number of features is a configurable parameter, the authors set it to 400 for the experi-
ments Some of these representative points or visual words are shown in random samples
in Figure 4.

Only 10 keypoints are marked in the figures, and they correspond to the most relevant
features as indicated in Figure 5b. The relevance of the points is marked from 1 to 10, with
being 1 the strongest keypoint. As it is well-known, the zones represented by the keypoints
are the most representative that allow the microstructures to be identified, and they always
include parts of different microconstituents together, for which the size of the points are of
different diameter, independently of their relevance.
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Once a bag of visual words is created, it is necessary to form a vector with the count
of the visual occurrences of the 400 features in each image. This produces a histogram
that becomes a new and reduced representation of an image as is shown in Figure 5 for
the microstructures corresponding to every heat treatment. This is the basis for training
a classifier—that is, an image encoded into a feature vector. In Figure 5b are the same
histograms but sorted according to features of relevance, from the highest to the smallest.

According to Figure 5b, it can be established that the number of features without
meaning is 23 for quenching and 13 for quenching–tempering treatments. Annealing
microstructures would be encoded with only 302 features since 88 present null occurrences.
This means that it is easier to encode a microstructure coming from an annealing heat
treatment, and for the rest, the complexity is higher and similar between them. This is
coherent with human perception since the typical annealing microstructure is simpler
to identify.

The quenching and quenching–tempering microstructures are, in general, more com-
plex, presenting microphases that are difficult to be analyzed by optical microscopy at
400× magnification. Another consideration could be to establish a threshold of a 90% occur-
rence for which good results are expected, i.e., neglecting the least significant features (10%
of total occurrences). According to that, it would be only necessary to include 207, 275 and
282 features in the definition of annealing, quenching and quenching–tempering images,
respectively. These figures highlight the lower complexity expected in the definition of the
annealing micrographs with respect to those of quenching and quenching–tempering.

2.4. Deep-Learning Approaches

Two experiments were conducted to create and compare both models, one based on
the transfer-learning approach and the other using a pre-trained network. This method
allows a complex CNN architecture to be used, thereby, saving training time and obtaining
better performance as will be seen in the results section. The trained networks chosen
for the deep-learning experiments were GoogLeNet and Resnet50. These networks were
selected initially due to the expectations existing in this field in the literature [30,31].

Once we obtained a high effectiveness of those networks for microstructure images,
we did not consider it necessary to introduce other possibilities. Both networks were
trained on the ImageNet database [32], which has a wide range of images, 1000 object
categories, such as keyboard, mouse, pencil and many animals. These categories are out of
the microstructure image domain involved herein; however, as it is shown in the results
section and some recent work [33], many of the pre-training parameters can be transferred
to improve the new classification models.

The input data consisted of a 19,200 images dataset, i.e., 6400, for each category, of
which, 70% were used for training, 20% for validation and 10% for testing. The input
images were at a 224 × 224 px resolution, cropped to this size from the original pictures.
The first experiment used GoogLeNet, a pre-trained convolutional neural-network model
that was 22 layers deep. GoogLeNet is based on a codenamed “Inception” architecture [30].
ResNet50 was the pre-trained network for the second experiment to create the model.
ResNet50 is a well-known net, structured with 50 layers and also trained in the same
1000 categories mentioned above [31].

The steps to reuse both pre-trained networks are as follows:

• Loading the pre-trained network where early layers learned low-level features (edges,
blobs and colors) and the last layers learned specific features (1 million images and
1000 classes).

• Replacing final layers (loss3-classifier for GoogLeNet and fc1000 for ResNet50) with
new layers to learn features specific to the dataset.

• Training the network with three classes (6400 images for each class, annealing, quench-
ing and quenching plus tempering samples). The hyperparameters used for the
experiments were: optimizer SGDM, minibatch size 64, max. epochs 3 and learning
rate 10−3.



Appl. Sci. 2023, 13, 3479 10 of 18

• Predicting and assessing the network accuracy.

3. Results and Discussion

The results of the training and testing of the machine-learning experiments are col-
lected in Table 3. As can be observed, even though experiment 1 was performed with a
higher number of images (19,200) compared with those involved in experiment 2 (1200),
the training accuracy was worse in all the six ML algorithms for experiment 1. From these
results, it can be inferred that, in this type of classification problem, the results are improved
with better image resolution.

Although there is a significant percentage of success in the pre-trained step, the
accuracy was low for all the models. Thus, the best accuracy model for the first experiment
corresponded to the Ensemble Boosted Trees method with a value of 70.6% for the training
and a poor 39.0% for the test accuracy. The second experiment, with better resolution
images and much less training time, also produced bad results, finding the Naive Bayes
(Gaussian) as the best model with a testing accuracy of 46.1%. Thus, these models cannot
be generalized, and they present overfitting. Thus, the models will fail to present accurate
predictions with new images.

On the other hand, the training progress of the transfer learning experiments, con-
ducted on the pre-trained networks GoogLeNet and ResNet50, are shown in Figures 6 and 7,
respectively. The loss function progress is depicted as well in Figures 6 and 7. It can be
observed that two epochs would have been sufficient, since the third epoch barely gives a
significant improvement in the accuracy obtained—that is, the third epoch indicates that
the accuracy cannot be improved any further.
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Analyzing all the results, we observed similar performance in both models. Accuracy
in the training and test processes was over 99%, which defines both as superb deep-learning
models. ResNet50 is slightly better than GoogLeNet but requires more GPU time because
of the greater number of layers involved. In addition to the accuracy of the classifiers, three
other indicators, precision, recall and specificity, are provided in Tables 4 and 5. Precision
is used to obtain the percentage of correct predictions in every class, meaning the degree
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of reliability, while recall is used to represent the fraction of samples that were correctly
recognized—that is, the model’s detection capability [34].
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Table 4. Indicators that define the behavior of pre-trained deep-learning network GoogLeNet;
FP/FN = false positives/false negatives; and TP/TN = true positives/negatives. These values were
obtained from samples not used for training and/or validating the network.

Precision Recall Specificity F1 (Har. Mean) MCC

Annealing 0.9968 0.9859 0.9984 0.9914 0.9871
Quenching 0.9846 1 0.9922 0.9922 0.9884

Quench. + Tem 1 0.9953 1 0.9977 0.9965
Average 0.9938 0.9938 0.9969 0.9938 0.9907

Precision = TP/(TP + FP); Recall = TP/(TP + FN); Specificity = TN/(TN + TP); F1 = Harmonic mean = 2
(precision × recall)/(precision + recall); and MCC = Matthew’s correlation coefficient.

Table 5. Indicators that define the behavior of pre-trained deep-learning network ResNet50;
FP/FN = false positives/false negatives; and TP/TN = true positives/negatives. These values were
obtained from samples not used for training and/or validating the network.

Precision Recall Specificity F1 (Har. Mean) MCC

Annealing 0.9917 1 0.9962 0.9959 0.9883
Quenching 1 0.9924 1 0.9962 0.9919

Quench. + Tem 1 1 1 1 0.9965
Average 0.9972 0.9975 0.9987 0.9973 0.9922

Precision = TP/(TP + FP); Recall = TP/(TP + FN); Specificity = TN/(TN + TP); F1 = Harmonic mean = 2
(precision × recall)/(precision + recall); and MCC = Matthew’s correlation coefficient.

The harmonic mean of recall and precision is included as well as the average value
of all indicators. Finally, Matthew’s correlation coefficient was included as an indicator of
the imbalance sensitivity of the process. The classification was balanced since the same
number of images per class were used to train and validate the ML classifiers and the
transfer-learning networks. Logically, the values obtained for Matthew´s coefficient equal
almost 1.
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In order to double-check the goodness of the two DL networks selected, a new experi-
ment was performed consisting of training and validating those networks from scratch, i.e.,
without the pre-trained dataset. In Figures 8 and 9, the accuracies of the tests and validation
data are lower than the pre-trained networks in both cases. In addition, the maximum ac-
curacy value is reached with a significantly higher number of iterations. Finally, the results
are more unstable with variations of up to 25%. Consequently, it is demonstrated that the
transfer-learning approach suitably fits the classification of steel microstructure images.
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In Figure 10, the confusion matrixes for GoogLeNet and ResNet50 tests are represented.
As it was expected, transfer-learning approaches led to best results over classical machine-
learning classification models. Choosing a pre-trained deep-learning network and adapting
it to the microstructure image dataset was easy and consumed adequate GPU time. The
experiments yielded excellent results in test confusion matrix 9 and, in addition, it can
be stated that ResNet50 is the deep-learning network that better fits this three-class steel
microstructure classification problem. If the confusion matrixes are analyzed, it can be
stated that annealing is the class that presents a higher number of false positives.
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Figure 10. Confusion matrixes for the pre-trained networks, GoogLeNet (a) and ResNet50 (b) used
in transfer learning tests, i.e., corresponding to samples that were not used to train and/or validate
the networks.

This appears coherent with the complexity established by the authors as a starting
point based on the significant heterogeneity degree associated with the corresponding
microstructures. Although annealing micrographs are the easiest to be classified, according
to the essential number of key points, their heterogeneity suggest a higher probability that
the system throws more false positives. We highlight the absence of false positives and neg-
atives related to the other two categories, i.e., quenching and quenching–tempering. The
authors expected some degree of confusion between these two categories since there is some
visual affinity of the involved micrographs. Thus, it can be stated that the results obtained
are excellent and, particularly, better with ResNet50 transfer learning, which can be consid-
ered as a good choice in future research in the field of steel microconstituent recognition.

4. Conclusions

In this research, we explored classic and large convolutional neural network models
for solving an image-classification problem of low-carbon steel microstructures to identify
the corresponding heat treatment applied to them. For this, an image dataset with three
categories was created: annealing, quenching and quenching-tempering. This issue has
great intrinsic complexity if it is considered that microstructures present a significant degree
of heterogeneity inside of each group, with the greatest being the annealing group.

Part of this difficulty is due to the fact that images were obtained by means of optical mi-
croscopy at 400× magnification, which means that it is difficult to solve certain constituents
and that images may present the same constituent under different aspects—notably, the
perlite. Some classic machine-learning algorithms have been fed with this set of images to
generate classification models for choosing the best one. The results obtained are clearly un-
satisfactory due to the low accuracy reached in training and, mainly, in testing experiments.
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This result brings into question the utility of classic machine learning in a microstruc-
ture image context. However, the application of the transfer-learning techniques, GoogLeNet
and ResNet50, on the problem, led to obtain great results from both, with 99% accuracy in
the training and testing experiments. The results permit deeper research regarding micro-
constituent recognition to be performed in the future by using transfer-learning techniques.
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Appendix A

Table A1. Hyperparameters of experimented presets with 224 × 224 px images; training
data observations: 13,440; predictors: 400; response class names: annealing, quenching and
quenching + tempering; validation: five-fold cross validation; and test data observations: 5760.

Model Type Accuracy %
(Validation)

Accuracy %
(Test) Preset Training

Time (s) Hyperparameters

Tree 65.3 36.8 Fine Tree 16.8 Maximum number of splits: 100; Split criterion: Gini's diversity
index; Surrogate decision splits: Off

Tree 65.3 36.8 Fine Tree 18.8 Maximum number of splits: 100; Split criterion: Gini's diversity
index; Surrogate decision splits: Off

Tree 64.4 35.7 Medium Tree 16.5 Maximum number of splits: 20; Split criterion: Gini's diversity
index; Surrogate decision splits: Off

Tree 57.4 39.5 Coarse Tree 15.8 Maximum number of splits: 4; Split criterion: Gini's diversity index;
Surrogate decision splits: Off

Discriminant 78 34.1 Linear
Discriminant 15.3 Covariance structure: Full

Discriminant 74.9 34 Quadratic
Discriminant 14.2 Covariance structure: Full

Naive Bayes 72.7 35.4 Gaussian
Naive Bayes 22.6 Distribution name for numeric predictors: Gaussian; Distribution

name for categorical predictors: Not Applicable

Naive Bayes 34.1 33.6 Kernel Naive
Bayes 5172.6

Distribution name for numeric predictors: Kernel; Distribution
name for categorical predictors: Not Applicable; Kernel type:

Gaussian; Support: Unbounded

SVM 79.6 33.1 Linear SVM 135.2 Kernel function: Linear; Kernel scale: Automatic; Box constraint
level: 1; Multiclass method: One-vs-One; Standardize data: Yes

SVM 82.2 32.7 Quadratic
SVM 150.6 Kernel function: Quadratic; Kernel scale: Automatic; Box constraint

level: 1; Multiclass method: One-vs-One; Standardize data: Yes

SVM 83.1 34.1 Cubic SVM 196.9 Kernel function: Cubic; Kernel scale: Automatic; Box constraint
level: 1; Multiclass method: One-vs-One; Standardize data: Yes

SVM 35.7 33.3
Fine

Gaussian
SVM

437 Kernel function: Gaussian; Kernel scale: 5; Box constraint level: 1;
Multiclass method: One-vs-One; Standardize data: Yes
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Table A1. Cont.

Model Type Accuracy %
(Validation)

Accuracy %
(Test) Preset Training

Time (s) Hyperparameters

SVM 82.9 32.3
Medium
Gaussian

SVM
216.6 Kernel function: Gaussian; Kernel scale: 20; Box constraint level: 1;

Multiclass method: One-vs-One; Standardize data: Yes

SVM 79.3 34.1
Coarse

Gaussian
SVM

353.1 Kernel function: Gaussian; Kernel scale: 80; Box constraint level: 1;
Multiclass method: One-vs-One; Standardize data: Yes

KNN 62.9 36.4 Fine KNN 286.1 Number of neighbors: 1; Distance metric: Euclidean; Distance
weight: Equal; Standardize data: Yes

KNN 62.8 38.9 Medium
KNN 331.8 Number of neighbors: 10; Distance metric: Euclidean; Distance

weight: Equal; Standardize data: Yes

KNN 59.7 38.2 Coarse KNN 378.7 Number of neighbors: 100; Distance metric: Euclidean; Distance
weight: Equal; Standardize data: Yes

KNN 71 37.6 Cosine KNN 492.7 Number of neighbors: 10; Distance metric: Cosine; Distance weight:
Equal; Standardize data: Yes

KNN 60.1 35.9 Cubic KNN 1998 Number of neighbors: 10; Distance metric: Minkowski (cubic);
Distance weight: Equal; Standardize data: Yes

KNN 61.9 38.6 Weighted
KNN 546.5 Number of neighbors: 10; Distance metric: Euclidean; Distance

weight: Squared inverse; Standardize data: Yes

Ensemble 70.1 39.1 Boosted
Trees 652.1

Ensemble method: AdaBoost; Learner type: Decision tree;
Maximum number of splits: 20; Number of learners: 30; Learning

rate: 0.1; Number of predictors to sample: Select All

Ensemble 75.2 38.1 Bagged Trees 1691.8
Ensemble method: Bag; Learner type: Decision tree; Maximum

number of splits: 13,439; Number of learners: 30; Number of
predictors to sample: Select All

Ensemble 77.5 36.2 Subspace
Discriminant 554.3 Ensemble method: Subspace; Learner type: Discriminant; Number

of learners: 30; Subspace dimension: 200

Ensemble 65.4 45.2 Subspace
KNN 2077.5 Ensemble method: Subspace; Learner type: Nearest neighbors;

Number of learners: 30; Subspace dimension: 200

Ensemble 64.4 35.7 RUSBoosted
Trees 790.8

Ensemble method: RUSBoost; Learner type: Decision tree;
Maximum number of splits: 20; Number of learners: 30; Learning

rate: 0.1; Number of predictors to sample: Select All

Neural
Network 75.6 35.3

Narrow
Neural

Network
826.2

Number of fully connected layers: 1; First layer size: 10; Activation:
ReLU; Iteration limit: 1000; Regularization strength (Lambda): 0;

Standardize data: Yes

Neural
Network 79.1 35.9

Medium
Neural

Network
812.4

Number of fully connected layers: 1; First layer size: 25; Activation:
ReLU; Iteration limit: 1000; Regularization strength (Lambda): 0;

Standardize data: Yes

Neural
Network 81.2 35.5 Wide Neural

Network 846.9
Number of fully connected layers: 1; First layer size: 100;

Activation: ReLU; Iteration limit: 1000; Regularization strength
(Lambda): 0; Standardize data: Yes

Neural
Network 75.9 36.5

Bilayered
Neural

Network
980

Number of fully connected layers: 2; First layer size: 10; Second
layer size: 10; Activation: ReLU; Iteration limit: 1000;

Regularization strength (Lambda): 0; Standardize data: Yes

Neural
Network 76 38.9

Trilayered
Neural

Network
1121.4

Number of fully connected layers: 3; First layer size: 10; Second
layer size: 10; Third layer size: 10; Activation: ReLU; Iteration limit:
1000; Regularization strength (Lambda): 0; Standardize data: Yes

Kernel 82.1 32.6 SVM Kernel 1541.4
Learner: SVM; Number of expansion dimensions: Auto;

Regularization strength (Lambda): Auto; Kernel scale: Auto;
Multiclass method: One-vs-One; Iteration limit: 1000

Kernel 80.6 34.7
Logistic

Regression
Kernel

1418.2
Learner: Logistic Regression; Number of expansion dimensions:

Auto; Regularization strength (Lambda): Auto; Kernel scale: Auto;
Multiclass method: One-vs-One; Iteration limit: 1000
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Table A2. Hyperparameters of experimented presets with 520 × 514 px images; training data observa-
tions: 840; predictors: 400; response class names: annealing, quenching and quenching + tempering;
validation: five-fold cross validation; and test data observations: 360.

Model Type Accuracy %
(Validation)

Accuracy %
(Test) Preset Training

Time (s) Hyperparameters

Tree 71.1 30 Fine Tree 11.4 Maximum number of splits: 100; Split criterion: Gini’s diversity
index; Surrogate decision splits: Off

Tree 71.1 30 Fine Tree 6.4 Maximum number of splits: 100; Split criterion: Gini’s diversity
index; Surrogate decision splits: Off

Tree 72.7 30.6 Medium Tree 4.1 Maximum number of splits: 20; Split criterion: Gini’s diversity
index; Surrogate decision splits: Off

Tree 67.5 31.9 Coarse Tree 3.7 Maximum number of splits: 4; Split criterion: Gini’s diversity index;
Surrogate decision splits: Off

Discriminant 82.5 40.6 Linear
Discriminant 3.4 Covariance structure: Full

Naive Bayes 79.5 46.1 Gaussian
Naive Bayes 10.1 Distribution name for numeric predictors: Gaussian; Distribution

name for categorical predictors: Not Applicable

Naive Bayes 80 41.9 Kernel Naive
Bayes 79

Distribution name for numeric predictors: Kernel; Distribution
name for categorical predictors: Not Applicable; Kernel type:

Gaussian; Support: Unbounded

SVM 91.3 38.9 Linear SVM 3.9 Kernel function: Linear; Kernel scale: Automatic; Box constraint
level: 1; Multiclass method: One-vs-One; Standardize data: Yes

SVM 93.3 38.1 Quadratic
SVM 4.7 Kernel function: Quadratic; Kernel scale: Automatic; Box constraint

level: 1; Multiclass method: One-vs-One; Standardize data: Yes

SVM 94.2 37.8 Cubic SVM 7 Kernel function: Cubic; Kernel scale: Automatic; Box constraint
level: 1; Multiclass method: One-vs-One; Standardize data: Yes

SVM 39.9 33.3
Fine

Gaussian
SVM

7.7 Kernel function: Gaussian; Kernel scale: 5; Box constraint level: 1;
Multiclass method: One-vs-One; Standardize data: Yes

SVM 94.8 31.9
Medium
Gaussian

SVM
5.3 Kernel function: Gaussian; Kernel scale: 20; Box constraint level: 1;

Multiclass method: One-vs-One; Standardize data: Yes

SVM 86.8 40.8
Coarse

Gaussian
SVM

5.8 Kernel function: Gaussian; Kernel scale: 80; Box constraint level: 1;
Multiclass method: One-vs-One; Standardize data: Yes

KNN 84.4 40.6 Fine KNN 9.2 Number of neighbors: 1; Distance metric: Euclidean; Distance
weight: Equal; Standardize data: Yes

KNN 83.5 33.1 Medium
KNN 9.5 Number of neighbors: 10; Distance metric: Euclidean; Distance

weight: Equal; Standardize data: Yes

KNN 77.1 36.4 Coarse KNN 10.8 Number of neighbors: 100; Distance metric: Euclidean; Distance
weight: Equal; Standardize data: Yes

KNN 82.4 40.8 Cosine KNN 10.5 Number of neighbors: 10; Distance metric: Cosine; Distance weight:
Equal; Standardize data: Yes

KNN 82.3 35 Cubic KNN 17.4 Number of neighbors: 10; Distance metric: Minkowski (cubic);
Distance weight: Equal; Standardize data: Yes

KNN 82.9 34.2 Weighted
KNN 11.8 Number of neighbors: 10; Distance metric: Euclidean; Distance

weight: Squared inverse; Standardize data: Yes

Ensemble 86.8 35.8 Boosted
Trees 36.5

Ensemble method: AdaBoost; Learner type: Decision tree;
Maximum number of splits: 20; Number of learners: 30; Learning

rate: 0.1; Number of predictors to sample: Select All

Ensemble 87 36.4 Bagged Trees 40
Ensemble method: Bag; Learner type: Decision tree; Maximum

number of splits: 839; Number of learners: 30; Number of
predictors to sample: Select All

Ensemble 90 32.8 Subspace
Discriminant 22.1 Ensemble method: Subspace; Learner type: Discriminant; Number

of learners: 30; Subspace dimension: 200

Ensemble 87.4 33.3 Subspace
KNN 28.1 Ensemble method: Subspace; Learner type: Nearest neighbors;

Number of learners: 30; Subspace dimension: 200
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Table A2. Cont.

Model Type Accuracy %
(Validation)

Accuracy %
(Test) Preset Training

Time (s) Hyperparameters

Ensemble 72.9 30.6 RUSBoosted
Trees 42.6

Ensemble method: RUSBoost; Learner type: Decision tree;
Maximum number of splits: 20; Number of learners: 30; Learning

rate: 0.1; Number of predictors to sample: Select All

Neural
Network 93.2 41.1

Narrow
Neural

Network
24.7

Number of fully connected layers: 1; First layer size: 10; Activation:
ReLU; Iteration limit: 1000; Regularization strength (Lambda): 0;

Standardize data: Yes

Neural
Network 94.4 42.2

Medium
Neural

Network
26.5

Number of fully connected layers: 1; First layer size: 25; Activation:
ReLU; Iteration limit: 1000; Regularization strength (Lambda): 0;

Standardize data: Yes

Neural
Network 94.2 35.8 Wide Neural

Network 29
Number of fully connected layers: 1; First layer size: 100;

Activation: ReLU; Iteration limit: 1000; Regularization strength
(Lambda): 0; Standardize data: Yes

Neural
Network 92.3 41.9

Bilayered
Neural

Network
30.5

Number of fully connected layers: 2; First layer size: 10; Second
layer size: 10; Activation: ReLU; Iteration limit: 1000;

Regularization strength (Lambda): 0; Standardize data: Yes

Neural
Network 93.3 41.4

Trilayered
Neural

Network
31.6

Number of fully connected layers: 3; First layer size: 10; Second
layer size: 10; Third layer size: 10; Activation: ReLU; Iteration limit:
1000; Regularization strength (Lambda): 0; Standardize data: Yes

Kernel 93.9 29.2 SVM Kernel 55.8
Learner: SVM; Number of expansion dimensions: Auto;

Regularization strength (Lambda): Auto; Kernel scale: Auto;
Multiclass method: One-vs-One; Iteration limit: 1000

Kernel 89 45.3
Logistic

Regression
Kernel

44.1
Learner: Logistic Regression; Number of expansion dimensions:

Auto; Regularization strength (Lambda): Auto; Kernel scale: Auto;
Multiclass method: One-vs-One; Iteration limit: 1000
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