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Abstract: The soil–rock mixture (SRM), as a heterogeneous and discrete geomaterial, can be widely
found in nature and may present difficult design and construction issues for structures within or
on top of them. Engineers face a difficult problem when determining the mechanical behavior of
geomaterials with SRM, especially those with a high volumetric block proportion (VBP). As it is
often very difficult to prepare undisturbed and representative samples of these materials. Thus,
this paper proposes a novel method that can generate SRM models with a high VBP and produce a
block-matrix interface (BMI) around the rock block, which can simulate unwelded SRM in nature.
Then, the finite difference method (FDM) is applied to simulate uniaxial compression tests. The
conformity of the numerical simulation results with the experimental results shows that the method
is reasonable and effective. In addition, the effect of the strength of the BMI, the thickness of the
BMI, and the geometrical shape of the rock blocks on the uniaxial compressive strength (UCS) of the
SRM are also investigated. The modelling approach proposed in this paper is able to generate BMI in
SRMs and enables the effect of the BMI on the SRMs’ properties to be better investigated in numerical
simulations. This method can overcome the difficulties of preparing representative and undisturbed
experimental cores while saving cost and improving efficiency. Simultaneously, the method proposed
in this paper is promising to be extended to three dimensions.

Keywords: soil–rock mixture; finite difference method; clump; high volumetric block proportion;
block-matrix interface; uniaxial compressive strength

1. Introduction

As a special geological material, the soil–rock mixture (SRM) is a heterogeneous, dis-
crete, and nonlinear loose soil medium system composed of rock blocks with great strength
and size, fine-grained soil, and pores [1]. Accordingly, it presents distinct differences in the
strength of the rock blocks and the soil. Due to the existence of rock blocks, SRMs generally
show unique meso-structural characteristics. Consequently, its physical and mechanical
properties are seriously influenced by matrix strength, proportion of block volume, block
orientations, block shapes, block sizes, and the distribution of blocks [2–4]. As a common
material in nature, SRMs dispersed widely in the project construction. Owing to its special
structure and different components, SRMs contribute to widespread construction accidents,
such as landslides, collapses, and so on. Hence, studying the physical and mechanical
properties of the SRMs has significant value in engineering and theoretical significance.

In recent years, scholars at home and abroad have studied the special geological
systems of soil and rock mixtures. In terms of physical experiments, two main approaches
are often used to study SRMs. The first approach is to receive data by laboratory tests or
in-suit tests. Sun et al. investigated the influence of rocks on fracture evolution in SRM by
conducting real-time computed tomography (CT) scanning on SRM and pure soil samples
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under indoor uniaxial compressive experiments [5–11]. Shan et al. proposed an X-ray CT
images-based Discrete element method (DEM) to generate numerical model of the SRM
microstructure [11]. Sun et al. analyzed the fracture evolution of the SRM under uniaxial
compression test using real-time computed tomography (CT) scanning [12]. Meng et al.
developed an open-source software package for heterogeneous material modeling based on
digital image processing [13]. Afifipour et al. utilized artificial (physical) model specimens
in a laboratory to obtain the mechanical parameters of different rock block proportions
(RBP) under uniaxial compressive testing [14]. Apart from uniaxial compressive test,
triaxial test is more common. Xu et al. studied how the mechanical properties and failure
characteristics of the SRMs can be affected by the rock block content, sample size, and the
different grain size distribution on the of the SRMs in triaxial tests [2,15,16]. Wang et al.
used a GDS triaxial test system to measure the seepage characteristics of the SRMs [17].
Relative to laboratory tests, Yao et al. conducted in situ shear tests to study the mechanical
characteristics of the SRMs [18–20]. According to the experimental data, deriving a formula
is the other method. Sonmez et al. developed an empirical approach for the determination
of the UCS for a volcaniclastic soil–rock mixture depending on the uniaxial compressive
test results [21]. Zhang et al. proposed an empirical approach that could predict the shear
strength of the SRMs [22].

Nevertheless, challenges are encountered when preparing representative core spec-
imens for laboratory experiments on undisturbed SRM cores, making it extremely chal-
lenging to determine the mechanical characteristics of the SRM as a mixture geomaterial,
especially for unwelded SRM. With the rapid development of computer technology, many
numerical simulation methods have been utilized to investigate the deformation and me-
chanical properties of the SRMs. Among them, the finite element method (FEM) [8,23–26]
and the discrete element method (DEM) [1,27–30] are commonly used. Due to these nu-
merical simulation methods, researchers can model SRMs with high volumetric block
proportions (VBP), distinct block shapes, and so on. For example, Li et al. [31], Xu et al. [32],
and Wang et al. [33] studied the influence of VBP on the mechanical properties of virtual
S-RM and pointed out that the mechanical properties of the SRMs are dominated by dif-
ferent components in different VBP ranges. When the VBP is less than 10% to 20%, the
shear strength is mainly controlled by soil. When the VBP is over 70%, the shear strength
is dominated by rocks. When the VBP ranges from 20% to 70%, the shear strength ranges
between soil and rocks [33].

When studying the effect of the VBP of the SRM on its mechanical properties, it
is difficult for existing numerical simulation methods to generate models with a high
VBP. Afifipour et al. [14] investigated the different mechanical properties of SRMs with a
high VBP by performing uniaxial compression tests on artificial specimens. They found
that there is a general decreasing trend in uniaxial compressive strength (UCS), Young
modulus, and failure strain. In the literature, SRMs are divided into two categories, the
above-mentioned SRMs are classified as unwelded SRMs (or cemented SRMs) due to the
low block-matrix contact strength. In view of the above finding, we took the strength of
block-matrix interface (BMI) into consideration to investigate the decreasing tendency.

Inspired by all of the above studies, this paper proposes a novel mesoscale modeling
method for simulating the mechanical properties of the SRMs with random VBP and
structures. This modeling method shares the following advantages: easy generation of
samples with a high VBP, full consideration of the effect of the BMI, easy change in the
particle’s shape, and so on. Then, the numerical simulation software Fast Lagrangian
Analysis of Continua (FLAC3D) using the finite difference method (FDM) was used to
analyze the mechanical properties of the SRMs.

2. Sample Preparation and Testing Method

According to the procedures of the method proposed in this paper, a flowchart is
presented in Figure 1 to depict the detailed processes of numerical simulation. The brief
processes can be divided into following steps: (1) Determine the model size; (2) Generate
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the SRM model according to grading curve; (3) Import into FLAC3D and conduct the
numerical simulation; (4) Discuss the impact of different factors on the stress–strain curve
of the SRM.
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2.1. Model Generation of the SRMs

The model generation of the SRMs is essential in numerical simulations, and the
overall mechanical properties of the SRMs are mainly dependent on the shape, VBP, and
the thickness of the BMI. Thus, in this work, the significant factors described above must
be taken into consideration when generating numerical models. Especially, the effect of the
BMI was usually neglected by most scholars in previous studies.

SRMs can generally be viewed as a composite material composed of rock blocks,
fine-grained soil, and BMI in the numerical simulation study. Thus, the generation of rock
block aggregates is the first step of the model generation of the SRMs. In this study, a
clump command provided by the DEM software can be utilized to generate irregular rock
block aggregations. A clump is a collection of pebbles that are overlaid and do not deform
in relation to one another, exhibiting stiff particle motion. Thus, to simulate rock blocks
that obtain greater strength in the SRM model, this approach employs clumps to fill the
aggregate templates. Similarly, the rock blocks in SRMs are much stronger and stiffer than
the soil matrix; therefore, it is able to simulate rock blocks perfectly using clumps [1].

2.1.1. Irregular Rock Block Aggregate Generation

First of all, the geometries of the aggregate particles need to be generated. Thus, one
polygon with random sides will be generated as a boundary of a clump. The method
in this study uses a series of random radii and angles in polar coordinates to generate
aggregate boundaries based on the Monte Carlo random sampling principle, as shown
in Figure 2 [34,35]. Compared with other methods, this method can change the size and
shape of an aggregate particle that significantly affects the SRMs mechanical properties via
changing radii and angles.
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2.1.2. Size Distribution

The grading curve is often used to show the relative content of each grain group of
rock blocks. Many ideal grading curves can be applied to describe the size distribution of
rock blocks. In this paper, the grading curve is given, and the percentage of aggregates
whose sizes are in the grading interval of [di, di+1] can be calculated as:

P[di,di+1]
=

P(di+1)− P(di)

P(dmax)− P(dmin)
(1)

where dmax and dmin are the maximum and the minimum aggregate sizes, respectively.

2.1.3. Generation of Clump and Spatial Location

When finishing the above steps, the next step is to import the file containing the
coordinate points of the polygons generated above into the DEM software. Then, the
geometry of the aggregate is then set to be used as the boundary of the clump and used as
a template for creating the clump. A clump template is not a model object in itself; it serves
as a basis for creating clumps in the model with the same shape as the clump template.
The facilities to create clumps from clump templates include the ability to rotate, translate,
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and scale the clumps relative to their template. One can simply replicate a clump from
a template. Next, the pebbles are automatically calculated via an approximation of the
medial surface of the polygons via the Bubble Pack algorithm of Taghavi [36]. Both convex
and concave geometries can be automatically filled via this algorithm in both 2D and 3D.
Finally, due to the absolute rigidity of the clumps, all of the clumps will collide freely in
the domain until there is no overlap between any two clumps. Then, the rock blocks will
redistribute, and the positions of each rock block aggregate such as the coordinates of the
vertices and the center of the aggregates will be recorded and output.

To consider the impact of the aggregates coinciding with the boundaries, in this paper,
the border effect is also taken into account. A spatial location algorithm, which is based on
the traditional method, is employed.

2.2. Generation of the BMI

In most previous studies on SRM, the BMI was neglected, thus the influence of
the strength of the BMI on the mechanical properties was ignored. To investigate the
cementation effect, a novel BMI generation algorithm based on the Minkowski sum is
utilized to wrap a shell around the aggregate. Given two sets of points A and B through a
random generation of polygons in Euclidean space, the Minkowski sum can be described
as A + B =

{→
x +

→
y
∣∣∣→x ∈ A,

→
y ∈ B

}
. This algorithm is equivalent to wrapping a shell

around the original particle without changing its shape and orientation [37].
Thus, the space between two figures can be viewed as BMI and endowed with different

parameters in a numerical simulation to discuss the cementation effect. A treated aggregate
can be seen in Figure 3.
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Figure 3. A treated aggregate with block-matrix interface.

To show the whole procedures of model generation, a sample with a VBP of 60% is
presented in Figure 4. (a) Generate the boundary of rock block aggregates according to
the grading curve; (b) Create clumps via an approximation of the medial surface of the
polygons by DEM; (c) Consider the border effect of the SRM and redistribute the aggregates;
(d) Trim the geometry outside the domain using a preprocessing tool; (e) Generate the
block-matrix interface based on Minkowski sum; (f) Generation of numerical mesh model.
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3. Results
3.1. Numerical Simulation Model Generation

To investigate the change in the SRM strength with increasing VBP, this paper refers
to the laboratory test data by Afifipour et al. [14]. In Afifipour’s paper, there are two kinds
of SRM samples with different sizes (150 × 300 mm and 100 × 200 mm) in order to study
the possible scale effect on the mechanical behavior of the SRMs. Consequently, the result
of this laboratory test shows that there is no significant scale effect on SRMs and confirms
Medley’s perspective that the SRM is a scale-independent material based on some field
measurements performed on Franciscan mélange [32]. Thus, in this paper, one specimen
of the SRM with the size (100 × 200 mm) is generated. The grading curve in Afifipour’s
indoor test is applied for this paper, the particle size distribution of rock block aggregates
is shown in Table 1, and the grading curve is presented in Figure 5.

Table 1. The particle size distribution of rock block aggregates.

Sieve Size (mm) Cumulative Passing (%)

12.0 100
11.2 92.0
10.5 67.5
9.0 19.6
6.0 0.0
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According to the above grading curve, rock block aggregate size was set to 6.0 to
12 mm. Five models with a VBP of 50%, 55%, 60%, 65% and 70% were generated, shown in
Figure 6.
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3.2. Numerical Simulation of Uniaxial Compression Test with FLAC3D

When the pre-processing of the SRM models is completed, the data of models is
going to be imported into FLAC3D to simulate the uniaxial compression test. Some key
physical and mechanical parameters of the soil and rock are shown in Table 2. In SRMs, the
mechanical characteristics of the rock block, matrix, and BMI are often quite complicated.
The rock block is typically the strongest and has a strength ratio to the matrix that is at least
larger than two [38]. The matrix is stronger than the junction of the block and matrix but has
a lower compression strength than the rock block. When considering the BMI in unwelded
SRMs, the strength ratio to the matrix is frequently less than one [39]. Most current studies
ignore BMI in SRMs. Evidently, both the presence and strength of the BMI have a great
influence on the mechanical properties and failure mode of the SRMs. Due to the lack of
relevant parameters in this regard, this paper refers to concrete with similar structure and
properties of the SRMs [40]. In concrete, the strength of the interfacial transition zone (ITZ)
is usually 0.1–0.9 of the matrix [41]. Therefore, to simulate the cementation properties of
the BMI, this paper applied one fifth of the strength parameters of soil to BMI. The result of
this numerical simulation is compared with the experimentally obtained UCS value [14].
Meanwhile, the corresponding stress–strain curve is investigated to validate the accuracy
and reliability of the simulation in this paper. As shown in the stress–strain curve (Figure 7),
the stress–strain curve of numerical simulation is in a good agreement with that of the
experimental test, especially in the pre-peak stage. The result clearly indicates that the
method in this paper can make a rather reasonable simulation of the mechanical properties
of the SRMs under uniaxial compression.

Table 2. Material parameters of mesoscale concrete model.

Composition Young Modulus
(MPa)

Poisson
Ratio

Cohesion
(MPa)

Friction Angle
(◦)

Rock block 1320 0.22 / /
Matrix 402 0.32 16.5 22.64

Block-matrix interface 80.4 0.064 3.3 4.528
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In this paper, five SRM models with a 5% increase in VBP from 50% to 70% each were
used for the numerical simulation of uniaxial compression tests. In order to avoid the
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influence of mechanical parameters on the numerical simulation results, a pure matrix
model consisting of soil was generated separately, and a uniaxial compression test was
performed to obtain the UCS value of the pure matrix model. Then, this paper utilized the
ratio of the UCS value of the SRM model to the UCS value of the pure matrix model to
describe the uniaxial compressive strength of the SRM.

An overall declining relationship between the UCS of the SRMs and VBP can be
evidently observed from the results. This declining trend can better demonstrate the
influence of VBP on uniaxial compressive strength of unwelded SRMs in experiment
conducted by Afifipour et al. [14], as shown in Figure 8. However, the decrease in UCS
value with VBP from 50% to 55% is relatively flat, then, the UCS value will decrease
relatively quickly with a similar trend as the VBP increases. This phenomenon can be
explained by the fourth rule related to the relationship between the strength and VBP,
which was summarized by Sonmez et al. [42]. As described by the fourth rule, between
VBP = 0% and VBP = 100%, the UCSSRM drops from the UCSmatrix to zero since interlocking
contact between blocks is unquestionably believed to be nearly nonexistent or extremely
low for VBP > 60%.
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Simultaneously, in this paper, the simulated findings are compared with the empirical
formula to see if the simulated declining trend is plausible, shown in Figure 9. The empirical
equation [42] can be described as follows:

UCSbimrock =
(A− A( VBP

100 ))

(A− 1)
UCSmatrix 0.1 ≤ A ≤ 500 (2)

UCSbimrock and UCSmatrix are the uniaxial compressive strength of bimrock (block-in-
matrix-rocks) and matrix, respectively. In this paper, bimrock is replaced by the concept of
the SRM. “A” is a constraining variable that reflects the bond (or contact) strength between
blocks and matrix. As shown in the figure, the results of the simulation can fit the empirical
equation. As mentioned by Sonmez et al. [42], one may predict the UCS of a SRM by using
the UCS of a matrix as a scaling parameter. According to Equation (2) and Figure 9, the
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normalized UCS of the SRM (relative to that of the matrix) decreases when volumetric
block proportions rise. The value of “A” in the proposed empirical equation is controlled
by the contact strength between the blocks and the matrix. Unwelded block and matrix
contact strength is primarily influenced by the angularity and roughness of blocks and
kind of matrix.
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4. Analysis of Effect Factors

Numerous factors, such as the strength of the BMI, the thickness of the BMI, and the
aggregate shape, can influence the UCS of the SRMs model, and the following sections
will discuss these factors in detail. For the convenience of the following discussion, this
paper compares SRMs owning VBP in 50%, 60%, and 70% to figure out how these factors
influence the UCS value of the SRMs.

4.1. Effect of the Strength of Block-Matrix Interface

As the weakest zone connecting rock blocks and matrix, the BMI plays an indispens-
able role in directly affecting the strength of the SRMs. Nevertheless, it is challenging to
identify the strength parameters of the BMI and manage its strength in laboratory experi-
ments due to the tiny size of the cementing surface. Therefore, this paper assigns different
strength parameters to BMI to simulate the effect of its strength on the uniaxial compressive
strength of the SRMs from the perspective of numerical simulation. In the traditional
numerical simulation of concrete, the different ratio value of the strength between the
interface transition zone and mortar were applied [34]. Therefore, the ratio of strength
parameters between the BMI and matrix was also adopted in this paper to simulate different
BMI strengths.

As presented in Figure 10, with different ratio values of 10%, 20%, 30%, and 40%,
the UCS of the SRM is compared. In general, all four groups of models satisfy the above-
mentioned law of the effect of VBP on strength (i.e., the higher the volume fraction the
lower the strength). Meanwhile, as we can observe that the lower the strength of the
cemented surface, the lower the UCS of the SRM at the corresponding volume fraction.
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From each set of results, the decreasing trend in the UCS in this group of models tends to
level off as the strength of the cemented surface increases.
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4.2. Effect of the Thickness of Block-Matrix Interface

Since the effect of BMI on the strength of the SRM is crucial, in addition to the above
discussion of the effect of BMI strength on the overall strength, this paper also considers the
effect of the thickness of the cemented surface on the UCS of the SRM. Taking advantage of
the method of model generation in this paper, three sets of models with different thicknesses
of BMI are generated. The thickness of the BMI of these three groups of models is 0.5 mm,
0.6 mm, and 0.7 mm, respectively, models with a VBP of 60%, as presented in Figure 11.
While varying the thickness of the BMI, this paper also keeps the positions of rock blocks
fixed as a way of avoiding the effect of stone distribution on the strength characteristics.
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Overall, the general tendency of each group is that the UCS declines with the growth
of the VBP, as shown in Figure 12. Then, it can be observed that the UCS of the SRM
decreases with the increase in the thickness of the BMI. At the same time, it can be clearly
shown that the decreasing trend slows down with increasing thickness. It is noteworthy
that the overall decline in strength is more significant than before in the second and third set
of models when VBP increases from 60% to 70%. As mentioned above, the rule proposed
by Sonmez et al. [33] that block-to-block interlocking contacts are definitely assumed to be
almost absent or very few can explain this tendency with more than 60% of VBP.
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4.3. Effect of the Geometrical Shape of Rock Blocks

In SRM, the rock blocks play a crucial role of skeleton which is not a negligible factor
affecting the strength of the SRM. In addition to the influence of the features of the BMI
on the strength of the SRM, the shape of rock block is also a critical factor that has an
impact on the strength of the SRM. Thus, the effect of different rock block shapes on the
overall strength of the SRM deserves to be investigated. Except polygons, two other regular
and realistic shapes of rock block—circle and oval—are also taken into consideration in
this paper.

As clearly shown in Figure 13, the plastic zones of the SRM models with various
geometrical block shapes under different volume fractions are compared, when each model
is eventually damaged and cannot withstand the pressure. It is clear that the overall plastic
zones of the three types of models are located on the BMI around the rock blocks, with
overall plastic zones occurring in parts of the soil.

Then, the UCS of models with three different types of geometrical shapes is compared
in Figure 14. It can be easily observed that the general trend in the three groups of models
is down as VBP increases. In the meantime, when comparing the same volume fractions
from different groups, it is evident that the models with polygonal rock blocks are the
strongest, with ellipses coming in second and rounds coming in last. Additionally, from
the polygonal to the elliptical group, the decrease in UCS is significant while slight from
the elliptical to the round groups.
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5. Conclusions

Using a unique model generation technique, this paper offers numerical simulations
of uniaxial compression experiments for SRMs with various high-volume fractions, having
varying BMI strengths, BMI thicknesses, and rock block shapes. The above discussions
lead to some conclusions as follows:

(1) Due to the convenience of the model generated in this paper, this paper takes the
weakest zones (BMI) into account in the modeling and is able to set the thickness of the BMI,
which are ignored by many numerical simulation studies. The variation in the UCS for
SRMs with a high VBP and BMI is investigated in this paper. The BMI, the weakest region
in the SRM, likewise, rises as VBP does, which is represented in the strength characteristics
of the SRM as the UCS falls as the VBP rises. Furthermore, when the VBP exceeds 60%, the
UCS of the SRM drops even more significantly as block-to-block interlocking contacts are
definitely assumed to be almost absent or very few.

(2) As the weakest zones, the effect of the characteristics of the BMI is also taken into
account. The overall UCS of the SRM increases with increasing BMI strength, but, at the
same time, its decreasing trend levelled off with increasing volume fraction in each group.
Meanwhile, a study of thickness, another characteristic of the BMI, showed that the overall
strength of the SRM decreases as the thickness of the BMI increases, but the downward
trend also flattens out.

(3) Considering different rock block shapes, this paper finds that the SRM with polyg-
onal rock blocks have the largest UCS for the same VBP, followed by ellipse, and, finally,
round, with not much difference between round and ellipse.

It is worth noting that this paper takes BMI into account in numerical simulations,
which is the weakest zone in SRMs. Furthermore, the effect of the thickness of the BMI
on the overall uniaxial compressive strength is investigated. Simultaneously, the method
proposed in this paper is promising to be extended to three dimensions.
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