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Abstract: The process of intelligent multi-objective parametric optimization design for mirrors is
discussed in detail in this paper, with the error of the mirror surface shape and the total mass
being examined as the optimization objectives. The establishment of complex objective functions
for solving the optimization problem of the mirror surface shape error was realized, and manual
modification of the model was avoided. Moreover, combining this with a non-dominated sorting
genetic algorithm (NSGA) helped the Pareto front move towards an ideal optimal set of solutions.
To verify the effectiveness of the proposed method, an aluminum alloy mirror with an aperture of
140 mm was taken as an example. The Pareto optimal solution set of the mass and surface shape
error under 1 g gravity was obtained for finding the required solution and satisfying the optimization
goal. In addition, this method is applicable to other complex structural design problems.

Keywords: intelligent parameter optimization design; joint simulation; non-dominated sorting
genetic algorithm; mirror surface shape error; Pareto optimal solution set

1. Introduction

The analysis of rigid-body motion and surface shape errors in mirror design problems
plays an important role in evaluating the environmental adaptability, spatial position stabil-
ity and imaging quality of opto-mechanical structures [1–3]. Usually, the root mean square
value (RMS) of a mirror’s surface shape error is used to verify whether the structural design
meets the optical imaging requirements. It is worth noting that among the components of
a mirror’s surface shape error resulting from its own weight, rigid-body motion, which
represents the translation and tilt of the mirror, could be eliminated by recalibrating the
optical system. Therefore, rigid-body motion needs to be removed from a mirror’s surface
shape error while describing the mirror’s surface shape quality.

During the actual mirror design process, the structure is often modeled first and is
subsequently simulated and analyzed in finite-element software for obtaining the node
deformation on the mirror’s surface, and then the results are exported for further processing
to calculate the surface shape error. There are two main kinds of methods that are used to
separate the rigid-body motion of the mirror from the surface shape error. One involves
taking an accurate fitting for deformed surface shapes using Zernike polynomials [4].
The second involves the surface equation processing method proposed by Wu et al. [5].
The traditional design relies more on experience. If the surface shape error exceeds the
requirements, the designer needs to change the model parameters manually, and then the
above simulation and processing procedure needs to be repeated several times until the
results meet the requirements. As we can see, the whole design process always requires
manual repetitive work, and, furthermore, the results often likely do not provide the
optimal solution.

With the development of finite-element software, many engineering designers have
used this optimization design software to optimize the structure of mirrors, including
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size optimization, topology optimization and shape optimization [6]. There have been a
lot of studies on about mirror optimization using different kinds of software. Park k.S.
et al. [7] studied the optimization of the topology of a primary mirror under its own weight
and polishing loading, where the measure of the Strehl ratio was used to perform the
objective function, thus establishing the relationship between the optical surface quality
and node deformation. The structural optimization of a 1.2 m diameter space mirror
using the OptiStruct tool from HyperWorks 12 to minimize the mass and constrain optical
aberrations was carried out by Sahu et al. [8]. Qu et al. [9] also used OptiStruct to optimize
the topology of a lightweight primary mirror assembly to determine its shape, and then the
sensitivity analysis method and size optimization were adopted to determine the structural
parameters. A parametric optimization method to design large, lightweight space mirrors
based on the optimization of the topology of a basic mirror configuration was proposed
by Liu et al. [2], which combined the advantages of topology optimization and parametric
optimization. The whole optimization process involved the Isight software, OptiStruct
and the MATLAB software. Their study implies that optimization software could be
effectively used to address mirror optimization. However, the following limitations exist
for designers: (1) it takes a long time to learn and figure out the software’s functions,
and usually it is not easy to get started if you are not familiar with optimization design
software; (2) the built-in optimization algorithms are fixed and are difficult to modify;
(3) in optimization design software, usually only one objective function can be set. To
achieve multi-objective optimization, the weights need to be introduced to transform the
multi-objective optimization problem into a single-objective optimization problem. The
choice of weights involves a subjective judgment from the designer.

Different from optimization software, the method proposed in this study realizes the
whole optimization process by using MATLAB-Python-Abaqus joint simulation, which can
provide a more flexible and convenient way to achieve structural parametric optimization
design, especially for people who are good at programming. This method has advantages
in terms of multi-objective optimization and complex objective function implementation,
focusing on the needs of designers more closely. In addition, the combination of this
with a non-dominated sorting genetic algorithm achieves intelligent variable parameter
optimization design and helps the Pareto front to quickly move towards the ideal optimal
set of solutions.

2. Optimization Method
2.1. Optimization Implemention

The whole process involves a multi-objective optimization algorithm program, a finite-
element simulation and data interaction among different pieces of software. It is well
known that MATLAB has a powerful programming function and numerical computation
ability, while Abaqus has powerful finite-element modeling and simulation functions. This
optimization method combines the powerful functions of these two pieces of software
to realize the structural parameter optimization. Since the kernel language of Abaqus is
Python and Python languages can be conveniently run by MATLAB, Python is necessary
for realizing the data interaction between them. Specifically, extracting the data from the
results database of Abaqus as well as rewriting the modelling file with different values of
the structural parameters are completed via Python codes.

In this paper, the main program is implemented through MATLAB (MathWorks Inc.,
R2017a, Natick, MA, USA), and a non-dominated sorting genetic algorithm is used as
the multi-objective optimization algorithm. The population consisted of mirror structure
optimization parameters, and the chromosome length is determined according to the
number of optimization parameters and constraints. When calculating the objective values
corresponding to the individuals, the relevant structural parameters are obtained based on
these different individuals by converting the binary values into decimal values, and then
the values are assigned to the corresponding parameters in the modeling file to update
the model into the Python language (Python Software Foundation. Python Language
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Reference, version 3.4.0 Available at http://www.python.org, accessed on 17 March 2014).
Subsequently, Abaqus (Dassault Systèmes Simulia Corp., Version 6.9, Paris, France) is
called upon to perform the simulation calculations, and the results are then obtained, which
are further processed to obtain the corresponding objective values. In each generation, the
optimal individuals and the optimal objective values are acquired with the non-dominated
sorting method. After this, the next generation population is obtained through selection,
crossover and mutation operations, and then the process of calculating the objective values
is repeated. After multiple iterations, the final solution set consisting of the optimal
objective values are obtained, and this is the Pareto optimal solution set. Accordingly, the
designer may select the most suitable optimization result. The optimization flowchart and
data interaction diagram are shown in Figures 1 and 2, respectively.
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The main steps are as follows:

1. Determine the optimization parameters, constraints and objective functions for the
optimization problem;

2. Generate the modelling file by using the recording macro file function of Abaqus or
scripting the file directly to model the structure, divide the mesh, define the material
properties, determine the cell type, establish the analysis step, apply the load and
boundary conditions, and submit the computation process;

3. Write codes for extracting the required data from the results database of Abaqus and
then input these codes following up those in the above modelling file. Up to this point,
the modelling file may complete the whole process of simulating the deformation for
the mirror model with the determined structural parameters;

4. Run the modelling file in Abaqus and save the results;
5. Input the results into the objective function to calculate the objective values for

population classification. According to the non-dominated sorting method, the Pareto
optimal individuals are then selected for this generation;

6. Retain the optimal individuals and input them into the next generation population.
Meanwhile, perform the crossover and mutation operations on the old population to
obtain the new generation population;

7. By converting binary values to decimal values, the new optimization parameters are
generated based on the new population. Then, rewrite the modelling file in Python
codes to assign the new optimization parameters of the structure;

8. Repeat steps (iv)–(vii) until the number of generations is satisfied;
9. Output the overall Pareto optimal solution set and pick the multi-objective optimal

solution according to the demand.

2.2. Non-Dominated Sorting Genetic Algorithm

Non-dominated sorting genetic algorithms (NSGA), which were proposed by Srinivas
and Deb [10] in 1995, are genetic algorithms based on the concept of a Pareto optimum
and are an improvement on basic genetic algorithms and are performed on the basis of
the selection and regeneration method; each individual is classified according to their
dominant and non-dominant relations and then the selection operation is conducted, which
thus leads to very satisfactory results when conducting multi-objective optimization. With
the development of NSGAs, Deb et al. proposed a fast non-dominated sorting genetic
algorithm with an elite strategy (NSGA-II) [11,12] in 2000, which can preserve the solution’s
diversity. However, it has the disadvantages of slow convergence and falling into a local
optimum [13]. With the application of the NSGA-II algorithm to a wider range, these
problems have gradually emerged. Many researchers have been devoted to improving the
NSGA-II algorithm by introducing advanced strategies, such as the random walk strategy
for local searching, the Levy flight strategy for global searching [14] or by combining it
with other advanced algorithms [15]. Subsequently, the non-dominated sorting genetic
algorithm III (NSGA-III) [16] was developed for cases when there are more than four
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objectives to be optimized and where it is difficult to select the Pareto solutions. The
basic process is similar to that of the NSGA-II algorithm, but the method of selecting
individuals incorporates a reference-point-based approach, which can effectively reduce
the computational costs and maintain a good diversity of the population. It also uses a
niching algorithm rather than the crowding distance method used in the NSGA-II algorithm
to make the optimal solution be more evenly distributed in space. Therefore, it shows
a better diversity and convergence than the NSGA-II algorithm. For actual engineering
problems, there are usually two–three objectives that need to be optimized. Thus, the
NSGA-II algorithm is the most popular multi-objective optimization algorithm developed
so far, and it has a wide range of applications [17–20].

The core of the NSGA, NSGA-II and NSGA-III algorithms is the non-dominated
sorting method. For minimization problems in multi-objective optimization, the objective
vector consists of n subobjectives, i.e., f (X) = ( f1(X), f2(X), · · · , fn(X)).

For any variables Xp and Xq,

1. Xp dominates Xq if and only if for ∀i ∈ {1, 2, · · · , n}, fi
(
Xp
)
< fi

(
Xq
)
;

2. Xp weakly dominates Xq if and only if for ∀i ∈ {1, 2, · · · , n}, fi
(
Xp
)
≤ fi

(
Xq
)

and
there exists j ∈ {1, 2, · · · , n} such that fi

(
Xp
)
< fi

(
Xp
)
;

3. Xp and Xq do not dominate each other if and only if for ∃i ∈ {1, 2, · · · , n},
fi
(
Xp
)
< fi

(
Xq
)

and also ∃j ∈ {1, 2, · · · , n} such that fi
(
Xp
)
> fi

(
Xq
)
.

If there is no solution that dominates Xp, then Xp is known as the Pareto optimal
solution. The set of all the Pareto optimal solutions is the Pareto optimal solution set. The
mapping of the Pareto optimal solution set in the objective space is called the Pareto front.

Due to the advantages of NSGAs in multi-objective optimization problems, there are
many examples of their application in opto-mechanical structure optimization problems,
especially in the parametric optimization area. Mikio Kunita [21] et al. applied a genetic
algorithm to the main support structure of a space camera in order to achieve a lightweight
design. Hangyong Kihm and Ho. Soon Yang proposed a design process for a main
mirror and its flexible support structure and used a genetic algorithm to optimize its
design, which met the design requirements and reduced the time consumed by an order
of magnitude [22,23]. Liu et al. realized the parametric optimization design of a mirror
by using the NSGA-II algorithm [2]. Zhang et al. proposed a recurrent neural network
prediction model based on the Bayesian regularization algorithm for an optical–mechanical
system, and the NSGA-II algorithm was used to globally optimize the multiple prediction
objectives of the prediction model [24].

2.3. Rigid-Body Motion and Surface Shape Error of a Mirror

In this paper, the surface equation processing method and the best fit by the least-
squares method [5,25–27] were adopted to calculate the rigid-body motion for an optical
surface with multiple nodes based on area-weighted average motion. As is well known,
the rigid-body motion of an optical surface includes six components (three translations,
Tx, Ty, Tz, and three rotations, Rx, Ry, Rz), and the nodal rigid-body displacements,
dx̃i

, dỹi
, dz̃i

, generated at a given node, xi, yi, zi, can be expressed as follows:
dx̃i

= Tx − ziRy − yiRz
dỹi

= Ty − ziRx − xiRz
dz̃i

= Tz − yiRx − xiRy

(1)

The squared difference, E, between the actual nodal displacements, dxi , dyi , dzi , and
the nodal rigid-body displacements, dx̃i

, dỹi
, dz̃i

, of an optical surface can be obtained
as follows:

E = ∑
i

[(
dxi − dx̃i

)2
+
(

dyi − dỹi

)2
+
(
dzi − dz̃i

)2
]

(2)

For Equation (2), by taking the partial derivatives of each of the six rigid-body motion
components, the squared difference, E, on the left side is zero. Thus, six simultaneous
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equations for solving the average rigid-body motion are obtained. After getting the average
rigid-body motion of the surface, the rigid-body motion components can be removed from
the actual nodal displacements by using Equation (3). Thus, the deformation of each node
(∆xi , ∆yi , ∆zi ) on the surface of the mirror can be obtained.

∆xi = dxi − dx̃i
∆yi = dyi − dỹi
∆zi = dzi − dz̃i

(3)

Furthermore, the error of the mirror deformation relative to the ideal mirror surface
can be obtained, and the root mean square value (RMS) of the error can be calculated.
Using the above method, the root mean square values of the surface shape error in three
directions can be conveniently obtained.

3. Mirror Optimization Design
3.1. Fundamental Structure of a Mirror

The choice of the diameter–thickness ratio of a mirror will affect not only the mirror
deformation but also the lightweight rate. According to the relationship between the
thickness ratio of a flat solid mirror with a circular edge and the self-weight deformation of
the mirror, as shown in References [28–30], the diameter-to-thickness ratio of the mirror is
preliminarily determined. The empirical equation is as follows:

δ =
3ρgR4

16Et2 =
3ρg∆2D2

256E
(4)

where δ (µm) is the maximum deformation of the mirror, ρ (kg/m3) is the material den-
sity, R (m) is the half-diameter of the mirror aperture, E (GPa) is the elastic modulus of
the material, t (m) is the mirror thickness, ∆ is the diameter-thickness ratio and g is the
acceleration due to gravity. Aluminum alloy 6061 was selected as the material of the
mirror in this study. The mirror aperture was 140 mm. For a value of δ of 0.004 µm, the
diameter–thickness ratio ∆ is 6.72, and the mirror thickness t is 20.83 mm. The support
form refers to the method mentioned in Reference [28]. Similar to a single-arch support
form, this support form is simple and easy to implement for small-aperture mirrors, as
shown in Figure 3. Here, the Z-axis direction was set as the direction of the optical axis, the
direction of the Y-axis was set against gravity and the X-axis direction was determined by
the rules of the Cartesian coordinate system.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 12 
 

 
Figure 3. Fundamental structure of the mirror. 

3.2. Optimization Problem Construction 
In addition to the mirror’s surface shape error, the mass of the mirror is also some-

thing to be considered. Thus, the mass and RMS value of the surface shape error were 
selected as the optimization objectives. Considering that the mirror as one part of the op-
tical system was mounted on an aerial platform, the altitude of the mirror changed with 
the platform altitude and the rotation of the gimbal system during working process; there-
fore, the average RMS value (RMS) of the surface shape error in three directions was taken 
as the optimized objective function. Consequently, the optimized objective functions in 
this paper were as follows: 𝑚𝑖𝑛 𝑦 = 𝑝(𝑿) = 𝑝 (𝑿), 𝑝 (𝑿) , 𝑿 ∈ 𝜴 (5)

where 𝑿 is the optimization variable, 𝑿 = 𝐷 , 𝐷 , 𝐿 , 𝐿 ; and 𝜴 is the sample space. 𝑝 (𝑿) = Mass(𝐷 , 𝐷 , 𝐿 , 𝐿 ) (6)𝑝 (𝑿) = RMS  (7)

where RMS = 13 RMS (𝐷 , 𝐷 , 𝐿 , 𝐿 ) + RMS (𝐷 , 𝐷 , 𝐿 , 𝐿 ) + RMS (𝐷 , 𝐷 , 𝐿 , 𝐿 )  (8)

The parameters involved in the whole optimization process were the material prop-
erties of the mirror and the optimization parameters in the non-dominated sorting genetic 
algorithm. Table 1 lists all the parameter settings and the constraints for the optimized 
structural parameters. 

During the process of finite-element analysis using Abaqus, a tetrahedral mesh type 
was adopted, and meshes were generated automatically by the software. In order to en-
sure accuracy of the results, the mesh size needed to be controlled. Here, the global size 
of mesh was less than 5 mm. In addition, the working condition of concern was to apply 
1 G gravity along the Y direction. 

Table 1. Optimization Parameters. 

Mirror Material Properties 
Components Value 

Density 2.7 g cm⁄  
Young’s Modulus 70 Gpa 

Poisson’s Ratio 0.27 
NSGA parameters 

Population size 20 

Figure 3. Fundamental structure of the mirror.



Appl. Sci. 2023, 13, 3346 7 of 12

3.2. Optimization Problem Construction

In addition to the mirror’s surface shape error, the mass of the mirror is also something
to be considered. Thus, the mass and RMS value of the surface shape error were selected as
the optimization objectives. Considering that the mirror as one part of the optical system
was mounted on an aerial platform, the altitude of the mirror changed with the platform
altitude and the rotation of the gimbal system during working process; therefore, the
average RMS value (RMS) of the surface shape error in three directions was taken as the
optimized objective function. Consequently, the optimized objective functions in this paper
were as follows:

miny = p(X) = (p1(X), p2(X)), X ∈ Ω (5)

where X is the optimization variable, X = {D1, D2, L1, L2}; and Ω is the sample space.

p1(X) = Mass(D1, D2, L1, L2) (6)

p2(X) = RMS (7)

where

RMS =
1
3
(
RMSx(D1, D2, L1, L2) + RMSy(D1, D2, L1, L2) + RMSz(D1, D2, L1, L2)

)
(8)

The parameters involved in the whole optimization process were the material proper-
ties of the mirror and the optimization parameters in the non-dominated sorting genetic
algorithm. Table 1 lists all the parameter settings and the constraints for the optimized
structural parameters.

During the process of finite-element analysis using Abaqus, a tetrahedral mesh type
was adopted, and meshes were generated automatically by the software. In order to ensure
accuracy of the results, the mesh size needed to be controlled. Here, the global size of mesh
was less than 5 mm. In addition, the working condition of concern was to apply 1 G gravity
along the Y direction.

Table 1. Optimization Parameters.

Mirror Material Properties

Components Value

Density 2.7 g/cm3

Young’s Modulus 70 Gpa

Poisson’s Ratio 0.27

NSGA parameters

Population size 20

Mutation probability 0.15

Cross probability 0.8

Number of iterations 35

Structural parameter constraints

D1 [60, 80]

D2 (0, D1 − 10]

L1 [0, 15]

L2 [17.6, 22.6]
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3.3. Optimization Results

Using the optimization method described in Section 2, the Pareto optimal solutions
were obtained and are shown in Figure 4, where the circles represent optimization results
obtained during iterations.
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According to the obtained Pareto optimal solution set, the preferred optimal solu-
tion could be selected based on the weight of two objectives. In this case, the average surface
shape error RMS in the three directions was required to be less than
1 nm, and the total mass of the mirror was required to be as small as possible. There-
fore, RMS = 0.956 nm and Mass = 717.9 g was chosen in the optimal solution set as the
final optimization solution. At this point, the surface shape error was be obtained in three
directions, respectively, as shown in Figures 5–7, and the optimization parameters as well
as the specific optimization results are shown in Table 2. From the results in Table 1, we
can see that although the average surface shape error was less than 1 nm, there were two
components that were more than 1 nm, which were RMSy and RMSz. The surface shape
error in the Y direction (RMSy) was the biggest of those in the three directions due to the
effects of gravity. After removing the rigid-body motion, the aberrations in X direction
were much smaller than those in the other two directions.

Table 2. Optimization results of the mirror.

Components Value

D1 64.4 mm

D2 46 mm

L1 13 mm

L2 21.6 mm

RMSx 5.68× 10−7 mm

RMSy 1.24× 10−6 mm

RMSz 1.06× 10−6 mm

RMS 9.56× 10−7 mm

Mirror Mass 717.9 g
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4. Conclusions

The optimization design of mirror structures using the method proposed in this paper
is conducive to realizing complex objective functions, which can help the design to meet
designers’ demands as well as avoid the problems of inefficient and ineffective optimization
caused by changing the structure parameters manually. Moreover, compared with methods
using optimization tools such as OptiStruct [2,7–9], it is not necessary to transform the
multi-objective optimization problem into a single-objective optimization problem, and the
interference of weight is excluded. In particular, this method could be flexibly combined
with any advanced optimization algorithm and it is not limited to the built-in algorithms
of the software used, which offers new ideas and possibilities to structural designers. In
this paper, the optimization efficiency was improved by combining the population genetic
superiority and inferiority characteristics in the non-dominated sorting genetic algorithm,
and the Pareto optimal solution set was obtained for multi-objective optimization, which
verified the effectiveness of this method. Future research will continue on the multi-
objective optimization of mirror structures under more complex constraints and working
conditions with advanced intelligent optimization algorithms.
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