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Abstract: In large-scale potential field data inversion, constructing the kernel matrix is a time-
consuming problem with large memory requirements. Therefore, a spherical planting inversion of
Gravity Recovery and Interior Laboratory (GRAIL) data is proposed using the L1-norm in conjunction
with tesseroids. Spherical planting inversion, however, is strongly dependent on the correct seeds’
density contrast, location, and number; otherwise, it can cause mutual intrusion of anomalous sources
produced by different seeds. Hence, a weighting function was introduced to limit the influence area
of the seeds for yielding robust solutions; moreover, it is challenging to set customized parameters for
each seed, especially for the large number of seeds used or complex gravity anomalies data. Hence,
we employed the “shape-of-anomaly” data-misfit function in conjunction with a new seed weighting
function to improve the spherical planting inversion. The proposed seed weighting function is
constructed based on the covariance matrix for given gravity data and can avoid manually setting
customized parameters for each seed. The results of synthetic tests and field data show that spherical
planting inversion requires less computer memory than traditional inversion. Furthermore, the
proposed seed weighting function can effectively limit the seed influence area. The result of spherical
planting inversion indicates that the crustal thickness of Mare Crisium is about 0 km because the
Crisium impact may have removed all crust from parts of the basin.

Keywords: spherical planting inversion; tesseroids; GRAIL data; Mare Crisium; seed weighting function

1. Introduction

Kernel matrices are usually generated using partial differential and integral equa-
tion methods in gravity field inversion. Partial differential equations, such as the finite-
difference [1,2], finite-element [3], and finite-volume methods [4,5], are used to discretize
Poisson’s equation to obtain potential fields. However, these methods are difficult to apply
to gravity inversion because higher-order derivatives involve higher-order differences or
the fast Fourier transform. Comparatively, integral equations utilize the superposition
principle to calculate the gravity contribution of complex geological bodies.

The observation surface of gravity data in small areas can be approximated as a plane;
in the Cartesian coordinate system, the potential field calculation in the spatial domain
is usually performed using prisms or general polyhedral cells [6–9]. In large regional
and even global gravity problems, the observation surface is generally expressed and
processed in spherical coordinates because of the need to consider the observation surface’s
curvature [10]. As a result, interpretation models are usually divided into tesseroids in
a spherical coordinate system using the parameters radius, latitude, and longitude. The
gravitational effect generated by each unit is calculated and then summed to obtain global
gravity/tensor gravity data.

As a result of the CHAMP (Challenging Mini-Satellite Payload), GRACE (Gravity
Recovery and Climate Experiment), GOCE (Gravity Field and Steady-State Ocean Circula-
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tion Explorer), and GRACE Follow-On satellite launches [11], it is now possible to obtain
large-scale high-precision gravity data economically.

Inversion of the gravity field is a powerful tool for understanding the density dis-
tribution inside planets. Many gravity inversions have been proposed in recent years.
Liang et al. applied tesseroid units to the lunar GRAIL gravity inversion and obtained
the 3D density structure of the Moon [12]. Uieda et al. [13] analyzed the Moho surface
depth of the South American continent using tesseroid grids for a fast nonlinear inversion
of GOCO5S model data in a spherical coordinate system. Zhang et al. [14] developed
an efficient algorithm for gravity gradient full-tensor data, which was used to study the
density distribution of the Mare Smythii mascon on the Moon. Zhao et al. [15] performed a
3D spherical gravity inversion with tesseroid units for the GL1500E model data to obtain
the 3D density distribution of the Imbrium and Serenitatis mascon basins.

ETOPO1 is a one-arc-minute global relief model of the Earth’s surface that integrates
land topography and ocean bathymetry provided by the National Oceanic and Atmospheric
Administration [16]. Take a spherical gravity inversion with the ETOPO1 model as an
example. When a 1- by 1- minute latitude-longitude grid is used to cover the globe, the
number of observation points is 180 × 60 × 360 × 60 = 2.3328 × 108. The number of kernel
matrix elements for potential inversion is the product of the number of tesseroid units
and observation points. The memory requirements of the kernel matrix, whether storing
double-precision or single-precision data, are far more than the physical memory size of
existing mainstream workstations.

Constructing kernel matrices is a time-consuming problem with high memory require-
ments for potential inversion, especially for large-potential data [17]. Fast and accurate
three-dimensional gravity inversion of large-scale, multi-scale and massive data is cur-
rently performed by improving the computational performance of equipment, reducing
data dimensionality, and speeding up the convergence of the inversion iterations.

First, high-performance computation relies on multi-core CPUs, clustered computer
systems, and GPUs. Then, massively parallel acceleration studies are performed to reduce
time-consuming forward modeling and inversion [18]. For example, Moorkamp et al. [19]
and Chen et al. [20] used massively parallel computing techniques to achieve rapid forward
modeling of gravity and gravity gradient components. However, since such calculations
do not store the kernel matrix, each inversion iteration in practical applications involves
several forward calculations, resulting in relatively low efficiency. In addition, there are only
a few published papers because of its relatively high entry barriers in terms of hardware
and software.

Second, using constraint functions to accelerate gravity inversion convergence, such as
optimizing recovered density distributions by a depth-weighting function [21], ensures fast
convergence of the objective function by applying a preconditioning matrix [22], and adding
a density constraint to optimize the upper and lower bounds of the inversion results [23,24].
Alternatively, inversion may be constrained by using seismic [25], magnetotelluric [26], and
other geophysical investigations [27]. Various filters are also used to suppress or eliminate
coherent noise [28,29].

Finally, for reducing the dimensionality of the gravity inverse problem, numerous
methods such as the wavelet transform [30], footprint inversion [31], and fast Fourier
transform [32] are used to reduce the memory requirements of kernel matrices and sig-
nificantly improve computational efficiency. Taking wavelet transform techniques as an
example, Li and Oldenburg [33] represented the kernel coefficient matrix as a sparse matrix
based on the wavelet compression technique, effectively decreasing the number of nonzero
matrix elements. However, it loses signal accuracy to some extent. René [34] proposed an
open, reject and fill (Open–Reject–Fill) iterative criterion for the gravity inversion method,
which can grow one element at each inversion iteration. However, this method relies
heavily on geological priori information. Using a systematic search algorithm, Camacho
et al. [35] selected optimal prisms that minimized the objective function at each iteration
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until the termination criteria were met. Finally, this yields a three-dimensional residual
density distribution.

Following René’s method [34], Uieda and Barbosa [36] proposed a “grown” gravity
inversion with the total variation regularization function given by Silva Dias et al. [37] to
avoid calculating and storing kernel matrices. The algorithm grows a prism around a spe-
cific prism (called a “seed”) to obtain the boundary information of tectonics. Nevertheless,
inversion results heavily depend on the correct location, density, and seed number. Thus,
Uieda and Valeria [37] achieved a robust planting inversion based on a shape-of-anomaly
misfit function, an L2-norm data-misfit function, and a horizontal weighting function.
However, weighting functions are challenging for inversions with various seeds, especially
for complex anomalies.

This paper introduces a spherical planting inversion into a spherical coordinate system.
First, we develop the principles of spherical planting inversion for GRAIL data and further
improve the model-misfit function by using a modified distance function. Subsequently, a
robust adjustment is applied to the inversion process using a novel seed weighting function
based on the covariance matrix for the given data. Then, a spherical planting inversion
is performed with a composite model from Liang et al. [12] to verify its correctness and
efficiency. Mare Crisium is chosen as a study area, and the residual Bouguer gravity data is
derived from the lunar gravity model GRGM1200A [38]. We use Parker–Oldenburg’s algo-
rithm [39], a radially averaged energy spectrum, and Wieczorek’s (2013) algorithm [40] to
determine the locations and density contrast of the seeds. The spherical planting inversion
with the residual Bouguer gravity data is performed to obtain 3-D density distributions of
Mare Crisium. Finally, we discuss the inverted density anomalies of the spherical planting
inversion.

2. Materials and Methods
2.1. Spherical Planting Inversion

Following the ideas of Uieda and Barbosa [36,37], to avoid solving an extensive system
of linear equations constructed by density imaging, the spherical planting inversion of
GRAIL data is proposed using an L1-norm-based systematic search algorithm to reduce
memory requirements and facilitate fast convergence by replacing iterative inversion with
cumulative summation analysis. For this reason, a residual vector r between the observation
data d and the prediction data g is constructed by the L1-norm based on Equation (1).

r = d− g (1)

The data-misfit function is defined (based on the L2-norm) by least squares estimation,
which can be expressed as

φd = ‖r‖2 =

(
Nd

∑
i=1

(gi − di)
2

)1/2

(2)

where the subscript i corresponds to the i-th observation point. Nd = nx × ny. nx ny, and
nr represent the section number of the interpretation model along the x-, y- and radial axes,
respectively.

Compared to the L2-norm, the L1-norm is not sensitive to data with significant errors
so it can provide a robust estimation strategy.

φd = ‖r‖1 =
Nd

∑
i=1
|gi − di| (3)

Conventional inversion applies regularization terms to reduce the instability and non-
uniqueness of the solutions. Many inverse strategies have been proposed for recovering
compact anomalous sources, such as maximizing their compactness [41], concentrating
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them along one or more axes [42,43], and minimizing their area/volume [44]. For example,
René [34] proposed a systematic search inversion of gravity data using the “shape-of-
anomaly” function to reconstruct 2D compact bodies (i.e., with no hollows inside). How-
ever, this inversion algorithm only uses a single sign/density contrast to recover density
distributions. Compared with René’s (1986) method, Uieda and Barbosa interpret multiple
geologic sources with density contrasts of different signs [36].

Consider that recovering a density distribution from GRAIL data is an ill-conditioned
problem, it can be converted into a well-conditioned problem by adopting the following
constraints:

(1) A compact scheme ensures that there are no voids in the recovered density distri-
butions, which are obtained from spherical gravity inversion with a seed [36,41–43].

(2) An optimal prism is selected one by one from a neighboring tesseroids list, which is
derived from a seed with density contrast ρs, and shares faces with the seed or its adjacent
tesseroids. Then, the optimal prism’s density value ρj is set to the same as the seed.

(3) For other uninvolved tesseroids, their density value equals zero. Based on the
above constraint strategies, the objective function of the spherical planting inversion of
GRAIL data is given by

Pa(m) = φd + µφm → min (4)

where, the regularization parameter µ balances the trade-off between the data-misfit func-
tion φd and the model-misfit function φm, and is defined in the model space that imposes
geologic constraints on the recovered density distribution.

φm =
Ns

∑
k=1

(
Nm

∑
j=1

ρj

ρj + ε
ς(j, k)lβ

j,k

)
(5)

where, ρj is the j-th element of the density vector m, whose size is Nm, and Ns is the number
of seeds. ε is a small positive count and will avoid a singularity error when ρj = 0. The sign
function ς(j, k) returns 1 when the j-th tesseroid is derived from the k-th seed, as shown
in Figure 1; otherwise, it returns 0. When Ns = 1, Formula (5) is similar to Formula (10) in
Uieda and Barbosa’s paper [36]. lβ

j,k is the distance from the j-th tesseroid’s centroid to the
k-th seed’s centroid.

Regardless of how a tesseroid’s length and width vary with its position, the modified
version lβ

j,k is given by

lβ
j,k =

√
(jx − kx)

2 +
(

jy − ky
)2

+ (jr − kr)
2 (6)

where
(

jx, jy, jr
)

and
(
kx, ky, kr

)
stand for the order of the j-th tesseroid and the k-th seed

along the longitude, latitude, and radius, respectively. Here, j = jx + (jy − 1)× nx + (yr −
1)× nx × ny.

The solution of the spherical planting inversion of GRAIL data is recovered through a
growth procedure divided into the following four steps, as shown in Figure 1.

1. Initially, this algorithm requires a set of Ns seeds, each of which is a tesseroid of the
geophysical model. Seed locations can be obtained by Euler deconvolution or by manual
selection, and the user can specify the density contrast of seeds. Meanwhile, the density
contrast of all other tesseroids equals zero.
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Figure 1. Four stages of the spherical planting algorithm: (a) Initialization of seeds (in cyan) at
the first stage; (b) Initialization of neighboring tesseroids (in green) of seeds at the second stage;
(c) Finding the optimal tesseroid (in red) at first accretion, and (d) updating neighboring tesseroids of
the first seed at the third stage; (e) Finding the optimal tesseroid at second accretion, and (f) updating
neighboring tesseroids of the second seed at the fourth stage.

2. Secondly, for each seed, a list is constructed of neighboring tesseroids that share
a face with the seed or neighboring ones. In constraint 3, only seeds will have a specific
density contrast, and all other tesseroids’ density contrasts are set to zero. Then the initial
total objective function P(0) is given by

P(0) = φ
(0)
d + µφ

(0)
m (7)

where, the initial total data-misfit function is given by

φ
(0)
d = d−∑Ns

i=1 ρsas (8)

Here, ρs is the density-contrast value of the s-th seed, and the vector as consists of
kernel functions which are gravitational effects at all observation points due to the s-th
seed. Due to there being no neighboring tesseroids in the initial step, φ

(0)
m = 0.

3. An iteration involves Ns accretions in a spherical planting inversion. This algorithm
finds a tesseroid from its neighboring tesseroid list for every accretion by minimizing the
objective function and guaranteeing convergence of the following two conditions:∣∣∣φ(new)

d − φ
(old)
d

∣∣∣/φ
(old)
d ≥ δ (9)

where the total data-misfit function φ
(new)
d is calculated for the chosen neighboring tesseroids

in the current accretion and all tesseroids whose density contrast is not equal to zero, φ
(old)
d
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is the total data-misfit function at the previous accretion. The small positive scalar δ ranges
from 10−2 to 10−6. ∣∣∣P(new) − P(old)

∣∣∣/P(old) ≥ τ (10)

where P(new) and P(old) are total global functions of current accretion and precious accretion,
respectively.

Ensuring the chosen tesseroid satisfies Equations (9) and (10), and treating it as the
optimal tesseroid in the current iteration, then, the algorithm changes its density contrast
from zero to the seed’s and removes it from the seed’s neighboring tesseroids list to
guarantee constraint 3; otherwise, the algorithm will traverse over other seeds.

4. In any accretion at the previous iteration, if the convergence conditions (Equations (9)
and (10)) are met, the growth process continues. Rather, the spherical planting inversion
should be terminated, and a 3D density distribution should be obtained.

To avoid the recovery density distribution of spherical planting inversion being
strongly influenced by the parameters of seeds, Uieda et al. [37] proposed a “shape-of-
anomaly” data misfit that measures the difference in shape between the observed and
predicted data and is insensitive to differences in amplitude. By introducing “shape-of-
anomaly” data misfit, the data-misfit function is defined as:

φd =
√

∑Nd
i=1(agi − di)

2 (11)

where α is the scaling factor; for a given predicted data g, a can be calculated by transforming
the above equation:

a = ∑Nd
i=1(gidi)/∑Nd

i=1(di)
2

(12)

In the spherical planting inversion, the reconstructed density distributions are deter-
mined by the seeds’ parameters. As the reconstruction model’s size increases, the number
of neighboring tesseroids gradually increases, and the distance between seeds and neigh-
boring tesseroids increases. This causes neighboring tesseroids in a particular direction
always to be determined as optimal tesseroids, eventually leading to mutual intrusion
between adjacent anomalous sources. This issue is addressed by the weighting function,
which limits the seeds’ influence area and makes them ignore far abnormal sources.

wh = exp

(
(xs − x)2 + (ys − y)2

(rs)
2

)−βh

(13)

where (xs, ys) and (x, y) are the coordinates of the s-th seed and observation point, respec-
tively, and rs is the influence radius of the s-th source. For the inversion of gravity data, the
horizontal decay factor βh ranges from 1 to 3. Then, the data-misfit function (11) can be
rewritten as:

φd =

√
(awhg− d)T(ag− d) (14)

where T is the transpose operator.
However, it is challenging to choose the right values for Equation (13), particularly

when the quantity of seeds is large or the gravity anomaly is complicated. To overcome
this difficulty, by referring to the data covalence matrix Wd in the density image, we can
define a novel seed weighting function:

wh = diag(Wd) = diag({1/σ1, · · ·, 1/σn}) (15)

where σi is the error standard deviation associated with the i-th observation data.
The process of the spherical planting inversion of GRAIL data is detailed in a flow

chart, shown in Figure 2.
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2.2. Model Studies
2.2.1. Verification of the Validity of the Novel Seed Weighting Function wh

First, a simple synthetic model with an isolated anomalous source was proposed by
Zhang et al. [14] and is used as an example to compare the reconstruction effect of the
two weighting functions mentioned in Equations (13) and (15), respectively. The isolated
anomalous source is in the blue frame as in Figure 3 and with 0.5 g/cm3 density contrast.
Then, a rectangular survey grid, with 40 points, with a 0.5◦ grid interval along the longitude
and latitude directions, is employed to obtain gravity data. A seed with locations 35◦, 35◦,
and 1673 km along latitude, longitude, and radius directions, respectively, and with a
density contrast of 0.5 g/cm3, is employed for performing the spherical gravity inversion
for gravity data, which is contaminated by 3% Gaussian noise of the gravity data.

Using a seed with locations at 35◦, 35◦, and 1673 Km along latitude, longitude, and
radius directions, respectively, and with a density contrast of 0.5 g/cm3, we perform
spherical gravity inversion for gravity data, which is contaminated by 3% Gaussian noise
in the forward result.
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Figure 3. Recovered density distribution of spherical planting inversion of gz data. (a) With the
horizontal weighting function wh. (b) With the novel seed weighting function wh. The weight
distributions as shown in the z = 120 km plane. rs = 50, βh = 1.2, δ = 0.05, and τ = 5.0 × 10−4.

Regarding relatively simple anomalous sources, it is feasible to set a horizontal weight-
ing function for multiple seeds, which can effectively limit the seed’s influence area and
avoid the intrusion of the estimation grid of adjacent seeds into each other. Despite this, as
far as the characteristics of the horizontal weighting function wh are concerned, its influence
range is a circle. Consequently, it is too expensive to artificially set the horizontal weighting
function for multiple seeds, especially for complex gravity data. The recovered density
distributions in Figure 3a are far beyond the actual model in the depth direction, which
is caused by the gravitational contribution of the tesseroid becoming smaller with the
increase in depth. Meanwhile, the corresponding data misfit function becomes smaller, so
the optimal tesseroid will gradually increase along the depth direction. Eventually, the
reconstructed density model will be far beyond the actual model in the depth direction. For
this reason, drawing on the role of the data weighting function Wd in density imaging, we
construct a novel seed weighting function. Compared to the recovered density distribution
derived from wh as shown in Figure 3a, the spherical planting inversion with the horizontal
weighting function yields a more compact result in Figure 3b.

2.2.2. Verification of the Validity of Spherical Planting Inversion

As shown in Figure 4, we verify the proposed algorithm using the composite model
following Zhang et al. [14] with two tesseroids at the same depth for easy comparison. One
model occupied the volume from 32◦ to 34◦ longitude, 34◦ to 36◦ north latitude, and 1678
to 1718 km in depth, with a density contrast of 0.2 g/cm3. The other model had a density
contrast of 0.7 g/cm3, and its geological setting ranged from 36◦ to 38◦ longitude, 34◦ to
36◦ latitude, and 1658 to 1698 km in depth. A total of 62,500 data points is calculated 10 km
above the lunar surface with an interval of 0.8◦ × 0.8◦ along latitude and longitude. The
field source space is divided into 20 × 20 × 10 = 4000 tesseroids, and each tesseroid is
0.8◦ × 0.8◦ × 10 km along latitude and longitude, and radius direction, respectively.
Figure 5 shows the data contaminated with pseudo-random Gaussian noise with zero
means and five mGal standard deviations. Then, we invert the contaminated data with
two seeds; one seed is located at [33◦, 35◦, 1698 km] with 0.2 g/cm3 density contrast, and
the coordinates of the other seed were 35◦, 37◦ and 1678 km along latitude, longitude and
radius direction, respectively, with a density contrast 0.7 g/cm3.
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Figure 5. Gravity maps: (a) Forward modeling result. (b) Prediction data obtained by spherical
planting inversion. (c) Residual data between forward modeling result (a) and prediction data (b).
δ = 0.05, and τ = 5.0 × 10−4.

It is difficult for the Occam inversion to recover depth resolution from surface gravity
data because there is no depth resolution in the data [21,45,46]. The interfaces of the two
models in the spherical Occam inversion results are ambiguous, even though the depth
weighting matrix is used. In contrast, the density slices of the spherical planting inversion
are consistent with those of the forward model in Figure 6, which verifies the correctness of
the algorithm presented in this paper.
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Figure 6. Density-contrast distribution maps. (a) Horizontal slice of the reconstruction model along
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3. Results

The discovery of lunar mascons was one of the most significant results of early gravity
field studies in lunar exploration [47,48]. Moreover, Mare Crisium is one of the largest
mascons on the Moon [49] and is an impact-formed poly-cyclic basin [50,51] that formed
during the Nectarian Period [52,53], located between 10◦ and 30◦ N and 50◦ and 70◦ E, in
the northeastern part of the lunar front (centered near 17.0◦ N and 58.8◦ E), with a basin
diameter of 555 km and covering an area of about 17,600 km2. The main ring of the crater
rim is about 740 km in diameter and is one of the deepest basins on the lunar surface
(4.57 km). Therefore, we selected Mare Crisium as an example to elucidate the mechanism
of spherical planting inversion.

3.1. Data

The gravity model GRGM1200A, applied in Bouguer correction by NASA, expanded to
degree and order 1200 with sensitivity down to <5 km resolution from the GRAIL mission,
is used in this paper [54]. Deliberating the very high correlation between gravity and
topography at L = 7~700 [55], following Deng et al. [56], the spatial resolution of the gravity
field is related to the spherical harmonic coefficient and defined by the half wavelength
in spherical inversion [57]. When the grid size of the interpretation model is 0.8◦ × 0.8◦

on a spherical earth, according to the relation between half wavelength lambda and the
suitable degree N of the gravity model in Liang et al. [12], the suitable degree N = 450 [58].
Therefore, in Figure 7, the residual Bouguer gravity is expanded between spherical degrees
7 and 450 [57] to suppress the influence of noise from the high degrees and filter out signals
from the deep interior (such as the crust–mantle boundary or Moho) from the low degrees
for highlighting lunar mascons [59–61]. The topography of the Crisium mascon is derived
from the spherical harmonic topography model MoonTopo2600p, as shown in Figure 8.
Then, 20 × 20 = 400 observation data points are calculated at 10 km height relative to the
reference radius of 1738 km using the gravity field model mentioned above, as shown in
Figure 9.
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Figure 9. The residual Bouguer gravity data.

In Figure 8, Mare Crisium is surrounded by an upland massif [53], with much of its
interior and a small part of its marginal upland filled with basaltic rocks and a ring of
folded ridges on its outer boundary [62,63]. A folded ridge is a low, linear, or arcuate broad
ridge, usually tens of kilometers long. It is placed symmetrically/asymmetrically on an
arch close to the circular Maria edge [64,65].

3.2. Methodology

A new Bouguer gravity data covering 4◦–34◦ N and 50◦–70◦ E is gridded at an interval
of 2 km with a Mercator projection centered at (180 E, 0 N) to determine the depth and
density contrast of the Mare Crisium mascons. This area is designed to eliminate the effect
of distorted shapes due to the Mercator projection. Assuming that the density contrast
is 0.65 g/cm3, the convergence criterion is 0.025 km, the mean crustal reference depth is
30 km [40], the truncation window data length is 2.5%, and the smaller and greater cut-off
frequencies are 1/100 and 1/83.3, Parker–Oldenburg’s algorithm [39] was employed to
invert the residual Bouguer gravity anomaly to reconstruct the crust thickness in this study
area. Figure 10 shows that the crust thickness ranges from 0 to 45 km, and the topography
variation outlines the impact crater basins.
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Figure 10. The crustal thickness was obtained from the residual Bouguer gravity (Figure 9) using
Parker–Oldenburg’s method.

The power spectrum method performs regional and residual separations based on a
fast Fourier transform for outlining subsurface structures. As an extension of the power
spectrum method, the radially averaged energy spectrum yields a typical energy spectrum
plot containing three parts corresponding to deep source, superficial source, and noise
contribution. Hence, the power spectrum method can also be employed to determine the
depths of shallow and deeper structures [66–69].

By following [66,70,71], the radially averaged power spectrum according to frequencies
was calculated and is displayed with blue dots in Figure 11. Then, the slopes of the portions
can be employed to estimate the depths of anomalous sources. The depth (z) for each
source corresponding to each segment was calculated by presenting the slope of this part:

Z =
−D
4π

where the slope of the dashed line D is the ratio between the logarithmic power spectrum
and the wavenumber.



Appl. Sci. 2023, 13, 3332 14 of 22Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 24 
 

 
Figure 11. Radially averaged power spectrum. 

The radially averaged power spectrum curve can be interpreted as two linear slope 
segments and has been applied to estimate the depth of the gravity interface at 0.4 km, 
representing the average depth to the surface of the mascon (Figure 11). 

In order to further confirm the depth and density of the mascon in this study area, 
the spherical harmonic density model density_no_mare_n3000_f3050_719.sh is proposed 
by Wieczorek [72], and the spherical harmonic topography model MoonTopo2600p [73] 
and the spherical harmonic gravity model GRGM900C [55] are employed to calculate the 
crustal density, topography, and gravity anomaly, respectively. The crust is assumed to 
have an average thickness of 35 km, a porosity of 0.12, and a density of 3.22 g/cm3. By 
following [40] and [74], we used homogeneous density to minimize the correlation be-
tween surface topography and Bouguer gravity and determine the crustal thickness. From 
the Figures 8–12, the crustal thickness in this study area is described as 5 to 40 km. When 
combined with the topographic map, we can find that the crustal thickness in the middle 
of this study area is 0. 

Figure 11. Radially averaged power spectrum.

The radially averaged power spectrum curve can be interpreted as two linear slope
segments and has been applied to estimate the depth of the gravity interface at 0.4 km,
representing the average depth to the surface of the mascon (Figure 11).

In order to further confirm the depth and density of the mascon in this study area,
the spherical harmonic density model density_no_mare_n3000_f3050_719.sh is proposed
by Wieczorek [72], and the spherical harmonic topography model MoonTopo2600p [73]
and the spherical harmonic gravity model GRGM900C [55] are employed to calculate the
crustal density, topography, and gravity anomaly, respectively. The crust is assumed to
have an average thickness of 35 km, a porosity of 0.12, and a density of 3.22 g/cm3. By
following [40] and [74], we used homogeneous density to minimize the correlation between
surface topography and Bouguer gravity and determine the crustal thickness. From the
Figures 8–12, the crustal thickness in this study area is described as 5 to 40 km. When
combined with the topographic map, we can find that the crustal thickness in the middle
of this study area is 0.

3.3. Spherical Planting Inversion of Mare Crisium

To achieve the spherical planting inversion of residual Bouguer gravity at the Crisium
mascon, the geophysical interpretation model covers an area of 9◦–29◦, 50◦–70◦ and 1638–
1738 km in latitude and longitude as well as radial directions. The field source space is
divided into 20 × 20 × 10 = 4000 cells, and each cell is 0.8◦ × 0.8◦ × 10 km along latitude
and longitude, and radius directions, respectively.

Because of the low gravity at each corner and the similar linear background field
in Figure 9, following Uieda and Barbosa (2012) [36], only positive gravity anomalies of
interest associated with the mascon are targeted for exploration. Therefore, in this paper,
ten seeds (asterisk marker in Figure 13) were employed to invert only target sources (black
contours in Figure 14) of the Mare Crisium mascon.
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In spherical planting inversion, seed parameters are generally determined empiri-
cally or based on drilling information. Considering that previous studies [40,75,76] used
2.580 ± 0.170 g/cm3 as the mean crustal density and 3.22 g/cm3 as the mean mantle den-
sity, and 2.50 g/cm3 was employed to Bouguer correction for GRGM1200A, the seed density
is now set to 0.45 g/cm3. Because the Mare Crisium mascon is a mantle uplift product,
according to the crustal thickness of Mare Crisium in Figure 12, the depth of the seeds is set
at 30 km.

For larger or more complex anomalous sources, it is challenging to set individual
horizontal weighting functions for each seed, as in Figures 10 and 11 in Uieda and Barbosa
(2012) [36], where the recovered density distribution in the right branch is well beyond the
limit areas of the horizontal weighting function. Further considering the gravity anomaly
characteristics (Figure 9), ten seeds with yellow asterisk markers are now arranged in the
positive and negative transition regions of the Bouguer gravity anomaly (Figure 13). Then,
the spherical planting inversion is performed using a single seed horizontal weighting
function with δ = 0.05 and τ = 5.0 × 10−4.
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Figure 14. Gravity maps. (a) Observed data (color−scale map) and predicted data (black contour
lines). The observation data is derived from GRGM1200 and is also shown in Figure 9. Due to
the low gravity at each corner and the similar linear background field in Figure 9, following Uieda
and Barbosa (2012) [36], only positive gravity anomalies of interest associated with the mascon are
targeted for exploration. Predicted data is obtained using a spherical planting inversion with ten
seeds (Figure 13). (b) Targeted data (color-scale map) and predicted Bouguer gravity anomalies (black
contour lines).

Compared with Figure 14, the difference between the predicted anomalies of the
spherical planting inversion and the exploration target anomalies is tiny, and its norm is
1.2, indicating the present algorithm’s stability. Figures 13 and 14 show that the novel seed
weighting function fits the predicted data range, indicating that it can effectively constrain
the spherical planting inversion [40,77].
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4. Discussion and Conclusions

Since the tesseroid’s length and width vary with its position, we revise the distance
calculation formula to avoid preferentially selecting tesseroids closer to their corresponding
seeds in the spherical planting inversion.

Because the spherical planting inversion depends heavily on the user’s seed param-
eters, it can incorporate geological priori knowledge to constrain reconstructed density
distributions [36,37]. It is like the initial model in iterative inversion. The initial model is
not a controlling factor in traditional iterative inversion, and many inversion reports use
random initial models. However, the location of seeds in the spherical planting inversion
largely determines the spatial spread of the reconstructed density distribution.

Since the gravity field originates from the volume effect of various subsurface anoma-
lous sources [78], incorrect seed densities lead to the recovered density model deviating
from the actual one. If the seed density is smaller than the theoretical value, the recon-
structed density distribution becomes inflated compared to the actual model. Conversely,
the recovered density distribution becomes more compact than the actual one. Because
the gravity response rapidly decays with tesseroid depth [79], we found in repeated ex-
periments that, when the threshold is low, the spherical planting inversion tends to select
tesseroids near the seeds. As a result, the predicted gravity anomaly obtained from the
inversion is similar to the observed one. However, the total mass of the recovered density
distribution is significantly larger than the actual model. For this reason, in this paper, we
analyze the density/geology studies in this study area and give a more reasonable residual
density value for setting seeds.

When a single seed or a few seeds (Ns < 4) are used, it was found that the recovered
density distribution grew in certain directions and eventually formed a trunk-like/tentacle-
like structure, as shown in Figures 10 and 11 in Uieda et al. [36]. In contrast, a compact
geological structure is formed in the middle of the recovered density distribution when
numerous seeds are used, as shown in Figures 15 and 16, with its top and bottom appearing
as scattered tesseroids because there is no tight constraint between seeds according to
Equation (4).
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Figure 16. Relative density distribution for different depths, (a–d) are 10 km, 25 km, 40 km, and
50 km, respectively, at Mare Crisium area obtained by spherical planting inversion. Figure 10 shows
that the depth of the Mare Crisium basin is about 4–6 km. Figures 15 and 16 show that the mascon
has spread from the surface, indicating that the crustal thickness of Mare Crisium is about 0 km
because the Crisium impact may have removed all crust from parts of the basin [40,77].

Although tentacles can help optimize seed settings in the subsequent inversion itera-
tion, choosing individual parameters for each seed is difficult, especially when processing
large or complex gravity anomalies. For this reason, we propose a novel horizontal weight-
ing function based on Wd, as illustrated in Figure 13. Figures 15 and 16 show that the novel
horizontal weighting function effectively constructs the subsurface geological structure. It
also effectively avoids tentacles in the recovered density distribution.

The algorithm involves calculating the kernel matrix at most once so that the spherical
planting inversion of gravity data is faster and has lower memory requirements/consumption
than traditional density imaging. The inversion algorithm in this paper is a constrained
system search algorithm that achieves fast and efficient spherical planting inversion with
few memory requirements. There may be a significant increase in searches in one iteration
if the number of seeds is too large.

Correct seed densities are crucial for a spherical planting inversion. Conversely,
the recovered density distribution is easily inflated or shrunken compared to the actual
geological structure. When the seed’s density is smaller than the theoretical value, it is easy
to cause the recovered density distribution range to be much more extensive than the actual
one. This results in dramatically increasing inversion iterations and reducing inversion
efficiency. Therefore, when determining the seed’s density, it is necessary to scrutinize the
density research history in the study area.

Since the smoothness effect originates from the L2 regulation term [80], the recov-
ered density distributions are smooth everywhere, making it difficult to distinguish the
boundaries of geological structures. Also, their density value is far from the theoretical
value due to the volume effect of the gravity–magnetic field. There is no depth resolution
in surface gravity data. It is challenging to use Occam-like inversion to recover depth
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information [21,45,46]. Nevertheless, the spherical planting inversion employed in this
paper can preserve depth resolution.

Figures 8–12 illustrate that the depth of the top interface of the Mare Crisium basin
is about 4–6 km. Figures 15 and 16 show that the mascon has spread from the surface,
showing that the crustal thickness of Mare Crisium is about 0 km because the Crisium
impact may have removed all crust from parts of the basin [40,77].

Author Contributions: G.L.: Conceptualization, Supervision, Writing—review and editing; D.Z.:
Software, Validation, Writing—original draft, review and editing; S.C.: Formal analysis, Methodology,
Software, Writing—review and editing; Y.D.: Software, Validation; G.X.: Software, Investigation; Y.L.:
Software, Investigation; Z.Z.: Resources; P.C.: Validation, Visualization. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant 41704138, Grant 41974148, and in part by the Hunan Provincial Science and Technology
Department of China under Grant 2017JJ3069, and in part by the Project of Doctoral Foundation
of Hunan University of Science and Technology under Grant E51651, and in part by the Hunan
Provincial Key Laboratory of Share Gas Resource Exploitation under Grant E21722.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is unavailable.

Acknowledgments: We appreciate the GRAIL mission team distributing the gravity models GL0900C
and GRGM1200A. The program in SHTools, which is freely accessible at https://shtools.github.io/
SHTOOLS/ (accessed on 4 March 2023), is used to compute gravity anomalies. We appreciate M.
Wieczorek for sharing the spherical harmonic model of the shape of Earth’s Moon MoonTopo2600p
and the software CTplanet for estimating crustal thickness, which is accessible for free at https:
//github.com/MarkWieczorek/ctplanet (accessed on 4 March 2023). The authors would like to thank
D. Gomez-Ortiz and BNP Agarwal for making Parker–Oldenburg’s algorithm available. Valuable
comments by two anonymous reviewers are gratefully acknowledged. Moreover, we would like to
thank Tiffany Liu and the Applied Sciences editorial team for their persistent efforts.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Farquharson, C.G.; Mosher, C.R.W. Three-dimensional modelling of gravity data using finite differences. J. Appl. Geophys. 2009,

68, 417–422. [CrossRef]
2. Jahandari, H.; Bihlo, A.; Donzelli, F. Forward modelling of gravity data on unstructured grids using an adaptive mimetic

finite-difference method. J. Appl. Geophys. 2021, 190, 104340. [CrossRef]
3. Martyshko, P.; Ladovskii, I.; Byzov, D.; Tsidaev, A. Gravity Data Inversion with Method of Local Corrections for Finite Elements

Models. Geosciences 2018, 8, 373. [CrossRef]
4. Lelièvre, P.G.; Farquharson, C.G.; Hurich, C.A. Joint inversion of seismic traveltimes and gravity data on unstructured grids with

application to mineral exploration. Geophysics 2012, 77, K1–K15. [CrossRef]
5. Jahandari, H.; Farquharson, C.G. Forward modeling of gravity data using finite-volume and finite-element methods on unstruc-

tured grids. Geophysics 2013, 78, G69–G80. [CrossRef]
6. Ren, Z.; Chen, C.; Pan, K.; Kalscheuer, T.; Maurer, H.; Tang, J. Gravity Anomalies of Arbitrary 3D Polyhedral Bodies with

Horizontal and Vertical Mass Contrasts. Surv. Geophys. 2017, 38, 479–502. [CrossRef]
7. Zhang, Y.; Chen, C. Forward calculation of gravity and its gradient using polyhedral representation of density interfaces: An

application of spherical or ellipsoidal topographic gravity effect. J. Geod. 2018, 92, 205–218. [CrossRef]
8. Ren, Z.; Chen, C.; Zhong, Y.; Chen, H.; Kalscheuer, T.; Maurer, H.; Tang, J.; Hu, X. Recursive Analytical Formulae of Gravitational

Fields and Gradient Tensors for Polyhedral Bodies with Polynomial Density Contrasts of Arbitrary Non-negative Integer Orders.
Surv. Geophys. 2020, 41, 695–722. [CrossRef]

9. Zhang, J.; Jiang, L. Analytical expressions for the gravitational vector field of a 3-D rectangular prism with density varying as an
arbitrary-order polynomial function. Geophys. J. Int. 2017, 210, 1176–1190. [CrossRef]

10. Ren, Z.; Tang, J.; Kalscheuer, T.; Maurer, H. Fast 3-D large-scale gravity and magnetic modeling using unstructured grids and an
adaptive multilevel fast multipole method. J. Geophys. Res. Solid Earth 2017, 122, 79–109. [CrossRef]

https://shtools.github.io/SHTOOLS/
https://shtools.github.io/SHTOOLS/
https://github.com/MarkWieczorek/ctplanet
https://github.com/MarkWieczorek/ctplanet
http://doi.org/10.1016/j.jappgeo.2009.03.007
http://doi.org/10.1016/j.jappgeo.2021.104340
http://doi.org/10.3390/geosciences8100373
http://doi.org/10.1190/geo2011-0154.1
http://doi.org/10.1190/geo2012-0246.1
http://doi.org/10.1007/s10712-016-9395-x
http://doi.org/10.1007/s00190-017-1057-3
http://doi.org/10.1007/s10712-020-09587-4
http://doi.org/10.1093/gji/ggx230
http://doi.org/10.1002/2016JB012987


Appl. Sci. 2023, 13, 3332 20 of 22

11. Zheng, W.; Xu, H. Progress in satellite gravity recovery from implemented CHAMP, GRACE and GOCE and future GRACE
Follow-On missions. Geod. Geodyn. 2015, 6, 241–247. [CrossRef]

12. Liang, Q.; Chen, C.; Li, Y. 3-D inversion of gravity data in spherical coordinates with application to the GRAIL data. J. Geophys.
Res. Planets 2014, 119, 1359–1373. [CrossRef]

13. Uieda, L.; Barbosa, V.C.F. Fast nonlinear gravity inversion in spherical coordinates with application to the South American Moho.
Geophys. J. Int. 2016, 208, 162–176. [CrossRef]

14. Zhang, Y.; Wu, Y.; Yan, J.; Wang, H.; Rodriguez, J.A.P.; Qiu, Y. 3D inversion of full gravity gradient tensor data in spherical
coordinate system using local north-oriented frame. Earth Planets Space 2018, 70, 1–23. [CrossRef]

15. Zhao, G.; Chen, B.; Uieda, L.; Liu, J.; Kaban, M.K.; Chen, L.; Guo, R. Efficient 3-D Large-Scale Forward Modeling and Inversion of
Gravitational Fields in Spherical Coordinates With Application to Lunar Mascons. J. Geophys. Res. Solid Earth 2019, 124, 4157–4173.
[CrossRef]

16. Amante, C.; Eakins, B.W. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA technical
memorandum NESDIS NGDC-24. Natl. Geophys. Data Cent. NOAA 2009, 10, V5C8276M.
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