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Abstract: The paper applies jellyfish search algorithm (JSA) for reaching the maximum profit of IEEE
30-node and IEEE 118-node transmission power networks considering electrical market and wind
turbines (WTs). JSA is compared with the particle swarm optimization (PSO), genetic algorithm (GA),
moth swarm algorithm (MSA), salp swarm algorithm (SSA), and water cycle algorithm (WCA) for
three study cases. The same and different electric prices for all nodes are, respectively, considered
in Case 1 and Case 2, whereas Case 3 considers different prices and the placement of one WT. As
a result, JSA can reach higher profit than MSA, SSA, WCA, PSO, and GA by 1.2%, 2.44%, 1.7%, 1.3%,
and 1.02% for Cases 1, 2, and 3. Then, JSA is applied for optimizing the placement of from two to four
WTs for the first system, and from zero to five wind farms (WF) for the second systems. Comparison
of profits from the study cases indicates that the network can reach higher profit if more WTs and
WFs are optimally placed. The placement of four WTs can support the two systems to reach higher
profit by $130.3 and $34770.4, respectively. The greater profits are equivalent to 2.6% and 97.2% the
profit of the base system. On the other hand, the obtained results also reveal the important order of
location for installing wind power generators. The important order of nodes is, respectively, Nodes 5,
2, 1, and 10 for the first system, as well as Nodes 29, 31, 71, 45, and 47 for the second system. Thus, it
is recommended that renewable energies are very useful in improving profit for transmission power
systems, and the solutions of installing renewable energy-based generators should be determined by
high performance algorithms, such as JSA.

Keywords: optimal power flow; wind turbines; nodal price; jellyfish search algorithm; maximum profit

1. Introduction

Optimal power flow (OPF) is a very important for power systems to reach stable
and economic operation statuses. Control parameters of electric components in the power
system must be set appropriately to assure that other components’ parameters can be within
an allowable working range [1]. The purpose can be reached by running the OPF program
for power systems, so OPF is one of the leading problems in power system operation fields.
Basically, the power system is comprised of three major parts, high capacity power plants,
transmission power networks and distribution power networks in which the OPF problem
has been studied so far for increasing the effectiveness of high capacity power plants and
the transmission of power grids [2]. In conventional OPF problems, core power sources are
mainly thermal power plants, which are mainly dependent on fossil fuels such as coal, gas,
and oil. In recent years, renewable energy-based power plants, such as solar, photovoltaic,
and wind power plants, have been concerned as a part of power source in power systems
where major thermal power plants had been working stably on their sites. Thus, the new
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OPF problem with the presence of renewable energy-based power plants focuses on the
determination of location and capacity for the renewable energy-based power plants. To
solve the conventional OPF problem, optimization tools, such as deterministic algorithms
and metaheuristic algorithms, find the control parameters of the power system and voltage
of all generators, active power of generators, excluding slack, reactive power output of
capacitors, and tap setting of transformers. Then, the Matpower program is run to reach
other remaining parameters, such as active power of slack generator, reactive power of all
generators, apparent power of lines, and voltage of loads [3]. As all parameters are within
a predetermined operation range, the OPF solutions obtained are valid and they can be
acknowledged for reaching stable operation status [4]. However, they may not be effective
solutions. Derived from an unexpected issue, many methods have been proposed and
evaluated so far [5]. For dealing with the new OPF problem, the duty of optimization tools
is more difficult, since they must determine three more factors of renewable energy-based
power plants, such as the number of added power plants, the location, and the capacity of
each added power plant.

For solving such conventional OPF problems, classical methods and numerical methods,
such as gradient search algorithm [1], quadratic programming [5], Newton method [6,7], lin-
ear programming [8,9], nonlinear programming [10], and interior point [11], were applied
in the past, as metaheuristic algorithms were not highly developed and widely applied.
These methods had the same ideal as using an optimization function based on Lagrange
multipliers, and they had the objective of taking partial derivative to reach control pa-
rameters and dependent parameters of the problem. They are deterministic methods, so
they reach the same solutions for different trial runs. Meta-heuristic algorithms differ
from the conventional optimization approaches in principle, so their performance for
OPF problems is also different from that of the above conventional ones [12]. The meta-
heuristic optimization approaches are able to implement the non-deterministic optimal
search based on randomization and solution update mechanisms without using derivative
implementation. The fitness function is a very important factor of these metaheuristic
algorithms in dealing with all constraints and reaching high quality of control variables.
Normally, the fitness function is comprised of two terms, objective function that needs
to be optimized and penalty terms for satisfying all constraints. If the two terms are
selected unsuitably, metaheuristic algorithms will not reach valid solutions meeting all
constraints and high-quality objective functions. Researchers can find new fitness functions
for reducing difficulty for applied algorithms or reaching more effective solutions more
easily. Therefore, the applications of the metaheuristics are more and wider than other
deterministic conventional algorithms. Almost metaheuristic algorithms can solve the OPF
successfully, in which modified or hybrid algorithms can reach better results, such as the
lightning attachment procedure algorithm [13], pattern search technique based particle
swarm optimization [14], hybrid evolutionary algorithm [15], modified crossover based
differential evolution [16], manta ray foraging optimizer [17], hybrid whale algorithm,
moth–flame algorithm [18], improved Archimedes optimization algorithm [19], moth–
flame optimization algorithm [20], and adaptive Gaussian teaching–learning algorithm [21].
In general, these studies focused on improving original metaheuristic algorithms for better
performance or improving constraint handling methods for satisfying limitation of depen-
dent variables, rather than improving power flow tools, such as Newton-Raphson and
Gauss-Seidel. Different objective functions were optimized for comparison and evaluation
of performance.

Recently, researchers have concerned renewable power plants in transmission power
grids, and the OPF problem has become more complicated by the presence of the plants.
Major factors of the renewable plants are the number of added plants, installed location,
and rated power for each added plant. So, to solve the OPF problem with the installation
of renewable energies, there are major factors that must be accomplished before finding
important parameters of basic electric components, such as thermal units, capacitors,
transformers, loads, and transmission branches, as mentioned above. Basically, researchers
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are supposed to install small WFs and PVSs from some to tens of megawatts. The studies
focused on two topics, including (1) the placement of WFs [22–27] and (2) the placement of
both PVSs and WFs [28–38]. These studies have used different metaheuristic algorithms
and solved at least one standard IEEE transmission network with 30 nodes and at most three
standard IEEE systems with 30, 57, and 118 nodes. Information of the studies consisting of
algorithms, applied systems, objective function, number of renewable units, location, and
power of each unit is given in Table 1. Almost all studies used only WFs or both WFs and
PVSs rather than only PVSs. Popular nodes for the placement of renewable energy are 3
and 30, or 10 and 24 for the IEEE 30-node system. For the IEEE 57 and 118-nodes systems,
the location is not the same for studies. One study [24] used the loss sensitivity factor-based
method to determine node 30 and node 3, which are the most and the least important for
installing distributed generators based on solar radiation or wind. Then, the Jaya algorithm
was applied to optimize rated power of WFs and parameters of other electric components.
The results indicated that node 30 was more suitable than node 3 for placing WFs. Some of
the studies used the determined locations to optimize size of WFs [25,26], meanwhile others
optimized both location and size [27–29], and others optimized three factors, including the
number of units, location, and power of each unit [33–38]. Almost all methods focused on
fuel cost minimization, loss minimization, and voltage improvement.

Table 1. The summary of previous studies on solving OPF problems considering renewable
energy sources.

Algorithm and Reference Applied IEEE
System Objective Function Number of WFs, PVSs,—Location for Each

Modified cuckoo search
algorithm [22] 30 nodes Fuel cost 2 WFs at nodes 10 and 24

Artificial bee colony [23] 30 nodes
Operating cost;
active power loss;
voltage deviation

2 WFs at nodes 10 and 24

Jaya algorithm [24] 30 nodes
Fuel cost;
active power loss;
voltage stability

2 WFs at nodes 3 and 30

Modified Jaya algorithm [25] 30 nodes;
118 nodes

Fuel cost;
active power loss;
voltage stability

2 WFs at nodes 3 and 30 for both IEEE 30-node
and 118-node systems

Modified equilibrium
optimized [26];
modified coyote optimizer [27].

30 nodes;
57 nodes;
118 nodes

Fuel cost;
Power loss

2 WFs at nodes 3 and 30 for both IEEE
30-node systems

Hybrid of firefly and Jaya
algorithm [28] 30 nodes

Fuel cost;
active power loss;
voltage stability;
emission

2 WFs at nodes 5 and 11;
1 PVS at nodes 5 and 13

Multi-objective Coronavirus herd
immunity algorithm [29]

30 nodes;
57 nodes

Fuel cost;
active power loss;
voltage stability

1 WF at node 5 and 1 PVS at node 11 for the
IEEE 30-node system
1 WF at node 2 and 1 PVS at node 3 for the
IEEE 57-node system

Non-dominated sort grey wolf
algorithm [30] 30 nodes Fuel cost 2 WFs at nodes 5 and 11;

1 PVS at node 13

Equilibrium optimizer
algorithm [31] 30 nodes

Fuel cost;
active power loss;
emission index;

1 WF at node 11;
2 PVSs at nodes 5 and 13
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Table 1. Cont.

Algorithm and Reference Applied IEEE
System Objective Function Number of WFs, PVSs,—Location for Each

Modified Rao algorithm [32] 30 nodes;
118 nodes Fuel cost

1 WF at node 30 for the IEEE 30-node system
1 WF at node 31 and 1 PVS at node 54 for the
IEEE 118-node system

Barnacle mating optimizer [33];
Enhanced genetic algorithm [34];
White shark algorithm [35];
Crow search algorithm [36]

30 nodes
Fuel cost;
power loss;
fuel cost and emission

2 WFs at nodes 5 and 11;
1 PVS at node 13

Manta ray foraging
optimization [37]

30 nodes;
118 nodes

Fuel cost;
active power loss;
voltage stability;
emission

2 WFs at nodes 30 and 11;
3 PVSs at nodes 5, 13 and 24

Differential evolution [38]
30 nodes;
57 nodes;
118 nodes

Fuel cost;
fuel cost and emission;
voltage stability

2 WFs at nodes 5 and 11;
1 PVS at node 13 for the IEEE 30-node system
2 WFs at nodes 6 and 9;
1 PVS at node 2 for the IEEE 57-node system
3 PVSs at nodes 6, 15 and 34 for the IEEE
118-node system

Another topic of the OPF problem is to consider the stochastic participation of renew-
able energy sources in transmission power networks. The flow direction algorithm was
applied in [39] to reduce the total operating cost for all power plants, such as thermal, small
hydro, wind, and solar photovoltaic power plants. The study has suggested that the total
cost could be minimum if the energy efficiency was maximized by increasing stochastic
participation of the renewable power plants, wind farms, and photovoltaic fields. Three
standard IEEE systems with 30, 57, and 118 nodes were employed for simulation. The
study [40] has applied the mayfly algorithm to minimize several single objectives, such
as total cost of wind, solar and thermal power plants, voltage deviation, power loss, and
emission for a 30-node transmission power network. In one study [41], the gorilla troop
algorithm was run for two systems with 30 and 118 nodes for reaching the smallest cost of
thermal units only. In general, the three algorithms have tried to reduce the total generation
cost, but they had different ideas of cost. The two studies [39,40] have considered the cost
of renewable energies, but another study [41] has ignored the cost. However, the three
studies have pointed out that, as the uncertainty of renewable energies was high, the cost
of generation could be higher due to the use of more power from thermal power plants.

In this study, we optimized power flow for the IEEE 30-node and IEEE-118 node
power networks considering nodal prices and placement of wind energy-based generators.
The different nodal prices are considered to optimize the location and rated power of wind
farms installed in the system. The study [42] has built a set of generators and run nodal
price program to calculate electricity price for the first system. To simulate the two systems,
JSA [43], MSA [44], SSA [45], WCA [46], PSO [47], and GA [48] are implemented for find
the most solutions. In summary, the novelties of the paper can be expressed as follows:

1. Applying different nodal prices for nodes in transmission power networks and con-
sidering wind energy. The study is more complicated than previous studies [22–38]
by considering the node prices, and it is also more complicated than the previous
study [38] by considering wind energy.

2. Consider different number of wind turbines and wind farms. In the first system
with 30 nodes, four study cases of WTs placement with one, two, three and four WTs
in range between 0 MW and 10 MW are implemented. In the second system with
118 nodes, five study case of WFs placement, from one to five WFs in range from 0 to
100 MW are simulated. Two factors of each wind turbine as well as each wind farm
must be determined, including the placed location and rated power. The different
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study cases aim to determine the most suitable nodes to place wind energy as joining
electric market. The target has not been concerned in all previous studies.

3. Applying recent and effective metaheuristic algorithms, including JSA [43], MSA [44],
SSA [45], WCA [46], PSO [47], and GA [48]. There are conventional and novel
algorithms in the six applied ones.

The contributions of the paper are as follows:

1. Reach optimal solutions of placing wind turbines in the IEEE 30-node and the IEEE
118-node transmission power networks in electric market.

2. Find the maximum profit of electricity sale for the case without and with wind energy.
The obtained maximum profits indicate the most suitable nodes for installing wind
turbines and the most effective number of WTs and WFs for reaching the highest
profit. On the other hand, the priority order of nodes for placing wind energy-
based generators can be used to plan stability improvement for the transmission
power networks.

3. Find one suitable metaheuristic algorithm for all study cases with electric market
and wind energy. The six algorithms have applied for different optimization prob-
lems so far; however, the most powerful one should be recommended for other
similar studies.

Other parts of the paper are as follows: Section 2 shows objective function and all
requirement conditions. Section 3 presents the structure of JSA and the whole solution
process of JSA for the problem. Section 4 presents the results obtained by four applied
algorithms for study cases. Section 5 summarizes the obtained results, contributions,
shortcomings, and proposes future work to tackle the shortcomings.

2. Formulation of the Studied Problem

The study focuses on the profit maximization for transmission power networks con-
sidering different prices of nodes in the networks and the placement of wind turbines.
Thermal power plants must consume fossil fuels to produce and supply electricity to loads.
Conventional studies of the OPF problem have ignored the prices at load nodes, and this
neglection has not considered the effectiveness of different thermal power plants in power
systems. For recent OPF problems considering renewable energies, the neglection has been
seen again. So, the study has focused on the maximization of profit for the transmission
power networks considering nodal prices and renewable energy, which is supposed to be
wind turbines. The objective and constraints are presented as follows:

2.1. Objective Functions

Total cost of thermal power plants: basically, a power system consists of a number of
generators using fossil fuels for generation process. The fossil fuel cost is regarded as an
investment cost meanwhile total revenue from electricity sale for loads is the sum of cost
and profit. The profit is very important for operation of transmission power networks, and
it must be maximized. The maximization of the profit is the objective of the study, and it is
expressed as follows:

Maximize SysPro f it = ToReElec − CostFuel (1)

CostFuel and ToReElec are basically obtained by:

CostFuel =
NTUs

∑
k=1

ce1k + ce2kPTk + ce3k(PTk)
2 (2)

ToReElec =
NLoads

∑
l=1

EPrl .PLoadl (3)
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2.2. Constraints

Power balance: The balance of power between the source (i.e., power generated by
thermal units, wind power plants, and capacitors) and consumption (i.e., demands of all
loads and losses on all transmission lines) is a common restriction. The constraint is for
active power and reactive power as follows:

NTUs

∑
k=1

PTk +
NWPs

∑
m=1

PWm −
NLoads

∑
l=1

PLoadl −
NBrs

∑
b=1

PLoss,b= 0 (4)

NTUs

∑
k=1

QTk +

NCaps

∑
c=1

QCc +
NWPs

∑
m=1

QWm −
NLoads

∑
l=1

QLoadl −
NBrs

∑
b=1

QLoss,b = 0 (5)

However, the constraints (4) and (5) cannot be reached directly by power flow method,
Newton-Raphson. The Matpower program [49] is used in the study to reach power flows,
and the program uses the Newton-Raphson method [50]. The two general constraints are
converted into the balance power constraint at each node as follows:

PTi + PWi − PLoadi= Voli

Nnodes

∑
j

Vol j
[
GCij cos

(
θi−θ j

)
+BSij sin

(
θi−θ j

) ]
; i = 1, . . . , Nnodes (6)

QTi +QCi −QLoadi= Voli

Nnodes

∑
j

Vol j
[
GCij cos

(
θi−θ j

)
− BSij sin

(
θi−θ j

) ]
; i = 1, . . . , Nnodes (7)

where QCi is the reactive power generation of the capacitors at the ith node and QCi must
be constrained by:

QCMin
i ≤ QCi ≤ QCMax

i ; i = 1, . . . , Nnodes (8)

Limitation on active and reactive power generation: As operating, thermal units and
wind power plants must satisfy the limitation of active and reactive generation capacity
as follows:

PTMin
k ≤ PTk ≤ PTMax

k (9)

PW Min
m ≤ PWm ≤ PW Max

m (10)

QTMin
k ≤ QTk ≤ QTMax

k (11)

QW Min
m ≤ QWm ≤ QW Max

m (12)

Limitation on voltage: All loads and generators at the ith node must be kept within
an acceptable operating range, as follows:

VolMin
i ≤ Voli ≤ VolMax

i ; i = 1, . . . , Nnodes (13)

VolMin
k ≤ Volk ≤ VolMax

k ; k = 1, . . . , NTUs (14)

where VolMin
i and VolMax

i , and VolMin
k and VolMax

k are the smallest and highest voltage
values of load at the node i and of the thermal unit k. In the study, the two values are
selected to be 0.95 and 1.1 pu, respectively [4].

Transformer constraints: The transformer’s tap setting must fall within the lower and
upper limits indicated by the inequality below:

TpMin ≤ Tpn ≤ TpMax ; n = 1, . . . , NTF (15)

Limitation of transmission lines: Transmission lines are conductors connecting each
two nodes. The transmission limit of the lines is also the limit of the conductors. However,
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parameter of transmission lines is apparent power, while that of conductors is current. So,
the current limit must be converted into apparent power limit as follows:

Sb ≤ SMax
b ; b = 1, . . . , NBrs (16)

where Sb and SMax
b are the operating apparent power and the maximum capacity of the

bth transmission line.

3. Jellyfish Search Algorithm for the Problem

Jellyfish algorithm (JSA) was developed by Chou, J. S. and Truong, D. N. in 2020 by
taking the idea from the jellyfish’s movements in the ocean [43]. The structure of JS is not as
complicated as the genetic algorithm, water cycle algorithm, etc. In fact, JSA is comprised of
the same techniques as simple metaheuristic algorithms, such as initialization and selection
technique, and it is only different from others about the process of searching new solutions.
The structure and application of JSA for the considered problem are presented as follows:

3.1. Jellyfish Algorithm (JS)

Similar to the flower pollination algorithm [51], JSA also uses two techniques, called
exploration and exploitation, to search new solutions. However, only one out of the two
methods is used for each iteration based on the comparison between a decision parameter
at the current iteration and a balance parameter. For simplicity, the balance parameter can
be fixed at 0.5 for simplicity, whereas the decision parameter is dependent on the current
iteration and maximum iteration as follows:

CPGpre =

(
1−

Gpre

Gmax

)
× (dr0−2 − 1) (17)

where CPGpre is the decision parameter at the present iteration Gpre. Equation (17) indicates
that CPGpre has one value only at each iteration. So, the comparison of (CPGpre and 0.5)
leads to one result only and only one method is used for each iteration.

If CPGpre is smaller than 0.5, the whole population is updated based on the exploration
technique, as shown in the following formula:

SNnew
j = SNj + dr1.(SN∗ − 3.dr2.SNmid), j = 1, . . . , Ssize (18)

For other case (i.e., 0.5 < CPGpre), exploitation technique is used to update the solution
at the present iteration as the following equation:

SNnew
j =

{
SNj + ∆j, if rdn.

(
1− CPGpre

)
≥ dr3

SNj + dr0−0.1.(UpL− LoL), else
(19)

where ∆j is a distance between the jth old solution the jth new solution, which is obtained
by one out of two ways as follows:

∆j =

{
SNj − SNrd, if Fitrd < Fitj
SNrd − SNj, else

(20)

3.2. The Implementation of JSA for the Problem
3.2.1. The Selection of Control Variables

JSA and other applied metaheuristic algorithms have a responsibility for producing
high quality control variables for the considered OPF problem. The obtained control
variables are normally evaluated by evaluating fitness function of solutions in which
fitness function has two main parts, objective, and penalty. Objective function may be
a function of dependent variables or control variables, or both. Meanwhile, penalty terms
indicate the violation of all dependent variables. In this problem, there are seven control
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variables—three from wind farms and four others from other electric components. They
are listed as follows:

1. Location of wind turbines: LWPm where m = 1, . . . , NWPs. Each wind turbine can be
located at the smallest node number (node 1) and the highest node number (Node
Nnodes). So, Node 1 and Node Nnodes are, respectively, the minimum and maximum
locations, which are represented by LMin

WPm and LMax
WPm.

2. Rated power of wind turbines: PWm ( m = 1, . . . , NWPs).

3. Power factor of wind turbines: PFWPm (m = 1, . . . , NWPs).

4. Active power generation of all thermal units excluding that in slack node: PTk
(k = 2, . . . , NTUs). It is supposed that the first thermal unit (i.e., k = 1) is located at the
slack node.

5. Tap of transformers: Tpn (n = 1, . . . , NTF).

6. Reactive power generation of all capacitors: QCc (c = 1, . . . , NCaps).

7. Voltage magnitude of all thermal units: Volk (k = 1, . . . , NTUs).

3.2.2. The Calculation of Dependent Variables

To reach dependent variables of the problem, location, rated active power, and power
factor of each wind farm are produced by using JSA. Then, data of the system are modified
by adding the three factors into the original data. Finally, the Matpower program [49] is
run for reaching dependent variables. The dependent variables are listed as follows:

1. Active power generation of thermal unit at slack node: PT1.

2. Reactive power generation of all thermal units: QTk (k = 1, . . . , NTUs).

3. Apparent power of all branches: Sb (b = 1, . . . , NBrs).

4. Voltage of all loads: Voli (i = 1, . . . , Nnodes).

3.3. The Implementation of JSA for the Considered OPF Problem

The section presents an iterative technique to apply JSA for the considered OPF
problem with the presence of renewable energy and the consideration of different nodal
prices. The implementation process is expressed as the following steps:

Step 1: Generate initial solutions.

Each solution SNj of JSA is comprised of the set of control variables presented in
Section 3.2.1. To produce a random initial population for JSA, the lower and upper bound-
aries of the solution SNj are formed as follows: SNMin

j and SNMax
j . The lower boundary

SNMin
j is comprised of the minimum value of all control variables meanwhile the upper

boundary SNMax
j is comprised of the maximum value of all control variables. In the first

step, we randomly produce the population as follows:

SNj = dr3.
(

SNMax
j − SNMin

j

)
+ SNMin

j ; j = 1, . . . , Ssize (21)

Step 2: Obtain all dependent variables and penalize their violation.

In the second step, all remaining dependent variables are obtained by using
Section 3.2.2. These variables are included in a set of dependent variables, which is
mathematically modeled by DSj. Each dependent variable can be either within or beyond
its allowable range, which is predetermined and normally is given in data of the system.
Similar to the control set, the dependent set also has the lower and upper boundaries, which
are represented by DSMin

j and DSMax
j . The two boundaries are, respectively, comprised of

the minimum and maximum values of all dependent variables. If the dependent variables
have smaller value than the lower bound, they are penalized by calculating the deviation
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between the obtained value and the lower bound. For another case of violation, if the
dependent variables have greater value than the upper bound, the deviation between the
obtained value and the upper bound is calculated for the penalty. By using the way, penalty
terms of all dependent variables are calculated as follows:

∆DSj =


0 if ∆DSj ∈

[
DSMin

j ; DSMax
j

](
DSMin

j − DSj

)
if DSj < DSMin

j(
DSj − DSMax

j

)
if DSj > DSMax

j

(22)

Step 3: Calculate fitness function of all solutions.

Currently, all variables of the problem are obtained and currently the objective function
(1) can be calculated simply. The penalty terms above and the objective function are
included in fitness function as follows:

Fitj = −SysPro f it,j + β.
(

∆DSj

)2
(23)

where SysPro f it,j is the objective function of the jth solution; and β is an intensification factor.
β is used to make the violation of dependent variables greater and selected to be 104 in the
paper by experiment.

Step 4: Produce and correcting new control variables by using JSA.

In this step, the search process of JSA in Section 3.1 is applied to find new solutions
containing new control variables. However, all new obtained control variables can be
within or beyond their predetermined boundaries. Before performing Matpower program
for reaching dependent variables, the new variables must be repaired as follows:

SNnew
j =


SNnew

j if SNMin
j ≤ SNnew

j ≤ SNMax
j

SNMin
j if SNMin

j > SNnew
j

SNMax
j if SNMax

j < SNnew
j

(24)

Step 5: Implement selection of better-quality variables and find the best solution.

Currently, there are two solutions corresponding to two sets of control variables for
each individual in the population. In other words, there are two population, old and
new. So, the jth old and the jth new variable set should be selected to abandon one set
and keep one set. The fitness function of each new variable set is represented by Fitnew

j .
Meanwhile, that of each old variable set is still Fitj. The selection is implemented by using
the following model:

SNj =

{
SNnew

j if Fitnew
j ≤ Fitj

SNj else
(25)

Finally, the best solution with the smallest fitness function is determined, and its pa-
rameters, such as objective function, control variables, and dependent variables are stored.

These computation steps are applied in Figure 1 to show the detailed implementation
of JSA for the considered OPF problem.
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4. Numerical Results
4.1. Applied Algorithms and Test Systems

In this section, we apply metaheuristic algorithms for finding the best solution of
installing wind turbines in the standard IEEE 30-node and IEEE 118-node systems. The
configuration of the two systems is shown in Figures 2 and 3. Data of the transmission
networks and cost coefficients of thermal units are taken from the study [4]. The nodal
prices of the first system are taken from [42], while the nodal prices of the second system
are first developed in the study. The prices are shown in Tables A1 and A2 in Appendix A.
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The simulation is executed on a personal computer with s 2.4 Ghz processor, 8 GB of RAM,
and using the Matlab program. In addition, the Matpower program is applied to find
dependent variables.
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For the first system, there are five study cases, but only the first three cases are
implemented by six algorithms, JSA, MSA, SSA, WCA, PSO, and GA. Each method is run
for 50 trials for each case, and then the best algorithm is run for two remaining cases, Case
4 and Case 5. The five cases are as follows:
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Case 1: Consider the same price of $25 for all nodes in the system and neglect wind
turbine placement.

Case 2: Consider the different electric price for different nodes and neglect wind
turbine placement.

Case 3: Consider different electric prices for different nodes and optimal placement of
one wind turbine.

Case 4: Consider different electric prices for different nodes and use the optimal
placement of one turbine of Case 3.

Case 5: Consider different electric prices for different nodes and optimal placement of
two, three, and four wind turbines.

For the second system, only JSA is run for six study cases with different nodal prices
and different number of WFs. The whole simulation cases of the two systems are summa-
rized in Table 2.

Table 2. Information of two employed systems and applied algorithms.

System Study Cases Applied
Algorithms Ssize; Gmax

Number of
WTs/WFs

Optimized
Parameters of WTs

IEEE 30-node
system

Case 1 6 40; 200 0 No
Case 2 6 40; 200 0 No
Case 3 6 40; 400 1 Yes
Case 4 1 (JSA) 40; 200 1 No

Case 5
5.1

1 (JSA)
100; 1000 2

Yes5.2 100; 1500 3
5.3 100; 2000 4

IEEE 118-node
system

Case 1

1 (JSA)

100; 2500 0 No
Case 2 100; 3000 1 Yes
Case 3 100; 3500 2 Yes
Case 4 100; 4000 3 Yes
Case 5 100; 4500 4 Yes
Case 6 100; 5000 5 Yes

4.2. Obtained Results for the IEEE 30-Node System
4.2.1. Results Obtained for Case 1

In Case 1, all applied algorithms are successful to reach valid solutions. One valid
solution shows one profit value and fifty profit values for each algorithm are summarized
in Figure 4. In the figure, six profit boxplots with different colors are plotted to compare
the performance of algorithms. The box and whisker of JSA are shorter than those of five
other ones. The upper extreme, the lower extreme, and the median of JSA are, respectively,
higher than those of others to confirm that JSA can reach better maximum profit, better
mean profit, and better minimum profit than others. Median of JSA is much higher than the
upper quartile of others, and even the lower quartile of JSA is also higher than the upper
quartile of MSA and SSA. Notice here the deviation between the median of JSA and the
first quartile of others. The height of yellow box is smaller than other boxes, and the yellow
whiskers are also shorter than other whiskers. Concerning a clear number for comparisons,
JSA reaches more profit than MSA, SSA, WCA, PSO, and GA by 0.4%, 1.2%, 0.2%, 0.7%, and
0.75%, respectively. The special result here is that the minimum profit of JSA is $6610.7, but
the maximum profit of SSA, PSO, and GA is $6572.1, $6599.9, and $6558.5. Additionally, the
mean profit of JSA is $6629.1, but the maximum profit of MSA is $6623.2. The comparisons
indicate the following remarks:

1. All solutions of JSA are much better than those of SSA, GA and PSO
2. Almost all solutions of JSA are better than those of MSA,
3. JSA has many better solutions than WCA.
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Figure 5 presents the best run among the fifty trials reaching the maximum profit
obtained by six applied algorithms. In the figure, JSA can reach greater profit than SSA
(from the 18th iteration to the last iteration), MSA (from the 60th iteration to the last
iteration), WCA (from the 140th iteration to the last iteration), PSO (from the 40th iteration
to the last iteration), and GA (from the 40th iteration to the last iteration). On the other
hand, the profit of JSA found at the 40th iteration, the 80th iteration, the 50th iteration, the
130th iteration, and the 160th iteration is, respectively, greater than the profit of GA, PSO,
SSA, MSA, and WCA found at the last iteration (iteration 200). Clearly, JSA is much faster
than others in searching for high-quality solutions.

Optimal power output of each thermal unit and total generation of all thermal units
are given in Figures 6 and 7, respectively. In general, JSA has different generation values
with others for each thermal units. Additionally, the total generation of JSA is also different
from that of others. The power loss of JSA is the same as WCA with 10 MW, whereas that
of others is different. SSA has the smallest power loss, but it has not reached the best profit.
The phenomenon is because of the ineffectiveness of other control parameters from SSA.
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It is recalled that a solution of optimal power flow is comprised of control variables and
dependent variables, as shown in Section 3. Active power generation of thermal units is
a part of control variables, and it cannot decide the quality of an obtained solution. So, SSA
cannot reach the same good profit as others.
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Figure 5. The process of finding the maximum profit for applied algorithms.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 28 
 

 

Figure 5. The process of finding the maximum profit for applied algorithms. 

Optimal power output of each thermal unit and total generation of all thermal units 

are given in Figure 6 and Figure 7, respectively. In general, JSA has different generation 

values with others for each thermal units. Additionally, the total generation of JSA is also 

different from that of others. The power loss of JSA is the same as WCA with 10 MW, 

whereas that of others is different. SSA has the smallest power loss, but it has not reached 

the best profit. The phenomenon is because of the ineffectiveness of other control parame-

ters from SSA. It is recalled that a solution of optimal power flow is comprised of control 

variables and dependent variables, as shown in Section 3. Active power generation of 

thermal units is a part of control variables, and it cannot decide the quality of an obtained 

solution. So, SSA cannot reach the same good profit as others. 

 

Figure 6. Chart of power output obtain by different methods case 1. 

0 20 40 60 80 100 120 140 160 180 200

Iteration

6300

6350

6400

6450

6500

6550

6600

6650

6700

P
ro

fi
t 

($
)

GA

PSO

MSA

SSA

WCA

JSA

1
8
4
.4

1
9
4
.9

1
9

8
.0

1
5
8
.3

1
9
8
.4

1
9
9
.2

4
4
.2

4
6
.5

4
8
.9 6
0
.8

5
2
.4

5
2
.0

2
4
.8

1
5
.0

1
5
.3 2
5
.7

1
5
.0

1
5
.1

1
2
.2

1
1
.3

1
2
.4 2
3
.5

1
0
.0

1
0
.3

1
1
.1

1
0
.0

1
0
.2

1
5
.3

1
0
.0

1
0
.0

1
8
.1

1
9
.2

1
2
.9

1
2
.1

1
2
.6

1
2
.2

6558.5

6599.9

6623.2

6572.1

6638.7
6648.8

6500

6520

6540

6560

6580

6600

6620

6640

6660

0

50

100

150

200

250

GA PSO MSA SSA WCA JSA

P
ro

fi
t 

($
)

P
o

w
er

 o
u

tp
u

t 
(M

W
)

PG1 PG2 PG3 PG4 PG5 PG6 Maximum profit

Figure 6. Chart of power output obtain by different methods case 1.
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4.2.2. Results Obtained for Case 2 and Case 3

Results obtained by the six applied algorithms for Case 2 and Case 3 are reported
in Figures 8 and 9, respectively. The two figures have the same manner that the box and
the whisker of JSA are the shorter than those from other algorithms and are located above
those from others.
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For Case 2, the maximum profit of JSA is $4998.8, while that from WCA, MSA, SSA,
PSO, and GA is $4997.0, $4986.6, $4915.6, $4975.8, and $4948.0. JSA reaches greater max-
imum profit than WCA, MSA, SSA, PSO, and GA by $1.8, $12.2, $83.2, $23, and $50.8,
respectively. The higher profit is equivalent to 0.04%, 2.44%, 1.7%, 0.46%, and 1.02% of the
profit from these algorithms. Especially, the upper quartile of JSA is $4994.4. Meanwhile,
that of these algorithms is, respectively, $4983.8, $4965.1, $4915.6, $4945.2, and $4948.0.
The deviations indicate that the top solutions of JSA are more outstanding than others.
Furthermore, the lower quartile of JSA is slightly smaller than the upper quartile of WCA
and much higher than the upper quartile of others. This information indicates that the
low-quality solution group of JSA is approximately equal to the top solutions of WCA and
much better than the top solutions of MSA, SSA, PSO, and GA.

The summary of results in Figure 9 for Case 3 also indicates the best performance of
JSA as compared to PSO, GA, MSA, SSA, and WCA. The best profit of JSA is greater than
that of PSO, GA, MSA, SSA, and WCA by 1.2%, 1.52%, 0.4%, 1.3%, and 0.1%, respectively.
In addition, other comparisons show the outstanding performance of JSA. In fact, the worst
profit of JSA is $4990.3, which is much greater than the best profit of SSA, $4972.6. The
upper extremes of PSO, GA, MSA, SSA, and WCA with $4975.8, $4960.5, $5014.2, $4972.5,
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and $5031.0 are smaller than the upper quartile of JSA with $5031.2. These comparisons
indicate that JSA can reach more optimal solutions than others, and the number of high-
quality solutions of JSA is also much greater than that of other. Thus, JSA is very effective
for the study case of placing wind turbines in transmission power networks.
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Figures 10 and 11 present the best trial of algorithms over 50 independent trials for
Case 2 and Case 3. The two figures have the same manner that WCA can reach greater
profit than JSA from the first iteration to the 170th iteration for Case 2 and from the first
iteration to about the 280th iteration for Case 3. For the last 30 iterations in Case 2 and the
last 120 iterations, JSA can improve the profit more effectively than WCA. As compared to
four remaining algorithms, JSA is much faster than them. Especially, JSA is about three
times faster than PSO, SSA, and GA. For Case 2, the profit of JSA at the 100th iteration is
much greater than that of the three algorithms at the last iteration (iteration 200). For Case
3, the profit of JSA at the 150th iteration is much greater than that of the three algorithms at
the last iteration (iteration 400).

In summary, JSA is very effective for the OPF problem with the placement of wind tur-
bine and nodal prices. So, we only implement JSA for other cases in the following section.

Figures 12–17 report optimal location and optimal size of wind turbine together with
profit of each run over 50 executed runs obtained by the six applied algorithms. To plot the
figures, the fifty solutions were sorted from the greatest to the smallest, and then location
and size corresponding to each solution were added together with its profit. As shown in
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Figure 12, the best location and the best size of wind turbine are, respectively, bus 5 and
10 MW. Similarly, the best factors of WCA, MSA, SSA, GA, and PSO are, respectively, bus 2
and 10 MW, bus 17 and 10 MW, bus 20 and 5 MW, bus 10 and 6 MW, and bus 7 and 10 MW,
respectively. Clearly, 10 MW is the best size for the turbine and the three algorithms. JSA,
WCA, MSA, and PSO have chosen it. However, the best location is bus 5, and only JSA
could find it. On the other hand, JSA found many solutions with the same bus 5 and the
same size 10 MW, while other algorithms could not reach the same performance. However,
not every solution with the same bus 5 and size 10 MW can reach the same profit. Go back
to the OPF problem. A solution of the original OPF problem without the placement of
renewable energies is separated into control variables and dependent variables. The former
set is comprised of active power generation of thermal units, excluding the unit at slack
node, voltage of all thermal units, reactive power generation of capacitors, and tap changer
value of transformers, whereas the later set is consisting of the generation of the unit at
slack node, reactive power of all thermal units, voltage of all loads and apparent power of
all transmission lines. Solutions could not reach the same control variable values, so the
solutions had to have different dependent variables. As a result, although many solutions
have the same bus 5 and the same size 10 MW for the added turbine, their profit was not
the same as the best solution.
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Figure 10. The process of finding the best profit implemented by applied algorithms for Case 2.
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Figure 12. Optimal location and size of wind turbine obtained by JSA for 50 runs.
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Figure 13. Optimal location and size of wind turbine obtained by WCA for 50 runs.
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Figure 14. Optimal location and size of wind turbine obtained by MSA for 50 runs.
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Figure 15. Optimal location and size of wind turbine obtained by SSA for 50 runs.
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Figure 16. Optimal location and size of wind turbine obtained by GA for 50 runs.
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Figure 17. Optimal location and size of wind turbine obtained by PSO for 50 runs.
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4.2.3. Results Obtained for Case 4

For finding the best solution of using wind turbine in the IEEE 30-node system, Case
4 has been implemented by using only JSA and applying the best location bus 5 and the
best size 10 MW. JSA with the best performance has been run 50 times for reaching other
parameters of the transmission network. As a result, fifty optimal solutions collected for
determining profit values and summary of profits consist of the best, mean, and worst
profits with $5035.9, $5026.0, and $4997.3, respectively. The results of Case 4 are compared to
those from Case 3, as shown in Figure 18. In general, all profits of Case 4 are slightly greater
than those of Case 3. Namely, Case 4 reaches greater maximum, mean, and minimum
profits than Case 3 by $0.1, $2.3, and $7.0, respectively.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 28 
 

 

Figure 18. Comparison of profits from Case 3 and Case 4. 

4.2.4. Results Obtained for Case 5 

In this section, JSA is implemented for determining optimal location and optimal size of 

three subcase—5.1, 5.2, and 5.3 with 2, 3, and 4 wind turbines, respectively. The optimal solu-

tion of the study cases, together with that of Case 2 and Case 3, are reported in Table 3. We 

can see that Node 5 is selected for all study cases. For using at least two WTs, Node 2 is always 

selected. Node 1 is selected for two Cases, with 3 and 4 WTs, while Node 10 is selected for the 

last case with 4 WTs. Clearly, Node 5 is the most prior location and Node 10 is the least prior 

location for installing a wind turbine with 10 MW. In summary, the important order for 

installing WTs is Node 5, Node 2, Node 1, and Node 10. With respect to the power, all 

wind turbines are suggested to be 10 MW. 

Table 3. Optimal solutions of Case 2, Case 3, and Case 5 for the IEEE 30-node system. 

Case 2: without WTs 
Position - - - - 

Power (MW) 0 - - - 

Case 3: 1 WT 
Position 5 - - - 

Power (MW) 10 - - - 

Case 5.1: 2 WTs 
Position 5 2 - - 

Power (MW) 10 10 - - 

Case 5.2: 3 WTs 
Position 5 2 1 - 

Power (MW) 10 10 10 - 

Case 5.3: 4 WTs 
Position 5 2 1 10 

Power (MW) 10 10 10 10 

Figure 19 shows maximum profits of these study cases. As using more wind turbines, 

the maximum profit is higher. Case 3 with one wind turbine has more profit than Case 2 

without wind turbine by $37. The profit of two WTs is $5093.7, which is more than the 

profit of one WT, $5035.8 by $57.8. Similarly, three WTs can reach greater profit than two 

WTs by $9.2, and four WTs can reach greater profit than three WTs by $26.2. The compar-

isons indicate that the placement of two wind turbines is the most effective and locations 

at node 5 and node 2 are the best for placing wind turbines. On the other hand, the use of 

four WT can reach greater profit than base system by $130.3, which is equivalent to 2.6% 

of the base system. The profit improvement is not much, and it is also a problem to con-

sider if the four WTs should be placed in the system for the purpose of benefit. 

5035.8

5023.7

4990.3

5035.9

5026.0

4997.3

4900.0

4920.0

4940.0

4960.0

4980.0

5000.0

5020.0

5040.0

Maximum profit Mean profit Minimum profit

P
ro

fi
t 

($
)

Casa 3 Case 4

Figure 18. Comparison of profits from Case 3 and Case 4.

It is recalled that Case 3 optimizes location of wind turbine, rated power of the wind
turbine, and all parameters of transmission power network. However, Case 4 uses the
predetermined location and predetermined rated power of Case 3 and only optimizes
all parameters of transmission power network. So, the small profit deviation between
Case 3 and Case 4 indicates that JSA is very effective for a complicated OPF problem with
renewable energy.

4.2.4. Results Obtained for Case 5

In this section, JSA is implemented for determining optimal location and optimal size
of three subcase—5.1, 5.2, and 5.3 with 2, 3, and 4 wind turbines, respectively. The optimal
solution of the study cases, together with that of Case 2 and Case 3, are reported in Table 3.
We can see that Node 5 is selected for all study cases. For using at least two WTs, Node 2
is always selected. Node 1 is selected for two Cases, with 3 and 4 WTs, while Node 10 is
selected for the last case with 4 WTs. Clearly, Node 5 is the most prior location and Node
10 is the least prior location for installing a wind turbine with 10 MW. In summary, the
important order for installing WTs is Node 5, Node 2, Node 1, and Node 10. With respect
to the power, all wind turbines are suggested to be 10 MW.

Figure 19 shows maximum profits of these study cases. As using more wind turbines,
the maximum profit is higher. Case 3 with one wind turbine has more profit than Case 2
without wind turbine by $37. The profit of two WTs is $5093.7, which is more than the profit
of one WT, $5035.8 by $57.8. Similarly, three WTs can reach greater profit than two WTs
by $9.2, and four WTs can reach greater profit than three WTs by $26.2. The comparisons
indicate that the placement of two wind turbines is the most effective and locations at node
5 and node 2 are the best for placing wind turbines. On the other hand, the use of four WT
can reach greater profit than base system by $130.3, which is equivalent to 2.6% of the base
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system. The profit improvement is not much, and it is also a problem to consider if the four
WTs should be placed in the system for the purpose of benefit.

Table 3. Optimal solutions of Case 2, Case 3, and Case 5 for the IEEE 30-node system.

Case 2: without WTs
Position - - - -

Power (MW) 0 - - -

Case 3: 1 WT
Position 5 - - -

Power (MW) 10 - - -

Case 5.1: 2 WTs
Position 5 2 - -

Power (MW) 10 10 - -

Case 5.2: 3 WTs
Position 5 2 1 -

Power (MW) 10 10 10 -

Case 5.3: 4 WTs
Position 5 2 1 10

Power (MW) 10 10 10 10
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Figure 19. Comparison of profits from Case 2, Case 3, and Case 5.

Optimal control variable of wind turbines and optimal control variables of the IEEE
30-node system for different cases are reported in Table A3 in Appendix A.

4.3. Obtained Results for the IEEE 118-Node System

In this section, only JSA is run for the IEEE 118-node system for reaching the best
profit of different number of wind farms. Each wind farm is supposed to be from 0 MW to
100 MW. The first duty of JSA is to find both location and size of each wind farm. In the
second duty, JSA must find all control parameters of the IEEE 118-node system, as shown
in Section 3. The solutions of wind farms placement are given in Table 4. Meanwhile, the
profit of each case is given in Figure 20. Table 4 can see the important order of nodes for
placing wind farms. The order of nodes arranged from the most to the least importance is
nodes 29, 31, 71, 45 and 47.

As shown in Figure 20, the profit is increased as the number of wind farms is increased.
The lowest profit of $35,777.8 and the highest profit of $70,548.2 are obtained for the cases
without wind farms and with five wind farms. Five wind farms can help the system
reach greater than the base system without wind farms by $34,770.4. This greater profit is
equivalent to 97.2% of the base system. So, the contribution of JSA for improving profit
is significant.

On the other hand, the increase in profit as using higher number of wind farms is also
seen clearly in Figure 20. One wind farm can reach higher profit than without wind farm
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by $10,620.9, equivalent to 29.69%. Similarly, two wind farms can reach greater profit than
one wind farm $9553.9, equivalent to 20.59%. Other comparisons also indicate the same
manner, but the values are smaller. The greater profits are, respectively, $4574.6, $5076,
and $4944.9, equivalent to 8.18%, 8.39%, and 7.54%. The smaller percent values can reveal
the greater profit is proportional to the number of wind farms. The most effective number
of wind farms can be two wind farms. However, the wind power cost is free due to the
availability of wind speed. So, more wind power generated can lead to higher benefit if the
initial investment cost is neglectable. In fact, the initial investment cost for installing wind
farms is very high. Meanwhile, the fuel cost of wind farms is zero. This characteristic is
opposite to thermal power plants, with not very high investment cost, but with very high
cost of fossil fuels. The power system with 118 nodes has 54 thermal units, and all loads
are supplied by the power sources. If the fossil fuel is not enough to run generating units,
demand of loads must be cut intentionally. So, the investment of wind farms is essential.

Table 4. Optimal solutions for the IEEE 118-node system.

1 wind
farm

Position 29 - - - -
Power (MW) 100 - - - -

2 wind
farms

Position 29 31 - - -
Power (MW) 100 100 - - -

3 wind
farms

Position 29 31 71 - -
Power (MW) 100 100 100 - -

4 wind
farms

Position 29 31 71 45 -
Power (MW) 100 100 100 100 -

5 wind
farms

Position 29 31 71 45 47
Power (MW) 100 100 100 100 100
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5. Conclusions

This paper has studied optimal power flow for the IEEE 30-node and 118-node trans-
mission power networks considering electric market and renewable energies, namely,
nodal prices and wind turbine placement. Electricity prices at different nodes were given
by different values. Meanwhile, wind turbines in the range from 0 MW to 10 MW for
the first system and wind farms from 0 to 100 MW for the second system were placed at
different nodes. For the first system, three cases, including (1) the same prices for all nodes,
(2) different prices for different nodes, and (3) different prices for different nodes and the
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placement of one wind turbine, were implemented by using six applied algorithms, PSO,
GA, MSA, SSA, WCA, and JSA. The results from the three cases are summarized as follows:

1. For Case 1, JSA obtained greater profit than MSA, SSA, WCA, PSO, and GA by
0.4%, 1.2%, 0.2%, 0.7%, and 0.75%, respectively. For Case 2 and Case 3, these val-
ues are 0.04%, 2.44%, 1.7%, 0.46%, and 1.02% and 1.2%, 1.52%, 0.4%, 1.3%, and
0.1%, respectively.

2. Approximately all fifty solutions of JSA had a small deviation of profit, and its
number of high-quality solutions was high. However, five remaining algorithms had
big deviation and a small number of good solutions.

3. JSA is much faster than others at least two times. The final solution of others at the
last iteration was worse than a solution of JSA at a half iteration number.

The results above indicates that JSA is more effective than PSO, GA, MSA, SSA,
and WCA in finding the best solutions for OPF problem considering electric market and
renewable energy. Thus, JSA has been selected to implement Case 4 and Case 5 of the
first system and six other cases of the second system. For the first system, Case 4 used
the optimal location and rated power of the added wind turbine in Case 3 to optimize all
parameters of transmission power network. Case 5 optimized the placement of two, three,
and four wind turbines in three subcases 5.1, 5.2, and 5.3. For the second system, JSA has
been run for optimizing zero, one, two, three, four, and five wind farms. The results and
indications are as follows:

1. For the first system, JSA had approximately the same profit for Case 3 and Case
4, although Case 3 was more complicated. Case 3 optimized two factors of wind
turbine and all parameters of transmission power network, but only all parameters of
transmission network were optimized in Case 4. This result indicated that JSA was
very effective for the complex problem with transmission network and renewable
power plants. Three subcases in Case 5 indicated that higher profits could be reached
when more wind turbines were placed. The effectiveness order of nodes for placing
wind turbines was Node 5, Node 2, Node 1, and Node 10.

2. For the second system, the order of nodes arranged from the most to the least impor-
tance is nodes 29, 31, 71, 45, and 47. As following the order, the profit can be reached
effectively. In fact, the system with one wind farm can reach higher profit than the
base system without wind farm by 29.69%. When increasing the wind farms to two,
three, four, and five, the profit is greater by 20.59%, 8.18%, 8.39%, and 7.54%. Clearly,
the important nodes have high impact on the increase in profit. On the other hand,
the system with five wind farms can reach greater than the base system by 97.2%.

Clearly, the contributions of the study are significant in reaching high profit for the two
transmission power networks and suggesting the number of wind turbines, the location,
and size of each wind turbine for reaching the highest profit. In addition, JSA was the
most effective algorithms that could be believed for OPF problem. However, the study
also has shortcomings. The study neglected the real wind speeds at each location in two
power systems, and the change in load within one day or one year was not considered.
The operation schedule with one day (twenty-four hours) or one year (twelve months with
average load and average solar radiation and average wind speed over twenty-four hour
per day) can be considered for future work. Both solar power and wind power with the
consideration of uncertain solar radiation and uncertain wind speed are hot topics for the
future work, too.

Author Contributions: Writing – original draft, T.T.N.; Writing – review & editing, H.D.N. and M.Q.D.;
Supervision, M.Q.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Appl. Sci. 2023, 13, 3330 24 of 28

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge Ho Chi Minh City University of Technology (HCMUT), VNU-
HCM for supporting this study.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

OPF Optimal Power Flow
WFs Wind farms
PVSs Solar photovoltaic systems
JSA Jellyfish search algorithm
MSA Moth swarm algorithm
SSA Salp swarm algorithm
WCA Water cycle algorithm
PSO Particle swarm optimization
GA Genetic algorithm
Nomenclature
SysPro f it Profit of the considered system
ToReElec The total revenue of electricity sale
CostFuel The total fuel cost of all thermal units in the transmission power networks
ce1k, ce2k, ce3k Given coefficients in fuel cost function of the kth thermal unit
NTUs Thermal unit number
NLoads Load number
EPrl Electricity price ($/MWh) at the lth load
PLoadl Load demand at the lth load node
NWPs Number of wind turbines installed in the system
PWm, QWm Active and reactive power generation of the mth wind turbine
QTk Reactive power generation of the kth thermal unit
NBrs Number of transmission lines
PLoss,b, QLoss,b Active and reactive power loss on the bth transmission lines
QCc Reactive power generation of the cth capacitor
NCaps Number of capacitors
QLoadl Reactive power demand of load at the lth load node
PTi , PWi , PLoadi Active power generation of thermal unit and wind tubines at the ith node
Voli, Vol j Voltages of the ith and jth buses
BSij, GCij Transfer susceptance and the conductance between the ith node and the

jth node
Nnodes Number of nodes
θj and θi Angles of voltage at the jth node and the ith node, respectively
QCMin

i , QCMax
i The lowest and highest generation of the capacitors at the ith node

PTMin
k , PTMax

k The smallest and highest active power generations of the kth thermal unit
QTMin

k , QTMax
k The smallest and highest reactive power generations of the kth thermal unit

PW Min
m , PW Max

m The smallest and highest active power generations of the mth wind turbine
QW Min

m , QW Max
m The smallest and highest reactive power generations of the mth

wind turbines
Tpn Tap value of the nth transformer

TpMin, TpMax The smallest and highest tap values of all transformers
NTF Number of used transformers
dr1, dr2, dr3 Random numbers within 0 and 1
SN∗, SNmid The best and mean solutions of the current population
SNrd A random solution in the present population
Fitrd, Fitj Fitness values of two solutions, SNrd and SNj
LWPm, PFWPm Location and power factor of the mth wind farm
SNMin

j ,SNMax
j Lower and upper boundaries of the solution SNj

DSj The jth dependent variable set
DSMin

j , DSMax
j Lower and upper boundaries of the jth dependent variable set

Fitnew
j Fitness value of the new solution jth
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Appendix A

Table A1. Nodal prices of the IEEE 30-node system.

Node Price ($/MWh) Node Price ($/MWh)

1 19.54 16 19.7
2 19.62 17 20.03
3 19.52 18 19.94
4 19.51 19 20.16
5 20.95 20 20.16
6 19.72 21 19.67
7 20.3 22 19.47
8 19.84 23 18.88
9 19.92 24 18.57
10 20.02 25 16.09
11 19.91 26 15.29
12 19.15 27 15.1
13 15.2 28 19.74
14 19.43 29 15.49
15 19.38 30 15.75

Table A2. Nodal prices of the IEEE 118-node system.

Node Price ($/MWh) Node Price ($/MWh) Node Price ($/MWh) Node Price ($/MWh)

1 48.551 31 100.367 61 35.387 91 48.574
2 50.574 32 48.706 62 48.339 92 48.204
3 52.681 33 50.354 63 33.582 93 50.212
4 48.369 34 48.568 64 36.862 94 34.725
5 50.384 35 50.625 65 33.758 95 36.114
6 48.206 36 48.479 66 31.667 96 36.114
7 50.215 37 50.592 67 32.987 97 34.607
8 48.007 38 50.553 68 35.164 98 34.725
9 32.300 39 50.553 69 33.249 99 48.504
10 31.008 40 48.531 70 48.557 100 33.336
11 37.101 41 50.950 71 50.453 101 52.221
12 35.617 42 48.912 72 48.094 102 50.212
13 50.354 43 50.592 73 48.435 103 34.349
14 50.354 44 52.616 74 48.243 104 48.046
15 48.340 45 57.593 75 50.253 105 48.208
16 37.101 46 55.290 76 48.380 106 50.100
17 50.554 47 57.593 77 48.538 107 48.096
18 48.532 48 57.593 78 50.561 108 50.216
19 48.391 49 31.719 79 34.607 109 50.074
20 50.408 50 33.040 80 33.222 110 48.071
21 52.424 51 33.040 81 34.607 111 31.143
22 52.424 52 39.615 82 50.561 112 48.519
23 50.426 53 38.091 83 52.001 113 48.676
24 48.409 54 36.568 84 50.001 114 50.736
25 29.177 55 48.738 85 48.001 115 50.608
26 30.871 56 48.600 86 38.903 116 48.138
27 48.584 57 50.625 87 37.347 117 37.101
28 50.608 58 50.625 88 32.752 118 50.396
29 104.549 59 32.238 89 31.442
30 50.007 60 33.582 90 48.613
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Table A3. Optimal solutions obtained by JSA for study cases with the placement of wind turbines
and the consideration of electric market.

Variable Case 3 Subcase 5.1 Subcase 5.2 Subcase 5.3

PT2 (MW) 44.44 44.28 36.82 31.54
PT5 (MW) 20.51 20.40 17.73 17.13
PT8 (MW) 10.03 10.00 10.00 10.00
PT11 (MW) 10.03 10.00 10.00 10.00
PT13 (MW) 12.00 12.00 12.00 12.00

Vol1 (Pu) 1.10 1.10 1.10 1.10
Vol2 (Pu) 1.06 1.06 1.06 1.06
Vol5 (Pu) 0.95 0.95 0.95 0.95
Vol8 (Pu) 0.95 0.95 0.95 0.95
Vol11 (Pu) 0.97 0.97 0.97 0.97
Vol13 (Pu) 0.98 0.98 0.98 0.97

QC10 (MVAr) 0.07 0.00 0.00 0.00
QC12 (MVAr) 0.28 5.00 5.00 0.11
QC15 (MVAr) 0.23 0.00 0.00 0.00
QC17 (MVAr) 0.18 0.00 0.00 0.00
QC20 (MVAr) 1.74 1.34 1.34 3.72
QC21 (MVAr) 0.07 0.00 0.00 0.00
QC23 (MVAr) 0.10 0.00 0.00 0.00
QC24 (MVAr) 0.00 0.00 0.00 0.00
QC29 (MVAr) 1.16 5.00 5.00 5.00

Tp11 (Pu) 0.90 0.90 0.90 0.90
Tp12 (Pu) 1.07 1.10 1.10 1.10
Tp15 (Pu) 0.90 0.90 0.90 0.90
Tp36 (Pu) 0.90 0.90 0.90 0.90
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