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Featured Application: With the continuous development of the software industry, software is
gradually becoming more inclined towards containerized deployment. This paper provides a
prediction algorithm based on deep learning to monitor and record the resource usage of the
machine and predict future resource usage so that the server can sense the future traffic load in
advance and realize automatic scaling.

Abstract: In this paper, a deep learning-based prediction model VMD-GLRT is proposed to address
the accuracy problem of service load prediction. The VMD-GLRT model combines Variational Mode
Decomposition (VMD) and GRU-LSTM. At the same time, the model incorporates residual networks
and self-attentive mechanisms to improve accuracy of the model. The VMD part decomposes the
original time series into several intrinsic mode functions (IMFs) and a residual part. The other part
uses a GRU-LSTM structure with ResNets and Self-Attention to learn the features of the IMF and
the residual part. The model-building process focuses on three main aspects: Firstly, a mathematical
model is constructed based on the data characteristics of the service workload. At the same time, VMD
is used to decompose the input time series into multiple components to improve the efficiency of the
model in extracting features from the data. Secondly, a long and short-term memory (LSTM) network
unit is incorporated into the residual network, allowing the network to correct the predictions more
accurately and improve the performance of the model. Finally, a self-focus mechanism is incorporated
into the model, allowing the model to better capture features over long distances. This improves
the dependence of the output vector on these features. To validate the performance of the model,
experiences were conducted using open-source datasets. The experimental results were compared
with other deep learning and statistical models, and it was found that the model proposed in this
paper achieved improvements in mean absolute percentage error (MAPE).

Keywords: deep learning; cloud computing; microservices; time series analysis

1. Introduction
1.1. Background

In recent years, microservices have seen rapid development, and service containeriza-
tion has become an increasingly popular method for deploying application services in the
industry. Furthermore, an increasing number of software applications are being deployed
to the cloud [1]. However, the load of a service is closely related to its function, meaning
that services with different functions in different scenarios have different levels of load,
and thus require additional hardware resources. However, hardware resources are often
limited. To make the most of these resources, horizontal scaling should be employed when
the service load is too high to reach the hardware resource utilization threshold.

Traditional monolithic applications cannot cope with the shortage of local resources
and scalability dilemma. Therefore, the hybrid cloud has become a hot direction for current
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applications, but workflow scheduling is still a fundamental problem to be studied [2].
At the same time, the waste of resources caused by low service load cannot be ignored.
These problems lead to the resources not being fully utilized, so there is a contradiction
between the demand for software and hardware resources and the imbalance of utilization.
Currently, the most popular cloud deployment management method is Kubernetes (K8s)
cluster management, which allows for more precise resource configuration under the
original processing method. As such, this paper is based on K8s as the foundation for
service deployment. Finding the optimal load level for different services and resolving
inefficient resource scheduling based on existing resource conditions to ensure efficient
software operation is a complex problem.

To address these issues and ensure that the software maintains an appropriate resource
allocation method across different periods, resource allocation is typically carried out in
advance in the same historical period, relying on experience-based judgment. However, as
software continues to evolve and update, a manual review can become a cumbersome task
when there are too many services, compromising the accuracy of the decision, particularly
when expanding traditional applications, resulting in a higher cost. Therefore, the value of
using an empirical judgment approach is invaluable and far outweighs the benefits, which
do not meet the current needs of microservice software development and deployment.
Furthermore, incorrect predictions can lead to Service Level Agreement (SLA) violations,
resulting in a significant waste of resources or system instability [3]. Accurately predicting
the performance of application services is essential for effective scheduling and resource
allocation, and can be beneficial for service migration and efficient resource allocation [4].

Exploring how to effectively leverage the fast response of edge servers and the pow-
erful processing of global schedulers to address workflow scheduling problems has great
potential for research [5]. Consequently, a prediction-based resource allocation is urgently
needed to maximize the value of applications with limited resources [6].

1.2. Related Work

Service load data can typically be viewed as a time series analysis problem, which
is typically approached from three perspectives: statistical methods, machine learning
methods, and deep learning methods. To reduce the high maintenance costs associated
with over-provisioning or under-allocating resources in the cloud environment, many
recent studies have proposed solutions based on machine learning and deep learning to
predict cloud host resource utilization.

1.2.1. Machine Learning

Machine learning has become increasingly popular among scholars due to its many
advantages, such as the ability to train on large datasets and use labeling, prediction, and
other operations to obtain a more accurate prediction model.

The study in [7] proposed an Evolutionary neural Network NN (ENN) that used
Particle Swarm Optimization (PSO), Differential Evolution (DE), and the covariance matrix
adaptive optimization evolution strategy. This method can predict more accurately in a
short time, but in the long run, there is a decrease in accuracy. The study in [8] proposed an
Automatic Regression Integrated Moving Average workload forecasting (ARIMA-PERP)
model, which determined the best-fitting ARIMA model by minimizing Information Cri-
terion, Enhanced Minimizing Information Criterion, and Bayesian Information Criterion
(BIC). It realized the accurate advance of node load in advance, and the accuracy reached
91.11%. The study in [9] proposed a prediction method based on ensemble learning, which
used the fast-learning ability of an Extreme Learning Machine (ELM) to reduce the con-
sumption of training time, selected its weight based on a heuristic algorithm to predict the
load of the cloud resources and improved the prediction accuracy compared with the tradi-
tional model. The study in [10] proposed a novel hybrid wavelet time series decomposition
and GMMH-ELM ensemble method (WGE) for NFV workload prediction, which predicted
and integrated workloads on different time-frequency scales. Compared with the tradi-
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tional SVR and LSTM on multiple data sets, the MAPE was improved by about 8%. The
study in [11] proposed a prediction method based on support vector regression, which used
the historical host utilization of multiple resources to train support vector machines and
realize prediction. Compared with the traditional linear regression prediction, Euclidean
distance, and regression based on absolute sum, the proposed method performed better
in many aspects, such as mean square error and fundamental percentage error. The study
in [12] analyzed and compared the prediction results of more mainstream machine learning
methods, such as linear regression and ElasticNet, with the Gated Recurrent Unit (GRU).
The results show that it can provide superior prediction accuracy with increased data
volume, which is contrary to the traditional machine learning methods. Therefore, it was
concluded that the deep learning method is excellent for the conventional machine learning
regression algorithm in time series modeling and can provide superior prediction accuracy.

1.2.2. Deep Learning

Deep learning methods have seen rapid growth in time series modeling, with many
researchers taking advantage of their powerful capabilities and ability to automatically
extract features to cope with time series.

The study in [13] proposed a load prediction method based on LSTM to improve
network speed. This method considered the problem of insufficient resources in Edge Data
Centers (EDC) and combined it with user mobility and geographical location information to
improve prediction accuracy. Compared with the traditional statistical method, the accuracy
of the proposed method increased by 4.21% on average. The study in [14] proposed a cloud
workload prediction algorithm, L-PAW, based on deep learning. The model integrated
the designed TSA and gated recurrent unit into RNN to achieve adaptive and accurate
prediction of highly variable workloads. L-PAW achieves superior performance. The
study in [15] proposed an integrated prediction method combining Bidirectional and
Grid Long Short-Term Memory networks (BG-LSTM) to predict workload conditions and
resource usage records. The Savitzky–Golay filter smoothed the model to eliminate noise.
Experiments show that the model has good performance and adaptability. The study in [16]
proposed a prediction model, CPW-EAMC, based on a noise reduction algorithm and
neural network, which improved the robustness of the prediction algorithm through noise
reduction, used a multidimensional prediction network, and comprehensively evaluated
the model combined with the CMES evaluation standard. Compared with other popular
methods, the performance was improved by up to 17%. The study in [17] established
a deep learning module, SG-CBA, based on the Convolutional Neural Network (CNN)
and Long Short-Term Memory network (BiLSTM) and integrated the filter and attention
mechanism. Experiments were carried out on the accurate public data set of Alibaba. The
results showed that compared with the traditional and more popular models, it could
achieve better performance. Inspired by the translation of the long text, the study in [18]
proposed a technology based on Attention-seq2seq to predict a load of cloud resources,
which solved the problem of RNN forgetting critical information in long-term sequences
and tested it on public data sets. Compared with other models, the accuracy was improved
while the training time on the model was reduced, which showed the effectiveness of the
current model. The study in [19] used the combination of GRU and LSTM to model the
time series of node load data, selected the combination data of CPU and memory usage
through the random forest, and used the combination model to predict it. The results
showed that compared with traditional statistical methods, single deep learning methods,
and combined prediction methods, the proposed method achieved good performance
in prediction results. The study in [20] proposed a combined load forecasting method
based on IF-EMD-LSTM (IEBL), which integrated the Isolation Forest algorithm (IF) and
Empirical Mode Decomposition (EMD) into LSTM to improve the accuracy of forecasting.
The experimental results showed that the error of the combined forecasting model was
reduced by up to 18.72%. The prediction accuracy was higher than its corresponding single
prediction model.
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Many problems can be solved for time-series prediction: for example in the liter-
ature [21–23], where several prediction methods were proposed for a load of services.
Additionally, under other application areas, for example in the literature [24–26], prediction
methods have been proposed for PM (2.5), freight volumes, and so on. From the above
analysis, it can be concluded that the combined prediction model always outperforms the
single prediction model in terms of performance, both in terms of machine learning and
deep learning. Moreover, many of the prediction models currently proposed for cloud
computing load problems have improved performance compared to traditional prediction
models, but their overall accuracy needs to be improved. Therefore, there is still an urgent
need for a load prediction model with a high degree of accuracy to cope with such problems.

1.2.3. Contribution

This paper proposes a service load prediction method (VMD-GLRT) based on VMD
and GRU-LSTM, based on the background of the above problem. This paper begins
by modeling the problem based on service load prediction characteristics. The network
structure was constructed based on the problem model to extract data features. Firstly, the
input load data were decomposed into multiple signal feature components and the modal
signals were modeled in time series. Secondly, the prediction results were corrected based
on the residual blocks incorporated into the long and short-term memory network and a
self-attentiveness mechanism was introduced, which can extract the features of the signal
vector associated with the other, improving the generalization ability of the model. Finally,
the final prediction results are derived by signal fusion. To verify the performance of the
models, more recent and novel models in the field of time series processing were chosen
for testing in this paper, and then the models are ablated and compared based on the same
configuration with the same data set.

2. Materials and Methods
2.1. Model Building

In this paper, the result is assumed to be the output of a model component, with the
load data decomposed into n components with a total of t features. The problem model is
then formulated as (1) through formal description:

resultt
i = model

(
yt

i −
n

∑
i=1

IMFt
i

)
+

n

∑
i=1

pt
i (1)

Service load is affected by many factors, with yt
i representing the actual load data and

IMFt
i representing the component data, a part of the original data, after mode splitting. The

component data are the result of the VMD decomposition, which represents a component
of the original data, and we will refer to the VMD decomposition several times later when
we discuss the VMD mode decomposition. The difference between the two is the residual
sequence of the actual data. Since the components after modal decomposition cannot be
entirely consistent with those before deterioration after merging, the difference between the
accurate data and the sum of each component is regarded as the residual sequence of the
load data and sent to the model for prediction. The prediction results of each other element
are represented by pt

i , and the service load value at the next time point can be obtained by
summing up the prediction results of all components, including the residual sequence.

The model utilizes the fast convergence ability of GRU and the prediction accuracy
of LSTM to accurately extract the service’s load characteristics by decomposing the input
signal into multiple variables using VMD. The overall structure of the model is shown in
the following figure:

The model takes
[
x1, x2, . . . , xn] as input, where n is the number of feature vectors.

Variational mode decomposition, feature extraction, and feature fusion are then applied
to the input, resulting in the output of the corresponding prediction result sequence[
y1, y2, . . . , yn]. Before the data can be input into the GRU, they need to be modally
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decomposed, as shown in the dashed box in Figure 1. The steps of the model processing
are as follows:
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Firstly, the input data are preprocessed to form the initial input matrix
[
x1, x2, . . . , xn],

and the corresponding multivariate matrix of the data is obtained by modal decomposition
for the single variable of the input data. The formal expression is shown as Equation (2),
where n is the number of components and m is the dimension of the feature vector.

Secondly, the variables after the modal decomposition of each variable are recombined
according to the order of the components of the modal decomposition to form the input
features. Then, the GRU is used for feature extraction, and then the residual block based on
LSTM is corrected and sent to LSTM to obtain accurate prediction results.

Finally, the correlation distance between each component is shortened through the
self-attention mechanism, and the correlation relationship between each element is fully
extracted. The final prediction sequence

[
y1, y2, . . . , yn] can be obtained through feature

fusion. The relevant details are presented in the following, where 2.2 is the modal decom-
position process and 2.3 is the prediction process.

An×m =


IMF1
IMF2
. . . . . .

IMFn−1
IMFn

 =

a11 · · · a1m
...

. . .
...

an1 · · · anm

 (2)

2.2. Signal Decomposition Method and Process

Before the data are input into the GRU, considering that different services show
different business characteristics under the load, and the model feature extraction will
also affect the model’s performance, the model’s data characteristics should show certain
regularity, highlighting its business-aware characteristics. Therefore, in this paper, the
input data are decomposed by variational mode decomposition. In this paper, it is assumed
that any set of load sequences is composed of multiple variables vk(t), and ωk is the center
band frequency of each component, where k is the component sequence number of mode
decomposition. For each set of input service load data,

• Firstly, vk(t) is transformed by Hilbert transform to obtain the analysis signal and its
center band is modulated:

Lk(t) =

[(
δ(t) +

j
πt

)
× vt(t)

]
e−jωkt (3)
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• The squared norm L2 of the modulation center band is calculated and the bandwidth
of each IMF is estimated as follows:

min
{vk}, {ωk}

{
∑
k
‖βtLk(t)‖2

}
s.t. ∑

k
vk = s

(4)

• To find the optimal solution to the original problem, the Lagrange multiplier λ(t) and
the factor α are introduced in the current step, and the problem is transformed into an
unconstrained variational problem with the Lagrange operator and quadratic penalty
term, which is formalized as follows:

L({ωk}, {uk}, λ) = α ∑
k
‖βtLk(t)‖2 + ‖s(t)−∑

k
vk(t)‖2 +

〈
λ(t), s(t)−∑

k
vk(t)〉

〉
(5)

• Finally, the alternating direction method of multipliers is used to continuously update
each component and its center frequency, and the solution to the original problem can
be obtained. It is updated as follows:

vn+1
k (ω) =

ŝ(ω)−∑i 6=k v̂i(ω) +
λ̂(ω)

2

1 + 2α(ω−ωk)
2 (6)

On the symbol of vn+1
k (ω), ŝ(ω) and λ̂(ω), respectively, corresponding vn

k (t), s(t) and
λ(t) and the Fourier transform of lambda (t).

• Based on the above analysis results, the algorithm re-estimates the center frequency:

1. Initialize
{

v̂1
k
}

,
{

ω̂1
k
}

,
{

ω̂1
k
}

and n;
2. execute cycle n = n + 1;
3. When ω > 0, update v̂k according to (6);
4. update ωk and λ. The formula is given below:

ωn+1
k =

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

(7)

λ̂n+1(ω) = λ̂n(ω) + λ

[
f̂ (ω)−

K

∑
k=1

ûn+1
k (ω)

]
(8)

5. When the accuracy (calculated as shown in Equation (9)) reaches a given con-
straint value ε and the component has reached k components, the algorithm is
exited, and the optimal modal component is thus obtained. The symbol ε above
is the precision of the iteration, and when ε is less than 1 × 10−6, this results in
the push-out condition.

K

∑
k=1

(
‖ûn+1

k (ω)− ûn
k (ω)‖2

2

‖ûn
k (ω)‖2

2

)
< ε (9)

After the algorithm is executed, the components of the mode decomposition can be
obtained from the optimization results. To account for errors in the modal variables and
different conditions of service loads, the original sequence is obtained by accumulating the
components obtained after modal decomposition with the original data, and it is directly
sent to the model for prediction to obtain more accurate prediction results. This is the
processing process before feeding into the model, as shown in the front part of GRU in
Figure 1.



Appl. Sci. 2023, 13, 3315 7 of 14

2.3. The Residual Structure of Long-Term Memory

To accurately predict the future form of features under other business-aware charac-
teristics in microservices, where the behavior of the service load is different, this paper
introduces a gated neural network to extract the features of the input data, allowing the
model to converge quickly. To avoid the problem of model degradation and long-term
memory loss caused by depth, LSTM and the convolutional layer are combined to form the
residual block. The self-attention mechanism is integrated to further improve the accuracy
of prediction by enhancing the depth of the model and the correlation between the model
and historical data, thus obtaining the characteristics of the load data accurately. As shown
in the right-hand part of the dotted box in Figure 1.

For each input service load data
[
x1, x2, . . . , xn], feature extraction is first performed

through GRU, followed by residual correction through multi-layer residual blocks. The
residual sequence is then learned and merged with the original sequence to obtain a more
accurate result, which is then input into LSTM to receive the output result of the model.
The residual connection structure diagram is shown in Figure 1 in the yellow box, while
the model structure is shown in Figure 2. GRU is composed of an update gate and reset
gate, and LSTM is composed of an input gate, output gate, and forget gate.
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This paper combines multiple GRU units to achieve preliminary model feature extrac-
tion. For any set of service load data

[
x1, x2, . . . , xn], it is directly input into the gating unit.

Then, with the last unit output logic operation, it aims to ensure the memory of important
information. Its forgetting process (Equation (10)) and memory process (Equation (11)) is
expressed as follows.

Rt = σ(XtWxr + Ht−1Whr + br) (10)

Zt = σ(XtWxz + Ht−1Whz + bz) (11)

where X is the service load data, H is the output of the gating unit at the last time, W is the
weight value that should be questioned or remembered at the corresponding time, and b is
the bias value. The memory and forgetting capabilities of the gated unit can be provided
by calculation, and the results of the two will directly affect the feature extraction of the
next unit. Therefore, the final processing result can be obtained by fusing the output with
the hidden state. The calculation is as follows, as shown in (12):

Ht = Zt � Ht−1(1− Zt) + tan h� (XtWxh + (Rt � Ht−1)Whh + bh) (12)

� symbol according to the elements multiplication.
To improve the accuracy of the model, the results of the above calculations are fed

into the residual block of the LSTM. Let the output of the upper layer network be
{

yt
n
}

and
H(x) be the desired output of the residual network, while this paper builds the following
mathematical model based on the current assumptions, as shown in (13):

H(x) =
{

yt
n
}
+ f (x) + x (13)
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where f (x) is the residual sequence fit and x is the feature sequence of the LSTM. In the
model, the characteristics of the key information should not be forgotten, so that the
forgetting process can be constructed, as shown in (14).

ft = σ
(

W f · [ht−1, xt] + b f

)
(14)

Since the update gate is similar in structure to the forget gate, the only differences
between the two are the weights and biases, so it can be expressed as shown in (15).
Similarly, the output gate ot is the same, differing only in weight and bias. While the
forgotten gate is processed, the original signal is concatenated and scaled to obtain C̃t, as
shown in (16).

it = σ(Wi · [ht−1, xt] + bi) (15)

C̃t = tan h(Wc · [ht−1, xt] + bc) (16)

According to Figure 2, ft is obtained by forgetting the non-critical information, multi-
plying the input data with the scaled data C̃t after the update operation, and adding it to
the result of multiplying the previous state with the forgetting gate to obtain the current
output Ct. A formal expression is shown in (17).

Ct = ft × Ct−1 + it × C̃t (17)

g(x) = ot × tanh(Ct) (18)

Finally, the output gate is multiplied by the scaling of the output result, which is then
fed into the convolution layer for convolution, and the result is fed into the LSTM network
to produce the final prediction result of the model.

For a long time in input time series, RNN still has the problem of forgetting, and the
model is challenging to extract the feature relationship between distant vectors, which
leads to incomplete feature extraction of historical load data, and makes the trained model
produce poor performance. From the sequence analysis, the input of this paper is multi-
dimensional, and the result sequence is mainly a new sequence obtained by combining
the CPU and memory usage at a specific time. Since CPU and memory usage is related to
metrics such as network requests and disk IO operations, this paper considers the combined
input of associated sequences.

Considering the above problems, this paper introduces the self-attention mechanism to
extract the relationship features between different input vectors. For any input time series
{Xn} containing multidimensional features, each input vector x corresponds to the output
of a y, and each input variable x needs to be tested for the correlation of historical input
vectors. In short, each input vector will be associated with the history vector through the
self-attention mechanism when corresponding to the output vector, shorten the relationship
with the long-distance vector, and extract as many features as possible to improve the
accuracy of model training. Its structure diagram is shown in Figure 3 below.
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3. Result and Discussion
3.1. Data Acquisition and Processing

To test the prediction performance of the model proposed in this paper, Alibaba’s
open-source service load data Cluster-trace-v2018 is selected as the data set [21], which
contains the machine load data of more than 4000 machines for eight days. In this paper,
the resource usage of an apparatus for eight days is selected, and a total of 3300 load data
are used as the data set. The combination of CPU and memory resource utilization is used
to load data [27]. At the same time, the data of multiple dimensions, such as network usage
and disk IO, are also included to form a data set. The cross-validation method is used for
verification, and the last 300 records are used as the verification set to verify the model’s
generalization ability.

First of all, because different software services have other performance characteristics
in different application scenarios, even on various modules of the same software, there
will be many differences in their load conditions. Therefore, in this paper, before using the
data, firstly, for the unstable sequence, the VMD mode decomposition is used to divide
the multidimensional features into multiple relatively stationary IMF components so that
they tend to be relatively stationary. This paper’s decomposition effect of the prediction
divided into five modes and feature combination columns is shown in Figure 4 below.
The first layer is the original sequence, and the following five layers are the data after
modal decomposition.

Referring to the method in the study in [28], the IMF is set to 5 components. As
shown in Figure 4, IMF1-IMF5 are data from different center frequency bands. Since it is
not possible to completely decompose each time, there is always some error in the result.
Assuming that IMFres is the residual sequence after the decomposition of the original
sequence, the difference between the original sequence and the decomposed sequence
is the value of the residual sequence IMFres. This paper considers that IMFres is also an
additional component of the modal decomposition, except that the current component
is not derived directly from the algorithm, but from the difference between the original
sequence and the already decomposed variables.
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3.2. Experiments and Results

Based on the above processing results, ablation and comparison experiments are con-
ducted in this paper to test the influence of the GRU-LSTM model with residual block and
attention mechanism on the prediction results. Comparative experiments are conducted
to compare the model proposed in this paper with the statistical methods, deep learning
methods, and other recent research models, and the prediction performance of the model is
analyzed by comparing various evaluation indicators of the prediction results. Quantitative
evaluation and comparison of the model evaluation indicators are conducted using MSE,
RMSE, MAE, and MAPE.

The experimental process of this paper mainly includes four parts: data processing
and parameter setting, prediction, result processing, and evaluation and comparison. To
make the experimental results more accurate and comparable, all the model parameters are
set uniformly in this paper, and the parameters are shown in Table 1. The experimental
content is mainly divided into ablation experiments and contrast experiments. In this paper,
the batch size is 32, the hidden layer in LSTM is 128, the learning rate is 0.00065, the number
of iterations is 400, the step size of the sliding window is 1, and the IMF is the number of
modal decompositions with five components.

Table 1. Model configuration item Settings.

Config Value

batch size 32
hidden 128

IMF 5
LR 0.00065

dropout 0.25
epoch 400

3.2.1. Ablation Experiment

Since this paper is optimized and upgraded based on the GRU-LSTM combined model,
in this experiment, the integrated model of GRU-LSTM is used as the basic module as
the basic model. At the same time, the residual block and the self-attention mechanism
module are added and, finally, the signal decomposition is carried out. The prediction
results are fused to obtain the final prediction results. Ablation experiments are performed
based on the same data set and configuration. The comparison results are shown as follows
(Figure 5):
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Figure 5. Model prediction results for ablation experiments.

It can be seen from Figure 5 that the performance of the model in this paper is improved
compared with the original model. From the trend point of view, the model’s accuracy is
better than the original GRU-LSTM model after adding the module, and the error rate is
reduced. To more accurately describe the new energy of the model, this paper records the
experimental ablation model’s experimental evaluation index results and the evaluation
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index of different models, as shown in Table 2 below. The bold one is the algorithm of this
paper, and the underlined one is the optimal result.

Table 2. Evaluation indexes of ablation experiments.

Model MSE RMSE MAE MAPE

GRU-LSTM [16] 19.8621 4.4567 3.2288 5.06
GLSTM-RS 19.7945 4.4491 3.223 5.0497
GLSTM-RT 19.6048 4.4277 3.2036 5.0262

VMD-GLRT 7.3306 2.7075 1.9393 3.0494

At the same time, it can also be concluded from the table that the MSE of GRU-LSTM on
the test set is 19.8621, and the MAPE is 5.06%. GLSTM-RS combines the residual structure
based on LSTM to deepen the depth of the network, so its MSE on the validation set is
19.7945, which is slightly improved compared with the performance of the original model,
which can show that the introduced residual block is helpful to improve the performance
of the model. Based on introducing the residual structure, GLSTM-RT incorporates the
self-attention mechanism. From the analysis of the experimental structure, it can be seen
that the MSE of the model is 19.6048. Compared with the original model and the results
integrated with the residual network, the error is reduced, and the accuracy is improved. It
can be seen that the introduction of the self-attention mechanism can shorten the distance
between the input vector and the historical vector in time series prediction to improve the
accuracy of the model.

3.2.2. Comparative Experiment

Based on the previous analysis, this paper lists the existing combination models for
experiments and comparison from three aspects of statistical methods, machine learning,
and deep learning. To verify the effectiveness of the model, this paper will test and compare
other prediction models in the field and prediction methods in service load prediction. The
prediction result graph is shown in Figure 6 below.
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Figure 6. Model prediction results for Comparative experiments.

Figure 6 shows that the prediction results of each model can be consistent with the
primary trend under the premise of the same environment and setting. Comparing the
proposed model with its base reference model, GRU-LSTM, the MAPE phase is improved by
about 2%. To verify the model’s generalization ability, the model in this paper is predicted
and compared with CNN-BiLSTM, ARIMA-LSTM, and Attention-TCN, which are novel
models in recent studies from two aspects of statistical methods and deep learning methods.
It can be seen from the results that the model proposed in this paper has a better prediction
effect on the whole and is superior to other models in terms of trend and accuracy.

To further illustrate the prediction performance and effect of the model, this paper
evaluates the model based on the four evaluation indicators of MSE, RMSE, MAE, and
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MAPE, and the results of each item are shown in Table 3 below. The bold one is the
algorithm of this paper, and the underlined one is the optimal result.

Table 3. Experimental comparison results.

Model MSE RMSE MAE MAPE

CNN-LSTM [22] 31.0664 5.5737 3.8658 5.8844
CNN-BiLSTM [24] 33.3091 5.7714 3.9759 6.1116
ARIMA-LSTM [25] 20.8844 4.5699 3.4509 5.3942
TCN-Attention [26] 25.3666 5.0365 3.8517 6.0587

GLSTM [27] 19.8621 4.4567 3.2288 5.0600
VMD-GLRT 7.3306 2.7075 1.9393 3.0494

Compared with the GRU-LSTM model proposed in the literature [27], the model
presented in this paper has dramatically improved in all indicators. It can be seen from the
data in the table that compared with the evaluation index results obtained by the recent
model on the validation set, the prediction model proposed in this paper can achieve a
more accurate performance. The study in [25] uses three proportions of equal weight
average, differential reciprocal, and objective assignment to merge the prediction results
of the combined model and obtain the optimal result. This paper compares the optimal
results obtained under the differential typical weight setting method. The results show
that the MAPE of this prediction method is increased by about 2.4% compared with this
result. The MSE is reduced by about 13.5538, reducing the model’s error rate. Compared
with the prediction results of the study in [26], the MAPE of this paper is reduced by about
3%, and the MSE is reduced by about 18.036, which dramatically improves its accuracy.
On the same data set, compared with the method of visualizing time series and extracting
and predicting features through CNN and LSTM proposed by the study in [23], this paper
uses the same data set for prediction and comparison, and it can be seen that the proposed
model in this paper reduces MAE by about 1.8837. It can be seen that the prediction results
of the proposed model are closer to the actual value.

Through the above analysis, the model in this paper is superior to the existing statistical
prediction methods and deep learning prediction methods in terms of evaluation indicators.
In actual situations, the model can effectively deal with the differences in service load
characteristics of different software in different scenarios and provide a reliable service
load prediction scheme to help the industry predict the load demand of various services
in different application scenarios in the future, provide response preparation for software
practitioners, and make policy warnings in advance.

4. Conclusions

This paper proposes a service load prediction model, VMD-GLRT, based on VMD,
to address the issue of inaccurate prediction results of current deep learning models. The
model uses VMD to decompose the unstable time series data into modal components that
tend to be stable, thus facilitating the extraction of features. Additionally, the self-attention
mechanism and residual network are introduced to improve the accuracy of the prediction
results. Ablation experiments and comparison experiments were conducted to verify
the effectiveness of the model, and the results show that the proposed model has better
generalization ability, improves the accuracy of load prediction, and meets the demand of
industry for service load prediction, allowing for reasonable resource allocation of services
in advance.
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