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Abstract: Raw image classification datasets generally maintain a long-tailed distribution in the real
world. Standard classification algorithms face a substantial issue because many labels only relate
to a few categories. The model learning processes will tend toward the dominant labels under the
influence of their loss functions. Existing systems typically use two stages to improve performance:
pretraining on initial imbalanced datasets and fine-tuning on balanced datasets via re-sampling or
logit adjustment. These have achieved promising results. However, their limited self-supervised
information makes it challenging to transfer such systems to other vision tasks, such as detection
and segmentation. Using large-scale contrastive visual-language pretraining, the Open AI team
discovered a novel visual recognition method. We provide a simple one-stage model called the text-
to-image network (TIN) for long-tailed recognition (LTR) based on the similarities between textual
and visual features. The TIN has the following advantages over existing techniques: (1) Our model
incorporates textual and visual semantic information. (2) This end-to-end strategy achieves good
results with fewer image samples and no secondary training. (3) By using seesaw loss, we further
reduce the loss gap between the head category and the tail category. These adjustments encourage
large relative magnitudes between the logarithms of rare and dominant labels. TIN conducted
extensive comparative experiments with a large number of advanced models on ImageNet-LT, the
largest long-tailed public dataset, and achieved the state-of-the-art for a single-stage model with
72.8% at Top-1 accuracy.

Keywords: unmanned aerial vehicle; state grid; transmission line clamps; image classification;
multimodule fusion; neural network; long-tailed-recognition

1. Introduction

Transmission lines are at the heart of the power patrol and inspection tasks as their
regular operation is linked to people’s productivity and lives [1,2]. A clamp is a critical
transmission line component that connects the transmission line and high-voltage tower
components [3]. Due to prolonged exposure, the hardware is susceptible to erosion and
fall-off, causing power fluctuations and possibly large-scale power outages, resulting in
significant economic losses. The most typical fault of concern is clamp rust, which poses a
severe risk. Accidents involving power outages caused by rust and transmission line clamps
sliding off are typical [4]. Considering the wide range of such accidents, the identification
of clamp problems is critical for ensuring the stable and long-term operation of a power
system. The current clamp dataset was uniformly photographed by an unmanned aerial
vehicle (UAV) following the regulations of the State Grid [5]; please read Section 4 for
further information. Since no study on rust-related efforts is available in the literature, we
must create a model based on this dataset to obtain better outcomes.
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Vision-based deep learning models have made remarkable progress in recent years in
areas including object detection [6–8], semantic segmentation [9,10], and image classifica-
tion [11–13]. However, long-tailed recognition (LTR), as a classification branch, has long
puzzled scholars [14]. As classification problems in the real world tend to exhibit long-
tailed imbalanced distributions, most labels are associated with only a few samples [15,16].
Models trained on these datasets accrue more gradients and slant the outcomes toward
dominant labels, resulting in poor results belonging to fewer sample categories.

Compared with the high cost of creating a more balanced dataset (e.g., MSCOCO [17]
or ImageNet [18]) with manual annotation, it is more cost-effective to improve the model
being utilized. After much effort, this problem has been alleviated through techniques
such as resampling the training data [19–26], reweighting gradients [27–29], loss function
replacement [30–32], transfer learning [33,34], and data augmentation [35–42]. Thus, weight
normalization relies on the use of more minor weight norms for rare classes, which are
also sensitive to the chosen optimizer. However, resampling forcibly destroys the origi-
nal data’s distribution to induce a more precise fit, resulting in suboptimal solutions in
real-world settings. Decoupled training is the most common and successful method at
present [43,44]. In the first stage, researchers often conduct pretraining and extract features
from the original dataset, and then train the chosen classifier using the above strategies
in the second stage. This method is not elegant and requires considerable computational
power for two consecutive training steps. The effect of this method still falls short in
LTR. Significant research has determined that the current model-based methods primarily
focus on the visual module and ignore the inherent relationship between text and visuals.
Providing a text information supervision signal for an inadequate dataset could be ben-
eficial. As a result, this research focuses on efficiently combining linguistic modules and
visual features to obtain the best effect at one stage.

Recently, excellent work has been carried out alongside the rise in contrastive visual
language learning, especially CLIP [45]. Multimodule visual models frequently learn the
low-level properties of targets (e.g., their color, structure, and texture). In contrast, text
models frequently display high-level semantic information and concepts, enabling them
to serve as highly effective supplemental solutions for unbalanced data. However, this
type of model is less effective in real-world scenarios due to the gap between visual and
text representations and the lack of robustness to noisy text. CLIP compares 400 million
image–text pairs collected from the web to produce consistent visual text representations,
revitalizing the vision community. These robust visual-language representations derived
from pretraining boost zero-shot classification performance in open-vocabulary settings
without further annotations. We propose a simple visual language template for LTR,
termed the text-to-image network (TIN), which is an end-to-end model that can combine
the benefits of text and visual modules in visual tasks.

Our model has only one stage, saving a significant amount of processing time relative
to two-stage models, and works well with imbalanced data. The primary process is as
follows. We pretrained the model on the original unbalanced dataset and obtained language
and visual expressions through comparative learning. Then, the large convolution kernel
was split into three parts to generate an attention map and weigh the original image;
this approach can better recognize the importance levels of different channels and ignore
irrelevant parts [46]. This operation can save computational resources and estimate each
channel’s importance when obtaining long-distance dependence, which is equivalent to
combining the advantages of self-attention and squeeze-and-excitation (SE) attention [47].
A seesaw loss replaced the cross-entropy loss to better balance the two modules and long-
tailed data [32]. Finally, classification results were obtained by matching the output text
expression and image features using cosine similarity.

We performed extensive experiments on the clamp and ImageNet-LT datasets, and, in
a fair comparison, our model outperformed the one-stage model by a considerable margin.
In summary, our contributions are three-fold:
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(1) We pioneer the introduction of text-supervised signals from natural language process-
ing in a computer-vision long-tailed dataset, and propose an end-to-end single-stage
model, TIN, after combining visual supervision and textual information.

(2) This innovative and simple template, TIN, consists of three main parts: two encoders,
one for extracting text templates and the other for extracting picture features, and one
visual attention method that can flexibly connect spatial location information and
channel dimension importance. Ultimately, the seesaw loss function can suppress the
negative gradient of the rare class and significantly improve the tail category, while
only slightly sacrificing the accuracy of the head class. Unlike the previous individual
visual information, we can combine visual features and text-supervised signals to
conclude that the language and visual modules are complementary, especially in the
case of sparse categories, effectively complementing the available information.

(3) Using the clamp dataset, we conducted a comprehensive evaluation to demonstrate the
effectiveness of the TIN, which substantially outperformed prior methods. Notably,
we also conducted generalization experiments on the largest long-tailed dataset,
ImageNet-LT, and TIN outperformed all single-stage advanced classifiers in recent
years and achieved a state-of-the-art performance without bells and whistles.

2. Related Works
2.1. LTR

The distribution of training data in classic classification and identification tasks is
typically artificially balanced, with no substantial variance in the sample numbers in
different categories. A balanced dataset simplifies the algorithm’s robustness requirements,
and somewhat ensures the reliability of the obtained model. However, as the number of
categories expands, the cost of maintaining a balance exponentially increases.

We can obtain all the data naturally if we ignore the artificial equilibrium, i.e., the
long-tailed dataset. Directly training for classification and detection tasks on these datasets
will result in head data overfitting and tail data underfitting.

Resampling and reweighting are the two most basic long-tailed distribution solu-
tions [19,25–29]. These strategies destroy the existing data distribution to fit an equilibrium
function, i.e., by reverse weighting, strengthening the tail category learning process, and off-
setting the long-tailed impact, thus reducing the effect of the head class to some extent.
Moreover, some researchers have discovered that the image feature and category distri-
butions are irrelevant. When learning to perform backbone feature extraction, we should
avoid resampling with the category distribution and instead use the original data distri-
bution [44]. Better outcomes can be achieved when extracting features in the first stage
and retraining the employed classifiers in the second stage. Additionally, some academics
believe that the head and tail classes have certain commonalities in transfer learning [48].
The visual information knowledge contained in head labels can be transferred to tail labels
via a set of dynamic meta embeddings [49]. Some works have also created virtual samples
to surround the tail samples to build a feature region, instead of the original feature points,
e.g., a feature cloud, to relieve the problem of sample scarcity. For further information, see
Table 1 for details.

Table 1. Summary of different learning approaches under class imbalances.

Method Reference

Re-sampling [19,25,26]
Re-weighting [27–29]

Loss adjustment [15,16,32]
Data augmentation [35,42]
Decoupled training [43,44]

Transfer learning [33,34,48,49]
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2.2. Vision-Language Models

Visionl-Language models are mainly divided into single-stream models and two-
stream models. A single-stream model combines picture and text embeddings and feeds
the result into a transformer model. On the other hand, a two-stream model allows the
visual and text sides of the input data to be encoded separately using two independent
transformers, where attention is inserted in the intermediate layer between the two encoders
to merge the multimodule information.

The visual encoder method primarily extracts features from images and feeds them
into a multimodule model. This primarily consists of three aspects: object detection (OD)-
based region features, convolutional neural network (CNN)-based grid features, and vision
transformer (ViT)-based patch features. OD-based region features identify the target region
in the given image using a pretarget detection model and extract the representation of each
region as the image side input. CNN-based grid features use CNN models such as ResNet
to extract information from the original image [11], tile the final CNN input features into
a sequence, and feed them into the multimodule model. ViT-based patch features extract
picture information using the patch embedding approach as a reference [50].

VisualBERT splices text and image embedding sequences and feeds them into a
transformer network using a single-stream model structure [51]. The network needs to
clarify whether each embedding comes from a text measurement, an image measure-
ment, or a position embedding. Then, the OD-based region feature extraction strategy is
used to identify the target area on the image side and identify the results as the inputs
for the next step. The text token is masked in one stage, and then the masked text is
forecasted using additional text and image information in the next stage. Finally, the ap-
proach evaluates whether the image and text are consistent. Unicode-VL describes location
data more thoroughly, creating a five-dimensional vector for each region [52]. The first
four dimensions show the region’s position with respect to the complete image, and the
fifth dimension represents the region’s size in proportion to that of the original image.
VL-BERT adds a visual feature embedding module to the input, using the original image to
improve the text encoding [53]. ImageBERT collects images and text from a website and
ranks the positive sample pairings to incorporate more weakly supervised data and boost
the learning effect [54]. Uniter calculates the corresponding relationship between the image
and text embeddings via optimal transport [55]. In mask tasks, a sample only masks one
module at a time during mask operations to avoid blocking critical information.

Lxmert [56], an OD-based two-stream model, employs two encoders to encode pictures
and words and an interactive transformer to fuse the two data streams. Instead of using
the OD technique, Pixel-BERT employs a CNN to extract the characteristics of the original
picture and then splices the image and text embeddings into the model, drastically reducing
the model’s complexity [57]. CLIP uses comparison learning to calculate the similarities
between pictures and labels by gathering 400 million image–text pairs from the Internet as
pretraining data; this approach has spawned a slew of CLIP-based models [45].

In this research, we demonstrate the effectiveness of CLIP in long-tailed data and the
benefits of comparative learning compared to standard classifiers. As a result, we offer
a CLIP-based single-stage network, which improves the essential information between
channels using visual attention, adjusts the weight balance via the seesaw loss, and achieves
a more balanced performance across all categories.

3. Methodology of TIN

This section provides a high-level summary of how the proposed multimodule model
TIN addresses the long-tailed problem.

3.1. Overall Architecture

Our proposed model was implemented in an end-to-end manner without requiring
secondary training and retuning, as illustrated in Figure 1. First, a pretraining CLIP
model extracts picture and text features and then merges them into a single-latitude
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space. Previous attempts based on multiself-attention (MSA) were fruitful [58], but they
overlooked the role of channels while focusing on the link between long and short distances.
In this paper, the larger convolution block was divided into three steps using visual
attention to reduce the number of calculations and obtain the attention map of every
point [46]. When the attention map and original characteristics are weighted, the visual
feature map can highlight the target features while weakening irrelevant information.
The seesaw loss can update the logit based on the label frequencies, ensuring that the
results are consistent with the distribution of the dataset. Ultimately, we conducted a
similarity match between the output of the CNN network and the output of the transformer
to obtain the final classification result.

Figure 1. Overview of our TIN template. We transmitted the original image and label templates to the
vision-language backbone of the long-tailed data. Visual attention was used to assess long-distance
dependencies, and the relevance of each channel was determined and reweighted to improve the
visual features. The gradients were reweighted according to the label frequencies when the head
class obtained several gradients. Finally, the accuracy of the tail class considerably improved while
the accuracy of the head class slightly decreased.

3.2. Contrastive Learning Model

The success of the GPT series [59] in natural language processing (NLP) proves that
learning from web-scale data can yield better results than good manual annotation [60];
however, this strategy is ignored in the computer vision (CV) field. CLIP establishes a
link between image and text via a visual encoder and a text encoder, and then trains the
model on 400 million pairs of image and text-in-text pairs of network data, with the aim
of learning the representation of images from text. This very large training dataset offers
CLIP the powerful ability to learn features and provides it with a zero-shot nature, making
it unparalleled in its adaptability to the environment and allowing for good results to be
obtained by direct inference on different datasets. The two encoders process text and image
data separately, with the text encoder using Transformer and the image encoder using
two models, ResNet or Vision Transformer (ViT). The visual encoder accepts an image as
input and the text encoder accepts a text sentence as input, e.g., ’The image is a {label}’.
The subsequent process can be divided into several steps. First, the image encoder and
text encoder are used to map an image I = {Ii}N

i=1 and all label templates T = {Ti}N
i=1

to different spatial dimensions, where N denotes the batch size, i.e., fv = EI
i (Ii) ∈ Rdv ,

ft = ET
i (Ti) ∈ Rdt . The features of the two modules are mapped to the same embedding

space and normalized through the dimension matrices Dv ∈ Rdv×d and Dt ∈ Rdt×d:

V =
DT

v fv

||DT
v fv||

, T =
DT

t ft

||DT
t ft||

(1)
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where V and T represent the normalized visual and textual features of the same dimension,
respectively, and N represents the number of image–text pairs in the batch. Then, we
optimize the two encodes via a contrastive learning loss, which can be formulated as:

Lv−t =Lvis + Ltext

=− 1
N

N

∑
i

log
exp
(
VT

i Ti/τ
)

∑N
j=1 exp

(
VT

i Tj/τ
)

− 1
N

N

∑
i

log
exp
(
TT

i Vi/τ
)

∑N
j=1 exp

(
TT

i Vj/τ
) .

(2)

The overall training goal was to maximize the high similarity score and decrease the
mismatch score when coping with matching losses from two separate directions. Lvis
and Ltext denote the loss of the visual and language sides, respectively, and τ is the
temperature parameter.

3.3. Visual Attention

Self-attention was first effectively used in NLP [58]. However, it has recently shown
promise in CV, capturing both long- and short-distance dependencies and exhibiting the
ability to spatially adjust. However, three faults remain when simply transferring self-
attention from NLP to CV:

(1) Limitation of dimensions: Self-attention is good at processing a one-dimensional
sequence structure, but ignores the image’s two-dimensional structural information if
it is directly employed for analysis.

(2) Limitation of model complexity: Processing high-resolution images is difficult due to
the complexity of self-attention.

(3) Concerns about spatial and channel inconsistencies: The self-attention mechanism
only considers spatial adaptation and ignores the channel dimension (e.g., the success
of SENet).

Convolution, as opposed to the self-attention method, can fully extract an image’s 2D
structural information, as shown in Figure 2; therefore, we can combine the advantages of
both techniques to design the network.

Figure 2. (a): The image input features; (b) the relevance of each point after visualization; (c) the
value of the green point depends on the information about the known surrounding points.

As shown in Figure 3, the large convolution kernel is split into three operations that can
reduce computational expense and generate long- and short-distance dependencies without
self-attention [46]. One K× K large kernel convolution, for example, can be broken down

into a
K
d
× K

d
depthwise convolution, a (2d− 1)× (2d− 1) depthwise convolution, and a 1
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× 1 pointwise convolution. According to the obtained attention map, the importance of
each point can be judged, and the attention formula can be simplified as follows:

Attention =Conv(input)
=Conv1×1(DW-D-Conv(DW-Conv(F))),

(3)

Output = Attention
⊗

F, (4)

where F and Attention ∈ RC×H×W , and then the dot product between Attention and F, are
used to obtain the output.

Figure 3. The standard large kernel convolution can be separated into three operations to decrease the
number of computations, e.g., a depthwise convolution (DW-C), a depthwise division convolution
(DW-D-C), and a pointwise convolution (PW-C). In the figure, blue is the center point, and green
represents the range of convolution.

3.4. Loss Function

The head class accounts for most of the samples in the long-tailed dataset, whereas the
tail class accounts for only a minor portion. Therefore, the samples from the head category
impose enormous negative gradients on the tail categories during training, swamping the
positive gradients from the tail categories themselves. The classifier tends to deliver low
responses to the tail categories to minimize the training loss incurred due to the uneven
learning process.

For the single-label classification problem, we revisited the concept and formulation
of the cross-entropy loss function. Each sample can only have one label in some tasks,
such as the ImageNet image classification task or the MNIST handwriting digit recognition
dataset [18]. For a single sample, the loss function is calculated as follows:

Lce = −
n

∑
i=1

yilogŷi, ŷi =
ezi

∑n
j=1 ezj

, (5)

where n is the label, yi is the one-hot encoding, z = [z1, z2, · · · , zn] is the logit of each
category, and ŷi is the predicted probability.

∂Lce(z)
∂zi

= ŷi − 1 (6)

∂Lce(z)
∂zj

= ŷj (7)

When i is the head label, and j is the tail label, the classifier applies a higher penalty
to class j under the action of the loss function, and the prediction probability becomes
massively skewed toward the head class.
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By decreasing the weights of uncommon negative samples, the seesaw loss equalizes
the gradient [32]. In this paper, we simplify the seesaw loss, and the formula is as follows:

Lseesaw(z) = −
n

∑
i=1

yilogŷi,

ŷi =
ezi

∑n
j 6=1 Mije

zj + ezi + eps
,

(8)

∂Lseesaw(z)
∂zj

= Mij
ezj

ezi
ŷi (9)

where mij is the adjustment factor; eps = 1× 10−6 is used to prevent NaN values. The neg-
ative sample gradient of sample i to sample j can be expressed as Equation (9).

Mitigation Factor: According to the collected samples, the seesaw loss can continually
adjust the samples in each category. This work supplies the corresponding amount of data
as prior knowledge to speed up model training. As shown in Equation (9), the adjustment
factor decreases the penalty for negative samples in a type when the number of samples of
type i is greater than the number of samples of type j; otherwise, the adjustment factor is
set as 1. The exponent p is a hyper-parameter that adapts the magnitude of mitigation.

Mij =


1, i f Ni 6 Nj(Nj

Ni

)p

, i f Ni > Nj
(10)

During the ResNet training process on the clamp dataset [11], we can determine the
distribution of the cumulative gradients of positive and negative samples imposed on each
class of classifiers, as shown in Figure 4. The positive-to-negative sample gradient ratio is
close to 1.0 for the rust category and is very small for the rare rust label. As the quantity of
samples decreases, the classification accuracy dramatically decreases, impacting the model
performance. However, the seesaw loss can obtain better outcomes by more effectively
balancing the positive and negative gradient ratios.

Figure 4. Under the traditional cross-entropy loss, the head class’s positive and negative sample
gradients are close to 1.0 while the sparse tail class is tiny, which will cause an accuracy bottleneck.
The seesaw loss is adjusted by reducing the negative sample gradient of the tail class to obtain a more
balanced gradient distribution.
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4. Experiments
4.1. Datasets

Engineers formed the clamp dataset according to the requirements of the National
Grid. This dataset contains only two categories: rusty and not rusted. We only used a
portion of the data for the experiment to speed up the training process, and the related data
information is presented in Table 2.

Table 2. Distribution of the original clamp dataset.

Train Set Test Set

not rusted rusty not rusted rusty
11,614 283 2566 58

The gap between the two categories is almost 50 times the number of rusty samples,
which is a challenge for traditional classification models. Compared with the thousands of
categories in an open dataset, a dataset with only two categories lowers the fault tolerance
rate. We also conducted trials on ImageNet-LT, the largest long-tailed public dataset,
to evaluate the model’s generalization ability. ImageNet-LT is a subset of the ImageNet
dataset that contains 115.8K images from 1000 categories, with a maximum of 1280 images
per class and a minimum of 5 [14].

4.2. Implementation Details

Due to the proposal of CLIP [45], we used CLIP as the backbone of the model. We
tested the visual feature extraction abilities of ResNet-50 and ViT-B/32. The results refer
to ViT-B/32 unless otherwise specified. The optimizer was trained on two Nvidia 3090
graphics cards using the most commonly used stochastic gradient descent (SGD) method,
with a momentum of 0.9 and a batch size of 128. A cosine function was used to decay the
learning rate scheme. Only the most basic data augmentation methods, such as rotation,
cropping, and color conversion, were used in this research, and the initial learning rate is
1× 10−4. The input image was uniformly cropped to 224× 224 before being passed into
the model, and the outcome was directly exported through the associated module. We only
trained the TIN for 50 epochs, with the seesaw loss mitigation factor set to 0.7. Random
seeds were set in the experiment to ensure reproducibility.

4.3. Evaluation Metrics

Each class adopted the top-1 accuracy metric to evaluate the accuracies achieved
for the different datasets. These classes were divided into three subsets, the many-shot,
medium-shot, and few-shot sets, which were determined by the number of instances in
each category—more than 100 photographs, 20–100 images, and fewer than 20 images,
respectively. Because the clamp dataset only has two categories, the rusty label and the not
rusted label were divided into many-shot, few-shot, and medium-shot sections (the latter
were deleted).

4.4. Performance Comparison

This section compares the performance of the TIN on the clamp dataset and those of
the existing standard LTR algorithms.

Clamp Dataset: Table 3 illustrates the LTR results of each technique, where our mini-
mal baseline outperformed the previously developed single-stage models. By gradually
increasing the size of the visual backbone, we found that the performance of the TIN also
enjoys an improvement. When ResNet-50 is used as the backbone, the accuracy improves
by +3.81%, and when the maximum ViT-B/32 is employed, the accuracy improves by
10.8%, enabling our approach to outperform other one-stage models by a large margin. We
plotted Figure 5, which clearly shows the gap between the models. In addition, the loss
function and accuracy variation of the training process are shown in Figures 6 and 7.
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Table 3. Results obtained using the clamp dataset.

Method Backbone Epochs Many Few Average

τ-normalized [44]

R-50 100 99.87 58.61 79.01
R-101 100 98.45 60.30 79.38
R-152 100 98.76 61.65 80.205
X-50 100 99.31 59.69 79.50

X-101 100 98.62 62.57 80.59
X-152 100 99.78 64.80 82.29

Focal loss [61]

R-50 100 99.96 36.21 68.09
R-101 100 99.51 41.38 70.45
R-152 100 98.81 58.62 78.72
X-50 100 99.26 24.14 61.70

X-101 100 98.89 53.45 76.17
X-152 100 99.14 25.86 62.50

Class balance [62]

R-50 100 98.55 72.41 85.48
R-101 100 99.30 55.17 77.24
R-152 100 99.38 62.07 80.73
X-50 100 98.97 63.79 81.38

X-101 100 99.38 60.34 79.86
X-152 100 98.69 62.07 80.38

PaCo [63] R-50 100 97.23 70.68 83.96
X-50 100 98.06 71.34 84.70

TIN (Ours) R-50 50 98.41 78.62 88.51 (+3.81)
ViT-B/32 50 96.15 86.21 91.18 (+10.8)

The accuracy outcomes of several backbones and methodologies are compared using the clamp dataset. "R-*"
and "X-*" stand for the ResNet [11] and ResNext [64] backbones, respectively. Compared to these algorithms, our
model has a more significant advantage.

Figure 5. Comparison with the state-of-the-art approaches on Clamp dataset. TIN with ResNet-50
visual backbone outperforms models with a more complex structure and longer training epochs by a
large margin.
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Figure 6. (a) Figure shows the accuracy of the unrusted (Many) category; (b) Figure shows the
accuracy of the rusty (Few) category.

Figure 7. The picture shows the loss reduction of the training process.

ImageNet-LT Dataset: We further verified the generalization ability of the proposed
model on ImageNet-LT. As shown in Table 4, we chose ViT-B/32 as the backbone of the
visual model for comparative experiments. We observes that, with only 50 training epochs,
the TIN outperforms existing single-stage methods by 14.6%. Moreover, a 27.2 point
improvement was achieved in the few-shot case, and the overall accuracy reached 72.8%,
which is a state-of-the-art result for a single-stage model.

Places-LT Dataset: We performed additional generalizability studies on Place-LT, an-
other large, long-tailed dataset. As shown in the Table 5, our model shows some im-
provements over other single-stage models, but the improvement was not very signifi-
cant, probably because the long-tailed distribution is more severe in this dataset than in
ImageNet-LT.
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Table 4. Results obtained on ImageNet-LT.

Method Backbone Epochs Many Medium Few All

τ-
normalized [44] R-50 90 56.6 44.2 27.4 46.7

LWS [44] R-50 90 57.1 45.2 29.3 47.7
NCM [44] R-50 90 58.9 46.6 31.1 49.2
cRT [44] R-50 90 63.3 47.2 27.8 50.8

RIDE [49] R-50 100 66.2 52.3 36.5 55.4

PaCo [63] R-50 400 65.0 55.7 38.2 57.0
X-50 400 67.5 56.9 36.7 58.2

TIN (Ours) ViT-B/32 50 77.2 71.3 65.4 72.8 (+14.6)

Table 5. Results obtained on Places-LT.

Method Backbone Many Medium Few All

τ-
normalized [44] R-50 34.5 31.4 23.6 31.0

LWS [44] R-50 36.0 32.1 20.7 31.3
NCM [44] R-50 37,1 30.6 19.9 30.8
cRT [44] R-50 38.5 29.7 17.6 30.5

PaCo [63] R-152 36.1 47.9 35.3 41.2

TIN (Ours) ViT-B/32 46.2 43.6 35.8 42.3 (+1.1)

5. Ablation Studies

In this section, we conduct several ablation experiments on our model. Finally, we
illustrate the effectiveness of our strategy by fine-tuning the pretrained model, loss function,
and visual attention mechanism.

5.1. Influence of the Pretrained Weights

The impacts of the CLIP weights and random initialization on the model are shown in
Table 6. As demonstrated by four studies, CLIP initialization significantly influences the
accuracy, particularly for the visual encoder. When random initialization is used, the visual
encoder learns more target characteristics than it does when utilizing the text encoder.
Furthermore, the low performance of random initialization is due to the short training
period (50 epochs), which makes convergence difficult. The advantage of contrastive
vision-language models is demonstrated in this experiment.

Table 6. Ablations results obtained with pretrained vision-language weights on the clamp dataset.

Vision Language Many Few Average

random random 52.8 0.0 26.4
random CLIP 53.7 0.0 26.7

CLIP random 80.6 21.3 51.0
CLIP CLIP 96.1 86.2 91.2

5.2. Fine-Tuning the CLIP Backbone

At the same time, we conducted related research by fine-tuning the parameters of
contrastive vision-language models, as shown in Table 7. In the table, × represents the
freezing of encoder weights, and X represents the fine-tuning of parameters. When both
encoders are frozen, the model performs zero-shot inference. The table shows that, for the
few-shot category, the visual module can lead to greater improvements in accuracy than
the text module alone. This observation is highly similar to the conclusion of the previous
experiment, which also demonstrates that, in the CV field, the language module is more lof
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a supplement, and adding thid when the model accuracy is saturated can raise the upper
limit to a certain extent.

Table 7. Ablation results obtained when fine-tuning on CLIP.

Vision Language Many Few Average

× × 67.4 35.6 51.5
X × 88.4 76.8 82.6
× X 88.6 72.0 80.3
X X 96.1 86.2 91.2

5.3. Fine-Tuning the Hyperparameter

In Table 8, we investigate the impact of the mitigation factor hyper parameter on the
loss function. The punishment for the rare category is controlled by p. When p is set too
high, many false positives (FPs) appear. It is difficult to suppress the gradient imbalance
caused by excessive negative samples if p is too small. As a result, the key to achieving a
balance in accuracy is choosing a suitable parameter for the given dataset. When p is 0.7,
the few-category and average accuracies are maximized, while the many-class accuracy is
slightly reduced.

Table 8. Ablation results involving the hyper-parameter p in the loss function of the mitigation factor.

p Many Few Average

0.2 98.8 67.2 83.0
0.3 98.0 77.5 87.8
0.4 97.0 82.4 89.8
0.5 95.3 77.5 86.4
0.6 95.1 86.2 90.7
0.7 96.1 86.2 91.2
0.8 95.1 84.5 89.8
0.9 93.7 85.7 89.7

5.4. Impact of Different Modules

Table 9 probes the role of each module in the entire network. When the previously
developed CLIP is introduced, the model is accurate enough to compete with popular
algorithms. However, it is far from sufficient in long-tailed engineering projects. The key to
the engineering challenge is correctly recognizing the rare class. The seesaw loss improves
the few-category accuracy while only slighly sacrificing performance in the many-shot class,
making it a very cost-effective trade-off solution. The pixels at different places in multiple
channels are weighted using visual attention(VA), which boosts the visual module’s feature
capability and leads to high engineering precision. Note that we simply selected a small
section of the dataset, achieving giant leaps in performance as we continued to increase the
data size.

Table 9. Ablation of the different module.

Module Many Few Average

+CLIP 99.53 72.41 85.97
+Seesaw 96.34 82.75 89.55
+VA 96.05 86.21 91.18

Finally, we visualized the classification results, as shown in Figure 8. Our model
was shown to be more accurate in the identification of rare classes than other algorithms.
The recognition accuracies of other algorithms are seriously affected when the parts near
the clamp are rusted, but the TIN always produces correct recognition results.
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Figure 8. Results visualization: The results of the other models and our network are shown in each
picture’s upper left and right corners, respectively. Our model is more robust to rare classes and can
recognize pictures more accurately.

6. Conclusions

The work in this paper mainly proposes an end-to-end model called the TIN to solve
the LTR problem in engineering. First, a text module was introduced as a supplementary
part of the visual feature mechanism with CLIP, which provides the model with an inherent
multimodule advantage. Then, visual attention further improved the feature extraction
process by strengthening the correlations between pixels in different channels. Finally,
a seesaw loss was used to balance the weights between different categories. TIN achieved a
state-of-the-art performance without bells and whistles on both datasets, outperforming
the advanced classifiers developed in recent years. This demonstrates that text-supervised
signals are important in the field of vision, especially in LTR, and can be an effective
means of complementing the existing information. This work focuses on long-tailed image
classification tasks, but the proposed approach is generalizable and may benefit other
applications. For example, TIN can be applied to an image segmentation task. We can
design a set of keywords that correspond to different detection categories in the image
segmentation task. Since the final output feature map of the segmentation task is the
same size as the input and has a high level of fine-grained information, we can match the
similarities between each layer of the segmented feature map with the keywords to achieve
better classification results. Although the proposed TIN achieved a good performance
on multiple long-tailed recognition benchmarks, it still has some flaws. First, due to the
limited text corpus, our method heavily relies on the use of pre-trained weights to learn
high-quality language representation. Second, these results are trained on two Nvidia 3090,
which are demanding graphics cards that are not easy to deploy. To allow for a better use
in industrial equipment, the latter could be used in an attempt to simplify the model in
terms of model quantization and pruning.
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