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Abstract: 3D non-rigid shape correspondence is significant but challenging in computer graphics,
computer vision, and related fields. Although some deep neural networks have achieved encouraging
results in shape correspondence, due to the complexity of the local deformation of non-rigid shapes,
the ability of these networks to identify the spatial changes of objects is still insufficient. In this
paper, we design a Component-aware Capsule Graph Network (CA-CGNet) to further address
the features of embedding space based on the component constraints. Specifically, the dynamic
clustering strategy is used to classify the features of patches produced by over-segmentation in order
to further reduce noise interference. Moreover, aiming at the problem that existing routing ignores
the embedding relationship between capsules, we propose a component-aware capsule graph routing
to fully describe the relationship between capsules, which regards capsules as nodes in the graph
network and constrains nodes through component information. Then, a knowledge distillation
strategy is introduced to improve the convergence speed of the network by decreasing the parameters
while maintaining accuracy. Finally, a component pair constraint is added to the functional map,
and the component-based semantic loss function is proposed, which can compute isomeric in both
direct and symmetric directions. The experimental results show that CA-CGNet improves by 10.21%
compared with other methods, indicating the accuracy, generalization, and efficiency of our method
on the FAUST, SCAPE, TOSCA, and KIDS datasets.

Keywords: shape correspondence; capsule network; dynamic clustering; knowledge distillation

1. Introduction

With the continuous development of computer 3D imaging technology, shape cor-
respondence has become an important research direction in computer vision, which is
closely related to object recognition, 3D reconstruction, image retrieval, image analysis,
and other problems. The shape correspondence problem can be summarized as identifying
homologous points of two or more shapes, where a large number of variables are needed to
define a dense map for a non-rigid object due to its complex changes such as deformation,
distortion, and extension. Although this problem has made some breakthroughs [1–4],
finding dense shape correspondence is still very challenging.

Traditional non-rigid shape correspondence methods are generally established by mea-
suring the similarity of point descriptors between two shapes, such as spectral geometry [5]
or diffusion distance [6]. However, these methods rely heavily on initialization, which falls
easily into local optimization with slow matching speed and low matching accuracy. Faced
with large amounts of data and dense correspondence, scholars have further proposed to
obtain the features of each point on the manifold surface through neural networks [7–9].
Unfortunately, these techniques directly regress the dense relationship of all input points,
severely over-parameterizing the deformation and leading to poor generalization. Recent
efforts mainly focus on functional map frameworks [10–13] that converts point-to-point
correspondence between models into a linear transformation in function space, mapping
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a point on the source model to multiple points on the target model to solve ambiguity
problems. Despite significant progress in this area, these methods ignored the hierarchical
geometric relations of the associated semantic parts. When the differences between the two
input models are large, the extracted non-rigid shape descriptors lack sensitivity to specific
information such as orientation and position, leading to unreliable correspondence results.

Based on the above limitation, we propose a novel capsule graph neural network based
on component constraint for the 3D non-rigid shape correspondence, called CA-CGNet, to
further capture descriptors with powerful representation abilities. The entire framework
of our method is given in Figure 1. The over-segmentation method is used to segment
the mesh into several patches, which are clustered to form components using a dynamic
clustering algorithm. In order to further improve the quality of feature acquisition, we
design a novel graph routing algorithm to learn the relationship between the capsules in
the same layer through a component-aware graph neural network (CA-GNN). Then, the
knowledge distillation strategy is used to improve the convergence speed of the network by
reducing the parameters while maintaining accuracy. Finally, a component pair constraint is
added to the functional map with a component-based semantic loss function, which makes
the shape correspondence more accurate and improves the robustness of the network.

Figure 1. The pipeline of component-aware capsule graph neural network framework.

Our main contributions can be summarized as follows:

• We design a novel network structure called CA-CGNet, which enhances the expressive
ability of the network to represent object spatial pose and orientation changes by
adding local mesh pose details to achieve high-precision shape correspondence.

• To reduce the interference of noisy patch assignments, we propose a dynamic clus-
tering algorithm to cluster the over-segmented meshes dynamically according to
feature similarity to form components. By adding a component constraint to the
functional maps and integrating component-based semantic constraint loss into the
regularization term, the accuracy of shape correspondence is further improved.

• The component-aware graph routing treats capsules as nodes in a graph neural
network by adding component constraints to obtain more accurate relationships
between capsules. In addition, the knowledge distillation strategy is used to reduce
the number of parameters while maintaining network performance.

• Experiments on four challenging datasets show qualitatively and quantitatively that
the CA-CGNet has stronger robustness and better generalization. The ablation study
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demonstrates that component pair constraint, component-aware graph routing, and
knowledge distillation strategy have a great improvement in network performance.

2. Related Work
2.1. Non-Rigid Shape Correspondence

Various work has been done in the direction of shape correspondence. Before deep
learning methods were commonly applied to point descriptor learning, many scholars
conducted in-depth research on handcrafted feature descriptors for characterizing the
geometric information of shapes. Tombari et al. [14] proposed the signature of histograms
of orientations (SHOT) descriptor with rotation and translation invariance by counting
the topological features adjacent to points in the local coordinate system and saving them
in the histogram. Average geodesic distance (AGD) [15] was the attitude insensitive
descriptor, which could effectively measure the overall topological characteristics of multi-
resolution models. Sun et al. [16] extracted all key points in different proportions and
combined them with the thermal diffusion equation to develop a heat kernel signature
(HKS) with multi-scale characteristics. In [17], the wave kernel signature (WKS) used the
Schrodinger equation to acquire the evolution process of particles on the shape surface to
obtain the features of the vertex on the object surface. To explore posture more effectively,
Zuffi et al. [18] proposed to use graphical nodes corresponding to body parts so that these
parts could be independently translated and rotated in 3D to represent different body
shapes and to capture pose-dependent shape variations. This method was similar to our
approach but only applied to human models.

Recently, researchers have tried to use deep learning methods to further process
shape descriptors to obtain high-quality geometric features of 3D non-rigid surfaces [19,20].
Cyclic-FM [21] was based on a cyclic mapping between metric spaces for self-supervised
dense correspondence mapping between non-isometric shapes. Marin et al. [22] extracted
stable landmarks over human bodies, relying entirely on the geometric properties in the
spectral domain. The MGCN [23] advanced a multi-scale graph convolutional network,
which transformed wavelet energy decomposition signature (WEDS) to a more discrimina-
tive descriptor. Amor et al. [24] made use of deep residual neural networks to calculate
minimizing paths between deformations and, thus, between shapes for the alignment of 3D
shapes under complex topology-preserving transformations. Although these methods have
achieved good results, they did not make full use of local pose information to maintain the
geometrical relationship of the manifold. In addition, when the model resolution decreases,
the discriminative power of the network decreases significantly.

2.2. Capsule Graph Neural Network

Capsule network was an improved strategy for CNN proposed by Hinton et al. [25],
which used vectors to represent the mutual relations between features. We find the out-
comes and limitations of several approaches based on a capsule graph neural network
in Table 1. The basis of the capsule network was the routing process, which passed
the input vector to the upper capsule through the protocol. To effectively preserve the
variability and correlation between features during the routing process, capsule graph
neural networks [26] extracted node features in the form of capsules to capture high-quality
node embeddings at the graph level. In [27], Caps-GNN was adopted to learn graph
properties for encoding underlying characteristics. CapsGNNEM [28] utilized EM routing
to obtain graph attributes from the node features extracted by the graph neural network.
Some other research [29,30] represented nodes as a group of node-level capsules, jointly
learning node embedding and extracting salient features of corresponding nodes through
heterogeneous factors of the capsules. Later in [31], the method was proposed to model the
relationship between concept capsules of the same layer through a graph network with an
external storage matrix. In our work, we propose a novel routing algorithm that leverages
component constraints to transform primary capsules into high-quality graph embedding,
which better maintains the local posture of the model.
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Table 1. A comparative study for Capsule Graph Neural Network in open literature.

Reference Routing Methods Outcomes Limitations

CapsGNN [26] (2018) Dynamic routing Higher accuracy rate compared
to traditional methods

Irrelevant messages from
multi-hop neighborhoods has

not been restrained

Caps-GNN [27] (2020) Dynamic routing Higher inference in
personalized preference

External knowledge has not
been considered

HGCN [30] (2021) Nonlinear function
More effectively capturing the
heterogeneous factors under

each node.

The over-smoothing issue over
graph is ignored

CapsGNNEM [28] (2021) EM routing Higher graph classification
compared to standard methods

Structural information of the
graph has not been considered

NCGNN [29] (2022) Dynamic routing Adaptively identifying a subset
of crucial node-level capsules

Unable to preserve structure
information of lower-level parts

Caps-HAGKT [31] (2022) Capsule routing Extracting the latent knowledge
structure between levels

Automatic modeling of the
complex knowledge structure
of the knowledge capsule at

same layer is insufficient

Ours Component-aware
graph routing

Using component constraints to
solve problem of model posture

details and low resolution

Performance can be improved
with optimizing selection of the

number of components

2.3. Correspondence with Functional Maps

Different from point-to-point correspondence, the concept of the functional map was
introduced in [32], which represented the mapping between shapes as a small matrix
and transmitted information by encoding the relationship between the basic functions
of shapes. Inspired by that, some scholars have proposed several learning methods for
optimizing functional maps [10,11,33]. With the development of deep learning, a neural
network was used in the functional map framework to generate more accurate correspon-
dence. Litany et al. [12] proposed a deep neural network architecture named FMNet by
providing a dense corresponding representation of linear operators through paradigm
transformation and a structured prediction model. SURFMNet introduced in [13] was to
use pure geometric scalars to directly establish correspondence in the 3D shape set without
any prior information. In [34], Deep Geometric Functional Maps was a feature extraction
network based on a functional map representation that learned directly from the shape
geometry with a new regularized map extraction layer and loss to enforce the structural
properties. Donati et al. [35] generalized the functional map framework to the conformal
maps between tangent vector fields, which reflected the complex structure of the surface
to maintain orientation-aware results but naturally restricted to differentials of conformal
mappings. The key difference between the above approach and our proposed approach is
that we embed component constraints in the functional maps framework, focusing on the
local area feature information of the mesh.

3. Proposed Method

In this section, we present a component-aware capsule graph neural network for
shape correspondence. In Section 3.1, we introduce the whole network architecture of
CA-CGNet. Section 3.2 illustrates the process of turning input shapes into component pairs.
The component-aware graph routing is given in Section 3.3. We introduce the functional
map of component pair constraints in Section 3.4 and the semantic regularization term in
Section 3.5.
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3.1. CA-CGNet

In this work, we design a deep neural network named the “Component-aware Capsule
Graph Neural Network” (CA-CGNet) for shape correspondence based on the functional
maps framework. We believe that the capsule graph network allows a powerful under-
standing of the mesh’s positions and directions features. Since existing routing algorithms
do not fully consider the potential features between capsules, a component-aware graph
capsule network is proposed to further extract deeper semantic information by building
graph relationships between capsules. Then, in order to get more precise shape correspon-
dence, the functional map with component constraint and the loss function with semantic
constraint as the regularization terms are designed. The basic pipeline can be described
by the following steps: firstly, the mesh is over-segmented to form several patches, and
the patches with similar features are aggregated together to form components through a
dynamic clustering algorithm. Secondly, in order to fully learn the relationships between
capsules, we consider capsules as nodes of the graph neural network and further enhance
the capsules through a component-aware graph routing algorithm with a knowledge distil-
lation strategy to increase the convergence speed by decreasing the number of parameters
while maintaining network accuracy. Finally, the component-constrained functional map is
represented with Equation (11), and the loss function with semantic constraint is derived
from Equation (17). The entire network architecture is given in Figure 2 in detail.

Figure 2. The architecture of our proposed network CA-CGNet. For the mesh component, dynamic
clustering (DC) is applied to form the patches generated by over-segmentation. To further improve the
quality of feature acquisition, the component-aware graph routing algorithm is constructed to learn
the relationship between the capsules in the same layer through a component-aware graph neural
network (CA-GNN). The component constrained functional map is represented by Equation (11) and
the component-based semantic loss is derived from Equation (17).
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3.2. Component Extraction

A 3D model usually contains a large number of faces, which can generate a huge
amount of computation if the entire mesh model is segmented directly. Therefore, the
mesh sub-module is constructed using the method proposed by Golovinskiy et al. [36]
to over-segment the 3D mesh into several small patches. Since the number of vertices
contained in each patch is inconsistent, Principal Components Analysis (PCA) is used to
reduce the dimensionality to make the number of vertices contained in each patch equal.
After that, the Average Geodesic Distance (AGD) feature of each patch is calculated, and the
sub-model is aggregated into components with dynamic clustering. Finally, the improved
Hausdorff distance is used for component matching to extract the component pairs.

3.2.1. Dynamic Clustering

Mesh segmentation is equivalent to the clustering task of a 3D surface. To further
reduce noise interference, we use dynamic clustering strategy to perform more accurate
part-to-whole classification of the acquired features. In the DC part of Figure 2, small circles
with different colors represent different types of features, and the circles with red borders
are used as the initial feature of clustering. The features are clustered according to the
correlation, and the highly correlated features are clustered together. Generally speaking,
dynamic clustering includes three steps, namely, calculating the feature correlation matrix,
selecting the set of features with the largest difference as the initial feature, and clustering
the remaining features.

In a 3D mesh, the properties of vertices are represented by their feature matrices. By
calculating the Manhattan distance between the feature matrices of different vertices, we
can obtain the degree of correlation between these features. Specifically, the degree of
correlation R between feature X and Y is calculated with

R(X, Y) = σ

(
n

∑
i=1
|xi − yi|

)
(1)

where X = (x1, x2, · · · , xn) and Y = (y1, y2, · · · , yn) are both n-dimensional vectors, σ
represents the sigmoid activation function.

In the correlation matrix R ∈ RN×N , the degree of correlation between features
decreases with the increase of the coefficient. By choosing the coefficient with the largest
value in R, we can obtain the row coordinate r1 and column coordinate r2 of this value,
which represent the sequence numbers of the two groups of features with the farthest
correlation. Then, these two features are added to set G and respectively used as the initial
features for each cluster.

The value of the i-th row in matrix R represents the degree of correlation between
the i-th type feature and other types of features. The cluster of the remaining features is
expressed as follows:

ri = arg min
rj∈G

(
Rrj ,ε

)
, ε 6= rj (2)

where rj represents the sequence number of the initial two types of features, and ε represents
the sequence number of the remaining features. Thus, these features can dynamically be
divided into two clusters. Repeating the above steps on each cluster, we will repartition
each cluster into two new sets of feature clusters. After executing this process three times,
the over-segmented patches are clustered into several types.

3.2.2. Component Matching

The Hausdorff distance [37] reflects the gap of two sets by measuring the distance
between two nonempty subsets. Using Hausdorff distance for model matching can sim-
plify the calculation, but it is frequently interfered with by noise. In order to build the
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corresponding relationship between the components of the two models, this paper adopts
the improved Hausdorff distance to match the components.

For two sets A = {a1, a2, · · · , ai} and B =
{

b1, b2, · · · , bj
}

, the bidirectional Hausdorff
distance between these two sets is defined as follows:

H(A, B) = max{h(A, B), h(B, A)} (3)

where h(A, B) denotes the unidirectional Hausdorff distance from set A to set B, h(B, A)
denotes the unidirectional Hausdorff distance from set B to set A. The improved unidirec-
tional Hausdorff distance is written as:

h(A, B) =
1
N ∑

a∈A

{
min
b∈B
‖a− b‖

}
(4)

where N represents the number of elements in set A, ‖ · ‖ represents the distance between
two elements in different sets.

We first select component A in the manifold M and calculate its Hausdorff distance to
each component in the manifold N to obtain the distance set D = {d1, d2, · · · , dk}. Then
we choose the minimum distance dmin in the set to form a component pair and delete the
two components from the original set. We repeat the steps for the remaining components
in turn to construct a pair of components.

3.3. Component-Aware Graph Routing

Considering the CapsNet can capture the part-whole relationship to cope with am-
biguity [25], we introduce the capsule network to enhance feature expression ability. The
features extracted by GNN are replicated in eight copies, the primary capsules are obtained
after Conv1d+BN+ReLU, and the pose features of the mesh are further extracted to com-
pose the latent capsules. Among them, routing is the basis of the capsule network, which
transmits the information from the previous capsule layer to the next one through the pro-
tocol. To further improve the quality of feature acquisition, we propose a component-aware
graph routing, which learns the relationship between capsules in the same layer through
CA-GNN.

3.3.1. Multi-Layer Attention Graph Routing

We extract features from different CA-GNN layers and fuse the capsule features
through a multi-layer attention mechanism. The capsule is regarded as each node in the
graph, and the adjacency matrix A is used to represent the relationship between nodes in
CA-GNN, which can be expressed as:

Ã = D−
1
2 AD−

1
2 + E (5)

where Ã is the normalized N × N adjacency matrix, N is the number of capsules, D is the
degree matrix, and E is the identity matrix.

The capsule vectors can be regarded as the probability of certain attributes, which is
used to measure the semantic similarity of capsules. Since the capsule vector is an implicit
expression, it is difficult to directly calculate the relationship between capsules. Thus, we
used Wasserstein Distance to measure the distance between the distribution of capsule
properties. The Component-aware Wasserstein Distance is defined as:

W(Vi, Vj) =

inf
Ω

∫
Rm×Rm

(∥∥vi − vj
∥∥

2 + λ
∥∥∥Xvi − Xvj

∥∥∥
2

)
Ω
(
dvi, dvj

) 1
2

(6)

where Xvi and Xvj are the component category to which the point belongs, Ω is an element
of set Π

(
Vi, Vj

)
, and λ is the coefficient and is set to be 0.005. Let aij = W(Vi, Vj), we can

convert component-aware Wasserstein Distance to adjacency between capsules inside. In
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this case, aij may be negative, so the adjacency matrix A needs to be normalized, which is
denoted as

Ã =
eAi

∑
j

eAi
+ E (7)

Considering that the contribution of different levels of graph embedding is incon-
sistent, we introduce an attention mechanism to combine these different levels of graph
embedding to get the final output result as shown in Figure 3. The procedure of the
multi-layer attention module can be written as:

wj = σ
{(

HGAP
1 , HGMP

1

)
⊕
(

HGAP
2 , HGMP

2

)
⊕
(

HGAP
3 , HGMP

3

)}
(8)

where σ(·) represents the softmax function, and ⊕ represents the feature concat.

Figure 3. The Multi-layer Attention Module. GAP means global average pooling, while GMP refers
to global maximum pooling. FC is the fully connected layer. wj means the weight for each layer.

Each capsule is regarded as a center node, and the relationship between capsules is
measured by distance with the performed normalization. Then, the multi-layer attention
mechanism is introduced to transform the low-level capsule into the high-level capsule
using component graph routing. Algorithm 1 gives the complete algorithm of Component-
aware Graph Routing.
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Algorithm 1: The Algorithm of the Component-aware Graph Routing
Input: The low-level capsules ui and the weight matrix Wij
Output: The high-level capsules vj

1 initialize routing coefficients bij ← 0
2 begin
3 // each low-level capsule i
4 uj|i = uiWij

5 Calculate the adjacency matrix A for all low-level capsules
6 Normalize A with Equation (7)
7 // each low-level capsule i and high-level capsule j
8 gj = uj|iÃWij

9 Calculate the attention score wj with Equation (8)
10 for n in routing interation do
11 // each low-level capsule i
12 cij =

1
1+e−bij

13 // each high-level capsule j
14 sj = ∑i gjwjcij

15 vj = squash
(
sj
)

16 bj = bj + uj|ivj

17 end
18 return vj

19 end

3.3.2. Knowledge Distillation Strategy

We introduce a knowledge distillation strategy into component-aware graph routing,
which can transfer knowledge from a complex deep teacher network to a simple student
model. Since the node features and the associations between nodes extracted by graph
neural networks play an important role in embedding features, we capture the geometric
information of the latent space by extracting the features of the CA-GNN layer and using
the graph information extracted from the teacher network to train the student network.
Therefore, the student can be further guided by matching the node structure extracted
by itself and the node structure embedded by the teacher. As shown in Figure 4, the
original component-aware graph routing is defined as the teacher network, and the pruned
component-aware graph routing is defined as the student network. The teacher network
deploys six CA-GNN modules after the primary capsule to extract features with more
semantic information. In contrast, the student network only contains three CA-GNN
modules, which greatly reduces the parameters to improve the convergence speed of
the network.

In order to measure local detail dependence in low dimensional space, we conduct
inter-layer knowledge distillation between CA-GNN layers. The feature vectors of teacher
network IT are obtained through two CA-GNN layers, and the feature vectors of stu-
dent network IS are obtained through one CA-GNN layer. Then, the loss of inter-layer
knowledge distillation is defined as:

Linter = ∑ log(IS) log
log(IS)

IT
(9)

After the Multi-layer attention module integrates the features of each CA-GNN layer,
the latent capsule containing global information is obtained. Let OT and OS be the feature
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vectors of the teacher network and student network, the output layer knowledge distillation
loss over all the capsules is as follows:

Lout =
1
N

N

∑
k=1

∑
j:(i,j)∈ε

OSij log

(
OSij

OTij

)
(10)

where ε represents edges in a graph network, k donates the number of capsules.

Figure 4. Our knowledge distillation strategy in Component-aware Graph Routing. CA-GNN means
the Component-aware Graph Neural Network. FT and FS are the features of the teacher network and
of the student network, respectively. MLAM is the Multi-layer Attention Module.

3.4. Functional Maps with Component Constraint

We propose a component constrained functional maps, which provides a local–global
commutative preservation for shape correspondence between manifold P and Q. Despite
traditional functional maps providing the simplicity and efficiency of shape correspondence,
its estimation pipeline solely enforces the commutativity of global operators. This method
is to search matching points across the whole manifold, which leads to a large extent to
some inaccurate matching. To alleviate this issue, we propose an available segmentation
of shapes for relation constraints. Then, the optimal functional map C in the least square
sense can be expressed as:

Copt = arg min
C

∥∥CAP−BQ
∥∥2

+ γ1
∥∥ΛPC− CΛQ

∥∥2
+ γ2

∥∥CXP − XQC
∥∥2 (11)

where AP and BQ are the basis matrix consisting of the basis function coefficients of the
source model P and the target model Q, ΛP and ΛQ are the diagonal matrix of Laplacian-
iBeltrami eigenvalues, XP and XQ are the Hausdorff distance matrix, and γ1 and γ2 are
the weights.
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The first term of Equation (11) calculates the deviation of the point-wise descriptor
coefficient matrix based on SHOT descriptors of manifold P and Q. For a connected smooth
compact manifold P with K vertices, an index function f : P → R can be constructed by
calculating the average value of the point and its neighborhood coordinates, which can be
expressed as:

f (x) = ∑
i

miφi (12)

where mi = 〈f,φi〉P, {φi|i = 0, 1, . . . , k− 1} is the set of the eigenfunctions for the orthog-
onal basis of f , and f is the corresponding discretization of the smooth function f . Let
F : f (P) → f (Q) be a linear operator to calculate correspondence between manifolds P
and Q. By computing a set of descriptor functions {φi}i≥0 and

{
φj
}

j≥0 on shapes P and Q,
the function F can be represented as:

F( f ) = ∑
j

∑
i

micjiφj (13)

where cji =
〈

F(φi), φj
〉

N , and then admit a matrix representation C =
(
cji
)
. To determine

the matrix C, we truncate the eigenfunctions after the first d coefficients to significantly
approximate matrix C. Assuming to be given a set of coefficients zi = 〈f, φi〉 and gj =

〈
s, φj

〉
,

the matrices AP and BQ can be stored by these Fourier coefficients.
The second term of Equation (11) is a regularization item that constrains the descriptor

by reinforcing its overall structure properties. With the Laplacian matrix L, the set of
eigenvalues λi are then defined as:

λi = LM−1 (14)

where M is the K × K diagonal mass matrix. Thus, the first k eigenvalues of Laplacian–
Beltrami operator on model P and Q compose the diagonal matrices ΛP = diag(λi)P and
ΛQ = diag(λj)Q.

The third term of Equation (11) penalizes the local commutativity through the com-
ponent constraints. Each manifold is segmented into several types of components, and
Hausdorff distance is used to construct component pairs. Hausdorff distance is a measure
of the similarity between two sets of points, so we can calculate the difference between
components. The distance matrix XP and XQ can be expressed as:{

XP = h
(
CP, CQ

)
XQ = h

(
CQ, CP

) (15)

where CP and CQ are the features of component pairs. Thus, each set of component pairs
can be used to impose local constraints on functional maps.

3.5. Semantic Regularization

In order to enhance the robustness of function mapping, we transfer the component
network discussed in Section 3.2 to the feature space and further develop the semantic
regularization term. By penalizing the difference between the weights of each node on each
component pair and the weights of corresponding nodes to regularize the classification
model, we define a semantically constrained loss function to preserve the classification in
the embedded feature space, which is formulated as:

Lc=
1
n

n

∑
j

√
∑

i

∣∣xPi − xQi

∣∣2 (16)
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We integrate this semantic constrained loss function into the final loss function, then
the overall spectral loss function L of the corresponding shape is defined as follows:

L = µ1Lc + µ2Lg (17)

where µ1 and µ2 are the coefficient, and Lg denotes the difference between the mapping
matrix C and the corresponding ground-truth matrix [38]. In our experiments, µ1 and
µ2 are both set to be 1. By adding the semantic regularization term, the spectral loss
function of shape corresponding learning network is minimized; thus, the constraints on
the corresponding functions are increased during the training process.

4. Experiments and Evaluation

In this section, we verify the performance of 3D non-rigid shape correspondence by
comparing CA-CGNet with some classical methods. This experiment runs on GeForce
GTX 1080Ti CPU with 32GB memory. ADAM optimization algorithm with parameter set
as β1 = 0.9, β2 = 0.999, ε = 10−8 is used, and the learning rate is changed by polynomial
decay strategy, where the initial learning rate is 10−3, the end learning rate is 10−5, and the
batch size is 1.

4.1. Dataset

Four types of non-rigid 3D datasets, namely FAUST, SCAPE, TOSCA, and KIDS, are
used for experiments. In the experiment, the first 80 meshes in the original FAUST dataset
are trained, and the last 20 meshes are used to test the model. And its vertices are sampled
to 4096 vertices to verify the robustness of the experiment. For other datasets, the vertices
are sampled to 4096 to facilitate comparison experiments.

FAUST dataset has models with the same triangulation and resolution, and each
model contains 6890 vertices. There are 100 models in the data set, and every 10 models is
a group representing different poses of the same research object. The shapes in the dataset
have strong non-isometric deformation, and the ground truth correspondence of vertices
between all shapes is known.

SCAPE dataset is a data-driven approach to building a human shape model across the
shape and pose variations, using a static scan and a labeled motion capture sequence of
humans to artificially generate high-quality animated surface models of moving humans
with realistic muscle deformations.

TOSCA dataset consists of many different types of 3D graphics, with significant
differences between each set of models. Shapes in the same group are compatible, meaning
that all shapes have the same mesh resolution and connectivity.

KIDS dataset is a synthetic non-isometric dataset containing two sets of human models
with different poses, which have the same number of vertices and contain ground truth.

4.2. Component Matching

For each 3D mesh, over-segmentation is used to divide it into many different
regions, and then dynamic clustering is used to merge regions to form components. The
selection of the number of clusters k not only affects the amount of computation but
also affects the subsequent matching effect. Therefore, we use different cluster numbers
with k = 4, 5, 6, 7, 8, 9, 10 for experimental tests. Table 2 shows the identification errors
of experiments on human and non-human models with a different number of clusters.
Through the experiment, it can be found that the number of clusters with k = 8 can
achieve the minimum identification error on the human model and centaur model, and
the clustering amount of k = 5 can achieve the minimum identification error on other
non-human models. Therefore, in the subsequent experiments, we adopted the dynamic
classification strategy with k = 8 on the human model and centaur model and k = 5 on
other non-human models.
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Table 2. Identification error with a different number of clusters on four datasets. Error is measured as
the average Hausdorff distance between the source model and the target model (cm).

Clustering Number FAUST SCAPE KIDS
TOSCA

David Michael Victoria Cat Centaur Dog Horse Wolf

4 0.0659 0.0872 0.0814 0.0652 0.0796 0.0684 0.0369 0.0427 0.0358 0.0374 0.0335
5 0.0586 0.0697 0.0705 0.0613 0.0686 0.0529 0.0254 0.0291 0.0216 0.0195 0.0208
6 0.0403 0.0574 0.0592 0.0486 0.0473 0.0351 0.0263 0.0314 0.0228 0.0199 0.0219
7 0.0258 0.0261 0.0243 0.0186 0.0195 0.0217 0.0269 0.0316 0.0231 0.0207 0.0231
8 0.0193 0.0201 0.0189 0.0174 0.0181 0.0203 0.0271 0.0320 0.0235 0.0214 0.0233
9 0.0206 0.0211 0.0193 0.0176 0.0184 0.0207 0.0277 0.0325 0.0237 0.0223 0.0238

10 0.0214 0.0219 0.0197 0.0192 0.0187 0.0210 0.0281 0.0326 0.0243 0.0225 0.0241

Figure 5 shows the component formation results of the human model on four different
datasets, where different colored body parts represent different types of components.
In order to further verify the robustness of the proposed method, we conduct dynamic
clustering on non-human models, as shown in Figure 6. It shows that our method achieves
equally effective clustering results on these non-human models.

Figure 5. Visualization of the components of the human model in FAUST, SCAPE, TOSCA, and
KIDS datasets.

Figure 6. Clustering results of the proposed method on the animal model in the TOSCA dataset.
(a) cat, (b) centaur, (c) dog, and (d) horse.

After the components are formed, the component of different models is matched to
obtain a pair of components. Figure 7 visualizes the matching results of different models,
where the left side shows the matching results of components with a different pose of the
same subject, and the right side shows the matching results of components with different
subjects. Experiments demonstrate that our method achieves good results in different
model component matching, which proves the robustness of our method.
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Figure 7. Component matching results of different models. (a) is the component matching result of
the same subject with different poses, and (b) is the component matching result of different subjects.

4.3. Correspondence Results

In this section, we evaluate the experimental results of the proposed algorithm and
other classical algorithms on four non-rigid datasets. We test our model on the original
FAUST dataset, and Figure 8 shows the correspondence results, where intra-pair represents
different poses of the same subject and inter-pair represents different subjects.

Figure 8. Correspondence results on the original FAUST dataset. The four columns on the left are
intra-pairs, and the four columns on the right are inter-pairs. In all matched pairs, the left side is the
reference shape and the right side is the matching result of our method.

The average error (AE) of our method compared with other state-of-the-art meth-
ods on the original FAUST dataset is shown in Table 3, including the average error of
intra-pair and the average error of inter-pair. On the intra-pairs, our method achieves
1.85 cm, which outperforms ResNet-LDDMM significantly by 4.15%. On the inter-pairs,
our method achieves 2.37 cm, which even outperforms the state-of-the-art method by
9.20%. Our method has the smallest average error in inter-pair and also performs well
in intra-pair. Furthermore, SP [18] uses distributed inference to predict the model in the
model initialization phase and combines local-based human pose inference with graph
form human body shape models, the average error is smaller in the intra-pair. However,
our method is more concerned with the generalization of shape matching, the combined
average error is smaller than SP.
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Table 3. Average errors of different methods on the original FAUST dataset. The error is expressed as
the distance between the mapping point and the ground truth (cm).

Method Intra AE Inter AE Average

FMNet [12] 2.44 4.83 3.635
Cyclic-FM [21] 2.12 4.07 3.095

SP [18] 1.57 3.13 2.350
3D-CODED [8] 1.98 2.88 2.430

FARM [22] 2.81 4.12 3.465
SURFMNet [13] 1.73 3.63 2.680

MGCN [23] 2.51 3.65 3.080
ResNet-LDDMM [24] 1.93 2.61 2.270

Ours 1.85 2.37 2.110

In order to verify the robustness of the proposed method, we resample the original
FAUST dataset to 4096 vertices for testing. Figure 9 visualizes the matching results of some
methods on the remeshed FAUST dataset. It shows that our method achieves the best
matching results in deformable shape correspondence.

Figure 9. Correspondence results on the remeshed FAUST dataset. The first column shows the
reference shape, the second column shows ground truth, and columns three through six show the
corresponding results of different networks.



Appl. Sci. 2023, 13, 3261 16 of 22

Furthermore, the correspondence performance of several methods is compared on
the FAUST dataset and the remeshed FAUST dataset by using the Princeton benchmark
protocol [39], as shown in Figure 10. With the increase of the geodesic error threshold, the
matching accuracy is improved gradually. On the original FAUST dataset, our method is
slightly improved compared with FMNet, SURFMNet, and MGCN, while the correspond-
ing accuracy of our method is significantly improved compared with other methods on the
remeshed FAUST dataset. Our approach achieves good matching for meshes of different
resolutions, which indicates that it has strong robustness.

Figure 10. Quantitative correspondence performance of different methods on the original FAUST
dataset and the remeshed FAUST dataset. (a,b) are the evaluation on the original FAUST dataset,
(c,d) are the evaluation on the remeshed FAUST dateset.

We further test on SCAPE, TOSCA, and KIDS datasets to verify the generalization of
our approach. For a more intuitive comparison of experimental results, Figure 11 illustrates
the geodesic errors of these methods on remeshed SCAPE, TOSCA, and KIDS datasets. In
order to clearly demonstrate the corresponding effect, we visualize the correspondence re-
sults of different methods on these three datasets, as shown in Figure 12. Our method shows
more accurate matching results, which indicates that our method has better generalization.
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Figure 11. Quantitative correspondence performance of proposed methods on three remeshed
datasets. (a) is the evaluation on the remeshed SCAPE dataset, (b) is the evaluation on the remeshed
TOSCA dataset, (c) is the evaluation on the remeshed KIDS dataset.

Figure 12. Visualization of the corresponding results of our method and other algorithms on the
human model in remeshed SCAPE, TOSCA, and KIDS datasets. (a) SCAPE. (b) and (c) TOSCA.
(d,e) KIDS. Corresponding points show the same color.

Considering the large gap between the animal model and the human model, the
proposed method is tested on the animal model in the TOSCA dataset to verify the adapt-
ability of the method. Figure 13 shows the corresponding results of reference shapes and
deformable shapes on the non-human models. By contrast with FMNet, SURFMNet, and
MGCN, our method is closer to ground truth in corresponding details.



Appl. Sci. 2023, 13, 3261 18 of 22

Figure 13. Correspondence results on the non-human model in remeshed TOSCA datasets.

In Table 4, we show the average geodesic error of several methods on four resampled
datasets. The bold represents the minimum error in each column. In the remeshed FAUST
dataset, the error of our method is 78.72% less than FMNet, 56.60% less than SURFMNet,
and 47.43% less than MGCN. In remeshed SCAPE, it is 48.88% less than FMNet, 45.42% less
than SURFMNet, and 27.71% less than MGCN. In the remeshed KIDS dataset, it is 62.32%
less than FMNet, 65.66% less than SURFMNet, and 57.74% less than MGCN. In remeshed
TOSCA, it is 74.65% less than FMNet, 76.16% less than SURFMNet, and 71.87% less than
MGCN. It can be found that our model achieves better results than those of the compared
methods, which demonstrates that our model is more robust on non-rigid 3D models with
lower resolution.

Table 4. The average geodesic error (cm) with some methods on remeshed FAUST, SCAPE, KIDS, and
TOSCA datasets. Average error is normalized to eliminate the effects of shape scale transformations.

Method FAUST SCAPE KIDS
TOSCA

David Michael Victoria Cat Centaur Dog Horse Wolf

FMNet 0.3601 0.3709 0.3402 0.3413 0.3712 0.3100 0.3752 0.3574 0.3745 0.3522 0.0360
SURFMNet 0.3952 0.3895 0.3727 0.1673 0.3485 0.3572 0.4084 0.3659 0.3792 0.3496 0.0545

MGCN 0.3211 0.2755 0.2752 0.1381 0.2631 0.2787 0.3153 0.3015 0.3398 0.3045 0.1779
Ours 0.1357 0.0825 0.0596 0.0726 0.1902 0.0864 0.1099 0.0741 0.1158 0.0913 0.0184

4.4. Ablation Study
4.4.1. Effectiveness of the Component Pair Constraint

In Section 3.2, we introduce the component pair generation strategy. The purpose of
this section is to study whether component pair constraints affect network correspondence
results. Figure 14 visualizes the geodesic error on the original FAUST dataset. The corre-
spondence error on the basis of the geodesic distance to the ground truth is demonstrated
with a color scale of 0 to 0.1. As shown in this figure, our model achieves a lower geodesic
error on the original FAUST dataset by using a component pair constraint, which proves
the effectiveness of the component pair constraint.



Appl. Sci. 2023, 13, 3261 19 of 22

Figure 14. Visualization of geodesic error of several methods on original FAUST dataset.

4.4.2. Effectiveness of the Component-Aware Graph Routing

In Section 3.3, component-aware graph routing is proposed to compute the primary
capsule to transfer the input vector to the latent capsule. To test the effectiveness of the
routing algorithm, we compare the proposed algorithm with dynamic routing. Table 5
shows the average geodesic error of different routing algorithms on the TOSCA dataset.
The bold represents the minimum error in each column. As shown in Table 5, the aver-
age geodesic error of the dynamic routing algorithm is 0.1276, and the average geodesic
error of our method without knowledge distillation is 0.1213. Our method improves the
correspondence performance with an average error of 0.1187, which is 6.97% less than the
dynamic routing and 2.14% less than our method without knowledge distillation. Our
model achieves smaller average geodesic errors on different types of meshes, providing
slightly better results on the TOSCA dataset. It illustrates that the routing strategy in this
paper can capture more adequate pose information compared to dynamic routing, resulting
in significant improvement in shape correspondence.

Table 5. Comparison of average geodesic error (cm) on remeshed TOSCA dataset using different
routing strategy.

Datasets
Dynamic
Routing

Ours without
Knowledge Distillation Ours

david 0.1153 0.1193 0.1186
michael 0.1295 0.1136 0.1129
victoria 0.0644 0.0612 0.0598

cat 0.1058 0.0949 0.0941
centaur 0.1824 0.1698 0.1605

dog 0.1625 0.1579 0.1572
horse 0.1137 0.1182 0.1174
wolf 0.1471 0.1354 0.1287
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In order to fully capture the features of the potential space, inter-layer distillation
and output-layer distillation are used to transfer the model’s knowledge. To verify the
effectiveness of the knowledge distillation strategy, we train the CA-GCNet and the CA-
GCNet without a knowledge distillation strategy separately to acquire the network accuracy,
as shown in Figure 15. The accuracy curves illustrate that the prediction accuracy of
our proposed CA-CGNet is higher than that of the CA-CGNet without the knowledge
distillation strategy, which indicates that the student network can learn more detailed
features from the teacher network.

Figure 15. The accuracy of our CA-CGNet and CA-CGNet without knowledge distillation in
10,000 iterations.

5. Discussion

As shown in Figure 14, the functional maps with component pair constraint can
capture the local pose details of 3D non-rigid models more effectively. Hence, functional
maps with component pair constraints are able to use deep features with local and global
structural information for shape correspondence. To reduce the effect of noise interference,
the dynamic clustering strategy is used to dynamically merge the patches formed by
over-segmentation, capturing the potential mutual influence of information between the
local patch and the global model. Then, component pairs are obtained by matching
components on different models using the Hausdorff distance, which leads to high-level
feature representation and corresponding accuracy by using component pair-constrained
functional maps.

Inter-layer distillation and output-layer distillation are designed to constrain the
student network to reduce the network parameters and speed up the gradient descent
during the training process. The average geodesic error shown in Table 5 illustrates the
efficiency of our component-aware graph routing for improving the corresponding accuracy
of 3D models with low resolution.

6. Conclusions

Based on the functional maps framework, this paper proposes a component-aware
shape correspondence network that can effectively deal with non-rigid deformation. Tak-
ing capsules as nodes in the graph, the semantic information between capsules is further
extracted by the component-aware graph routing, and the model is simplified by a knowl-
edge distillation strategy. By adding the component constraint to the functional map and
taking the component-based semantic loss as a regularization term, our method can learn
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more representative features on 3D meshes. Experiments on four challenging datasets
show qualitatively and quantitatively that our model has stronger robustness and better
generalization ability. The proposed framework also can provide more effective solutions
in biological computing, human pose estimation, and medical image processing. One limi-
tation of dynamic clustering is that it is difficult to cluster patches if the feature difference
is hardly remarkable, which we hope to address in a future study. On the other hand, the
determination of the number of clusters requires a large number of iterative experiments
and is computationally intensive. In future work, we will adopt an optimization algorithm
to determine the number of clusters to reduce computational expenditure.
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