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Abstract

:

The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approaches to identify DDoS attacks in SDN networks between 2018 and the beginning of November 2022. To search the contemporary literature, we have extensively utilized a number of digital libraries (including IEEE, ACM, Springer, and other digital libraries) and one academic search engine (Google Scholar). We have analyzed the relevant studies and categorized the results of the SLR into five areas: (i) The different types of DDoS attack detection in ML/DL approaches; (ii) the methodologies, strengths, and weaknesses of existing ML/DL approaches for DDoS attacks detection; (iii) benchmarked datasets and classes of attacks in datasets used in the existing literature; (iv) the preprocessing strategies, hyperparameter values, experimental setups, and performance metrics used in the existing literature; and (v) current research gaps and promising future directions.
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1. Introduction


With the increasing demand for high-quality multimedia content, software-defined networking (SDN) has been proposed as the future of internet architecture. In this network paradigm, the control plane (which is the brains of the network) and the data plane (which is the muscle) are decoupled [1]. SDN models include SDN controllers, as well as southbound and northbound APIs. This architecture provides a programmable and centralized network that can dynamically provision services [2]. OpenFlow (OF) is a standard and open protocol used in SDN that explains how a centralized controller configures and governs the control layer in the network. The data in SDN is kept in Mac tables and routing tables and is handled by various sophisticated switching and routing protocols. These tables are utilized to create the forwarding plane in traditional networks [3].



Today’s society relies heavily on the internet, which is essential for economic transactions, education, and communication. However, along with its many benefits, the internet has experienced an increase in criminal activity, such as hacking, spreading false information, and denial-of-service (DoS) attacks. A DoS attack occurs when a legitimate service, system or network is made inaccessible to its intended users. A DDoS attack, a subcategory of DoS attacks, involves an attacker breaching multiple computing systems in order to disrupt a specific target’s regular traffic [4].



Defending against DoS and DDoS attacks is more challenging in SDN than in traditional networks. These types of attacks have become significant threats to computer networks, causing a decline in network performance by consuming available resources and disabling services. An effective DoS/DDoS attack intentionally depletes resources and prevents hosts from accessing the targeted service. In SDNs, a DoS/DDoS attack can overwhelm the control plane, data plane, or control plane bandwidth, potentially bringing down the entire network. An attack on the data plane may consume all of the OpenFlow switch’s limited flow table RAM, resulting in the discarding of packets and the inability to install newly received flow rules. DoS/DDoS attacks on the data plane may also involve the generation of a large number of new flows that do not correspond to flow table entries. These packets are buffered by the switch, and if the buffer fills up, the entire packet is sent to the controller rather than just the headers through packet-in messages. This can cause delays in installing new flow rules and higher communication bandwidth use [5].



The primary distinction between DoS and DDoS assaults is that DoS utilizes many internet connections to take the victim’s computer network offline, whereas DDoS assaults use a network of devices controlled by the attacker. DDoS assaults are more challenging to detect and trace because they are launched from various locations, and the attack volume used is enormous. DDoS assaults are carried out differently from DoS attacks, which are often carried out via a script or a DoS tool like Low-Orbit Ion Cannon. Types of DOS attacks include buffer overflows, ICMP floods, teardrop attacks, and flooding assaults, whereas types of DDOS attacks include volumetric attacks, fragmentation attacks, application layer attacks, and protocol attacks. DDoS assaults are more destructive than DoS attacks because they involve several systems, making it more challenging for security teams and products to pinpoint the source of the attack [6].



The aforementioned examples highlight the requirement for a reliable approach to identifying DDoS assaults. DDoS assaults may be detected using a variety of approaches, including statistical analysis, ML/DL, etc. Among these, deep learning approaches are the most effective at identifying DDoS assaults. The following are shortcomings of the alternative approaches that have been studied to date:




	
Statistical Methods Limitations: The limitations of various DDoS detection approaches have been studied, including statistical and machine learning (ML) methods. Statistical methods are based on past network flow information, which may not accurately describe current network traffic due to evolving hostile network flows. Such techniques rely heavily on user-defined criteria, which need to be able to change dynamically in order to keep up with changes in the network. Statistical techniques such as entropy and correlation require a significant amount of computational effort, making them unsuitable for real-time detection [7]. ML methods work effectively on a small amount of data and determine the statistical properties of attacks before classifying or valuing them. However, they require routine model updates to reflect changes in attack patterns, and certain algorithms can take a very long time to test [8].



	
Machine Learning (ML) Limitations: Even when applying ML principles to a tiny quantity of data, it can function quite effectively. The ML first determines the assault’s statistical properties before classifying or valuing them. Additionally, it requires routine model updates in order to reflect changes in attack patterns [9]. ML techniques address this problem by decomposing it into manageable subproblems, addressing those subproblems, and then providing the full solution. ML algorithms typically require a short amount of time to train and a considerably longer amount of time to test [10].








DL techniques can effectively identify DDoS attacks, as the data can be classified and the features extracted using DL algorithms, unlike in ML which needs to extract the features in different algorithms before inserting them into the model. In today’s security environment, a detection system that can handle data unavailability is a necessity. Although labels for valid traffic are frequently accessible, labels for malicious traffic are less common. DL methods are capable of extracting information from incomplete data [11], and are appropriate for recognizing low-rate assaults. To recognize low-rate assaults, historical data are necessary, which DL techniques use to discover long-term relationships of temporal patterns [12]. As a result, in circumstances where such data are available DL techniques can be very helpful. During the training phase, DL methods perform intricate mathematical operations across a variety of hidden layers and parameters [13]. Quantum computing has shown great promise in a variety of fields, including artificial intelligence (AI), cybersecurity, and medical research. Quantum computing can help AIs to solve more complicated issues by speeding up computation. It can be used with both SML and DL models for quick training or other enhancements. By addressing complicated issues that need vast datasets and are demanding to process, quantum computing can enhance the capabilities of deep learning [14,15].



Compared to other review studies in the literature, Table 1 illustrates that the majority of these studies have not provided a comprehensive evaluation of the preparation techniques, benefits, and types of attacks used in the analyzed datasets. In contrast, our systematic study presents an extensive review of various deep-learning techniques for detecting DDoS attacks. Through this research, we have identified a gap in the literature, namely, that a comprehensive evaluation of deep learning methods for DDoS detection remains lacking. Our study contributes to addressing this gap by providing a comprehensive review and analysis of the strengths and weaknesses of different deep learning approaches for detecting DDoS attacks. As such, our review provides valuable insights into the current state-of-the-art in DDoS attack detection using deep learning techniques.



We reviewed DDoS assaults detection systems based on DL techniques in this research using the SLR protocol, and offer the following findings:




	
Based on common criteria, modern DDoS attack detection technologies involving deep learning algorithms have been identified and grouped.



	
The methodology, benefits, and drawbacks of current ML/DL systems for detecting DDoS assaults have been outlined.



	
The different kinds of assaults in the datasets utilized in recent studies as well as the accessible DDoS benchmarked datasets have been compiled.



	
The core of our review was focused on data pre-processing techniques, hyperparameter adjustments, testing configurations, and the quality measures used by current ML/DL systems for DDoS attack detection.



	
The main purpose of the study was to identify areas for future research in this field and to highlight current research gaps.








The remainder of this review is structured as follows: the SLR protocol is explained in Section 2; Section 3 discusses current ML/DL methods that have been employed in the literature for detection of DDoS assaults; in Section 4, the methodology, advantages, and disadvantages of different studies are discussed; the available benchmarked DDoS datasets and classes of attacks in the datasets commonly used in the literature are described in Section 5; preprocessing techniques and hyperparameters are described in Section 6; in Section 7, the research gaps in the current literature are shown; finally, in Section 8, our conclusions are explained and future prospects are explored.




2. Systematic Literature Review (SLR) Protocol


This paper presents a systematic literature review (SLR) conducted between 2018 and 2022 focusing on detection of DDoS attacks using DL methods. The SLR method used in this study adheres to the recommendations made in [21], providing a comprehensive approach to understanding the literature on the subject. Unlike previous review papers, this study includes an analysis of the preparation techniques, advantages, and different types of attacks used in various datasets. The output of the SLR is a collection of research publications organized according to the taxonomy of the DL techniques utilized. By identifying research limitations in the body of literature, this study offers exciting new options for future research. Overall, this paper presents a rigorous and novel approach to a systematic review of DDoS attack detection techniques. The research protocol summary is shown in Figure 1, and is described in detail below.



2.1. Research Questions


The main objective of a systematic review is to address research questions by analyzing data extracted from previous studies. The research questions addressed in the present work include:




	
RQ1: What are the most recent DL techniques for detecting DDoS attacks, and how can they be classified?



	
RQ2: What are the current methodologies, advantages, and disadvantages of DL methods for detecting DDoS attacks?



	
RQ3: What types of attacks are included in the datasets used in current research, and what benchmarked DDoS datasets are available?



	
RQ4: What preprocessing techniques, hyperparameter settings, experimental configurations, and performance metrics are used by current DL algorithms for DDoS attack detection?



	
RQ5: What are the research gaps in the published literature?









2.2. Search Strategy


An effective search strategy is essential for any systematic survey. In this study, a carefully selected set of databases was used to mine the relevant literature. Two search phases were conducted between 2018 and 2022. The first phase searched four databases: ACM, IEEE Explore, Springer, and Science Direct. The second phase added Google Scholar in order to ensure that all relevant material was included. To refine the search string, pilot research was conducted. From the search results, ten highly referenced and relevant articles were selected.



One such search term that was used in several digital libraries with little alteration was (DDoS attack detection using DL approaches OR DDoS attack detection using ML approaches OR Detection of DDoS attacks using DL OR Detection of DDoS attacks using ML). Using “filtering choices”, we were able to improve the outcomes from the selected digital libraries. Figure 2 shows the flow of the various phases of the survey protocol.




2.3. Study Selection Criteria


The main objective of the research selection process was to identify relevant literature addressing the defined research questions while excluding any irrelevant material. To this end, inclusion and exclusion criteria were applied; these encompassed research papers that built upon earlier relevant studies. In stage 1, we took the first 1000 items from the second search phase and combined them with the 3039 entries from the first search phase to create 4039 entries. In stage 2, 170 duplicate entries were eliminated. After stage 2, articles were removed in accordance with their titles (3126), abstracts (581), and complete texts (118), respectively. In the end, (44) research articles were chosen. Studies that were unrelated to established research topics were eliminated using the inclusion and exclusion criteria. The following definitions describe the inclusion/exclusion criteria:



Inclusion criteria:




	
All publications that present a novel method for ML/DL-based DDoS attack detection



	
Research that exclusively pays attention to ML/DL techniques



	
Studies involving related topics while differing in crucial elements are incorporated as separate primary studies



	
Research that responds to the study’s questions



	
Research building on earlier relevant research



	
Articles released between 2018 and 2022.








Exclusion criteria:




	
Articles not written in English



	
Research unrelated to this study’s topic



	
Review papers, editorials, discussions, data articles, brief communications, software publications, encyclopedias, posters, abstracts, tutorials, works-in-progress, keynotes, and invited talks



	
Articles that do not provide a sufficient amount of information



	
Duplications of other research.









2.4. Reference Checking


The references from the (32) studies that were retained after scanning the whole manuscripts were evaluated to make sure that no significant work had been missed. The (76) papers that contributed to their conclusions were then evaluated more thoroughly based on the title, abstract, and full article using the same inclusion and exclusion criteria as previously. Articles based on titles (11), abstracts (51), and entire articles (12) were removed in the next rounds. Of the papers found via reference checking, (74) entries were removed, resulting in only two additional papers.




2.5. Data Extraction


After examining the entire manuscripts, pertinent information was collected based on our research questions. The collected information from each study was used to complete a templated form. The title, technique, datasets used, number of features, recognition of attack and genuine classes, preprocessing techniques, testing configuration for enhancement of the model, evaluation methods, advantages and disadvantages of the model, and a summary were all used to critically evaluate the final set of articles in order to condense the answers to our research questions. The fields used for data extraction are detailed in Table 2.





3. Most Up-to-Date ML/DL Techniques for Detecting DDoS Attacks


The field of ML is a subfield of artificial intelligence (AI) that encompasses all techniques and algorithms that allow computers to automatically learn from big datasets by applying mathematical models. Decision Tree (DT), K-Nearest Neighbor (KNN), Artificial Neural Network (ANN), Support Vector Machine (SVM), K-Means Clustering, Fast Learning Networks, Ensemble Methods, and others are the most popular ML methods used for DDoS detection in SDN (sometimes called Shallow Learning). The brief explanations of each category are as follows:




	
Decision Tree (DT): a fundamental supervised ML method that leverages a set of rules to classify and predict data using regression. The model is structured as a tree with nodes, branches, and leaves, where each node represents a feature or characteristic. Each leaf on the branch denotes a possible outcome or a class label, and the branch itself signifies a decision or a rule. The DT algorithm automatically selects the optimal attributes for tree construction and performs pruning to eliminate unnecessary branches and prevent overfitting [22].



	
K-Nearest Neighbor (KNN): the K-Nearest Neighbor (KNN) algorithm is a simple supervised ML method that uses the concept of “feature similarity” to classify a given data sample. By determining a sample’s identity based on its neighbors and how far away it is from them, KNN can effectively determine the class of a data sample. The value of the KNN algorithm’s k parameter can have an impact on its performance, and selecting a k value that is too small or too large can lead to overfitting or incorrect categorization of the sample case. To improve the detection rate of attacks in the minority class, researchers using the most recent benchmark dataset, CSE-CIC-IDS2018, have applied the Synthetic Minority Oversampling Technique (SMOTE) to overcome the dataset imbalance issue when evaluating the performance of various ML algorithms, including KNN [23].



	
Support Vector Machine (SVM): Support Vector Machine (SVM) is a supervised ML method that uses the max-margin separation hyperplane in n-dimensional feature space as its foundation. It can be used to solve both linear and nonlinear issues, employing kernel functions to address the latter. The goal of SVM is to first translate a low-dimensional input vector into a high-dimensional feature space using the kernel function, then to use the support vectors create an optimal maximum marginal hyperplane that serves as a decision boundary. By correctly identifying the benign and harmful classes, the SVM method can be used to identify DDoS attacks with greater efficiency and accuracy [24].



	
K-Mean Clustering: the goal behind clustering is to group together sets of data that are very similar in order to divide the data into meaningful clusters or groups. One popular iterative ML technique that learns without supervision is K-Mean clustering. Here, K denotes a dataset’s total number of centroids (cluster centers). Distance is typically measured when allocating specific data points to a cluster. The main goal is to decrease the total distance between each data point and its associated centroid within a cluster [25].



	
Artificial Neural Network (ANN): the functioning of the human nervous system serves as the inspiration for the supervised ML algorithm known as ANN. It consists of neurons (nodes), which are processing units, and the connections that link them together. The organization of these nodes includes an input layer, several hidden levels, and an output layer. A backpropagation algorithm is employed by ANNs as a learning method. The capacity of the ANN approach to perform nonlinear modeling by learning from larger datasets is its key benefit. However, the fundamental difficulty with training ANN models is the lengthy procedure required, as its complexity can hinder learning and result in less than ideal results [26].



	
Ensemble methods: the main idea behind ensemble techniques is to learn in an ensemble fashion in order to benefit from the use of multiple classifiers. Each classifier has its own advantages and disadvantages; for example, they may be good at spotting a certain kind of attack and bad at spotting other kinds. By training several classifiers, ensemble techniques can combine several weak classifiers to create a single stronger classifier, which is typically selected using a voting mechanism [27].








DL is a type of ML used in AI that has the ability to learn from both supervised and unstructured data [28]. DL models are known as Deep Neural Networks or Deep Neural Learning, as the technology makes use of multi-layer networks. Neurons connect the levels and stand in for the mathematical calculations behind learning processes [29]. As seen in Figure 3, the three main processes that make up most ML/DL methods are: (i) the data preparation phase, (ii) te training phase, and (iii) the testing phase. The dataset is initially preprocessed for each of the suggested solutions in order to convert it into a form that the algorithm can use. Typically, this phase involves normalization and coding. The dataset may need be cleaned, which occurs during this step if necessary. Duplicate entries and entries with missing data are removed. The training dataset and testing dataset are created by randomly dividing the preprocessed data into two halves. Typically, nearly all (80%) of the initial dataset size is typically made up of the training dataset, with the remaining amount (20%) constituting the testing dataset. In the subsequent training phase, the ML or DL algorithm is taught using the training dataset. The proportion of the dataset that is used and the complexity of the model being trained affect how long it takes the algorithm to learn. Due to their intricate and sophisticated structure, DL models often require a longer training period than ML models. After training, models are tested using the testing dataset, with performance being assessed based on the predictions made by the model. In the case of DDoS detection models, this takes the form of network traffic instances being classified as either benign (normal) or attack instances.



DL techniques can be divided into five groups: hybrid learning, semi-supervised learning, supervised instance learning, and supervised sequence learning. A succinct summary of each category is provided below:



Supervised instance learning: Supervised Instance l = Learning uses the flow of instances [18]. For training purposes, it makes use of labeled instances. The most popular techniques in this area are:




	
Deep Neural n = Networks (DNN): a fundamental DL structure that allows the model to learn at multiple levels. It comprises several hidden layers, along with input and output layers. DNNs are used to simulate complex nonlinear functions. The addition of more hidden layers improves the model’s abstraction level, expanding its potential. For classification purposes, the output layer consists of one fully connected layer and a softmax classifier. The Rectified Linear Unit (ReLU) function is commonly used as the activation function for the hidden layer [30,31].



	
Convolutional Neural Network (CNN): a CNN is a DL structure that is well suited for image and signal data. All CNNs have an input layer, a stack of convolutional and pooling layers for feature extraction, a fully connected layer, and a softmax classifier in the classification layer. CNNs have achieved great progress in the realm of computer vision, and can perform supervised feature extraction and classification functions for DDoS detection tasks [32].








Supervised sequence learning: in supervised sequence learning, a series of flows are used; when learning from a set of inputs, this form of model keeps track of the prior input states in its memory. The most popular models of this kind include:




	
Recurrent Neural Networks (RNN): RNNs were developed to improve upon the capabilities of traditional feed-forward neural networks and model sequence data. Input, hidden, and output units make up an RNN, with the hidden units acting as the memory elements. In order reach a decision, each RNN unit considers both the current input and the results of prior inputs. RNNs are commonly used in a wide range of fields, such as semantic comprehension, handwriting prediction, voice processing, and human activity identification [33]. RNNs can be used for feature extraction and supervised categorization in DDoS detection. However, RNNs can only manage sequences up to a certain length before running into short-term memory problems [34].



	
Long Short-Term Memory (LSTM): LSTM is a DL structure that has successfully addressed the challenges of RNNs. An LSTM network is composed of different memory cells or blocks. The following cell receives both the hidden state and the cell state through three mechanisms known as gates, specifically, forget, input, and output gates [35]. The memory blocks may choose which data to recall or ignore. A forget gate eliminates information from the current input that the LSTM no longer requires [36]. The output gate is responsible for extracting pertinent data from the current input and processing it as an output. Finally, the input gate is responsible for adding inputs to the cell state [37].








Semi-supervised learning: semi-supervised learning involves using unlabeled data in the pre-training stage of the algorithm. This approach trains a model using both labeled and unlabeled data. In this case, the features are extracted using an autoencoder and classification is performed using various deep or shallow machine learning models. AutoEncoding (AE) is a common deep-learning method that belongs to the unsupervised neural network family. By learning the best features, AE aims to match the output to the input as closely as possible. Although the dimensions of the hidden layers are often smaller than those of the input layer, an autoencoder has input and output layers of the same dimension. Symmetric encoder–decoder operation is a key aspect of AE. Stacked AE, Sparse AE, and Variational AE are three different versions of AE [13].



Hybrid learning: a comdination of any two other methods, such as shallow machine learning, supervised deep learning, or unsupervised deep learning, is known as a hybrid learning method. Researchers have commonly employed CNN–LSTM [38,39,40]), LSTM–Bayes [41], RNN–AE [42], and other hybrid models.



Other learning methods: this group includes transfer learning, in which a pre-trained model from a repository is used in a transfer learning technique [13]. In these cases, researchers use deep learning techniques train models on one attack domain before applying them to another.



This section has provided a thorough summary of the most popular ML and DL algorithms for DDoS detection systems. Figure 4 illustrates the taxonomy of current ML/DL-based DDoS detection approaches.




4. Methodologies, Strengths, and Weaknesses


The specifics of the most popular ML and DL algorithms used to create an effective DDoS detection model are described in this section, along with basic techniques for AI-based DDoS detection. Both supervised and unsupervised methods are used in ML and DL. In supervised algorithms, data need to be labeled prior to use. Unsupervised algorithms, on the other hand, use unlabeled data to extract important characteristics and details. The methodologies, advantages, and disadvantages of studies using these approaches are summarized in Table 3.




5. Available Benchmarked DDoS Datasets and Classes of Attacks in Datasets


The datasets and attack class types utilized by the studies that were examined for DDoS attack detection are listed in Table 4. eight datasets (KDD Cup99, Kyoto 2006+, NSL-KDD, UNSW-NB15, CIC-IDS2017, CSE-CIC-IDS2018, SCX2012, and CICDDoS2019) were utilized across the majority of studies. Following is a description of these datasets.



KDD Cup99: One of the most well-known and often used datasets for IDS is KDD Cup99. It contains about five million and two million recordings for training and testing, respectively. Each recording has 41 distinct characteristics or properties, and is classified as an attack or as normal data. Four categories of attacks are established for the recordings, namely, Denial of Service (DoS), Probe, Remote to Local (R2L), and User to Root (U2R) [80].



Kyoto 2006+: this dataset was produced using network traffic statistics that Kyoto University collected through the use of honeypots, darknet sensors, email servers, web crawlers, and other network security mechanisms. The most recent dataset covers traffic statistics for the years 2006 to 2015. Each entry consists of 24 analytical attributes, among which fourteen are taken directly from the KDD Cup99 dataset and the remaining ten are extra features.



NSL-KDD: this dataset consists of the KDD Cup99 dataset improved and amended by eliminating a number of its fundamental problems. This dataset has 41 features, and the attacks are split into four groups, as stated in KDD Cup99.131 [82].



UNSW-NB15: the Australian Center for Cyber-Security produced this dataset. Using Bro-IDS, Argus tools, and a number of newly created methods, almost two million records were retrieved with a total of 49 characteristics. Worms, Shellcode, Reconnaissance, Port Scans, Generic, Backdoor, DoS, Exploits, and Fuzzers are among the attack types included in this dataset.



CIC-IDS2017: the Canadian Institute of Cyber-Security (CIC) produced this dataset in 2017. New actual assaults and typical flows are both included. CICFlowMeter uses data from records, source and destination IP addresses, protocols, and assaults to assess the network traffic. CICIDS2017 includes typical attack cases such as Brute Force Attacks, HeartBleed Attacks, Botnets, Distributed DoS (DDoS), Denial of Service (DoS), Web Attacks, and Infiltration Attacks [83].



CSE-CIC-IDS2018: in 2018, the Communications Security Establishment (CSE) and the CIC collaborated to generate this dataset by creating user profiles that include an abstract depiction of many occurrences. All of these profiles were then integrated with a special set of characteristics to create the dataset. Brute Force, Heartbleed, Botnet, DoS, DDoS, Web assaults, and network penetration from within are just a few of the seven various attack scenarios that are covered by this dataset [84].



ISCX2012: this of dataset, which contains full-packet network data, was developed in 2012 by Ali Shiravi et al. [20] It covers seven days from June 11 to June 17, 2010, with network activity including both legitimate and malicious traffic. A few examples of malicious traffic include Distributed Denial of Service, HTTP Denial of Service, and Brute Force SSH. This dataset was produced in a simulated network context, and contains labeled and unbalanced data. Two broad profiles, one that describes attack activity and the other that describes typical user scenarios, are utilized in the ISCX dataset [85].



CICDDoS2019: Sharafaldin et al. [86] created the CICDDoS2019 dataset (2019). More than 80 traffic characteristics were taken from the original information by using the CICFlowMeter-V3 program to extract the features. The CICDoS2019 contains typical DDoS assaults that are safe and current. This dataset, which was created using actual traffic, contains a variety of DDoS assaults created utilizing TCP/UDP protocols [87].




6. Preprocessing Techniques, Hyperparameter Settings, Experimental Configurations, and Performance Metrics


Table 4 lists the preprocessing techniques, hyperparameter settings, test configurations, and performance metrics employed by the current ML/DL algorithms for DDoS attack detection. At the beginning, the data are preprocessed. Preprocessing the data is essential, as it changes raw data into a structure that improves the model’s capacity for learning [88]. Table 5 in this research provides an overview of preprocessing techniques employed in the body of the literature.



Hyperparameters are crucial because they directly affect how ML training algorithms behave. Prior to training the model, certain hyperparameter values must be chosen, which calls for specialized expertise and experience. There are two approaches for hyperparameter tuning, namely, manual search and automated search techniques. In a manual search, values for the hyperparameters are chosen manually. The automated search technique is similar to grid search, however, the grid search approach is more expensive. Another approach, known as a random search, has been introduced to address the grid search issue. Examples of hyperparameters include the number of epochs, batch size, learning rate, training algorithm, amount of layers, amount of neurons in each layer, etc.



An experimental setup includes information about the program, dataset, physical hardware, and other aspects of the experimentation process. As the training and testing timeframes rely on the hardware setup, it is particularly crucial. Due to the complexity of ML/DL algorithms, suitable hardware configurations are needed.



The performance indicators are the most popular measures defined in this section. For binary classification, the typical performance measurements are accuracy, recall, precision, F1-score, AUC, etc.



The confusion matrix is described as the overview of outcomes foreseen by the categorization model. It includes (True Positive TP), True Negative (TN), False Positive (FP), and False Negative (FN) [89].



The true positive rate (TPR) is determined following Equation (1) Additionally, it may be known as the recall or sensitivity [90], and ought to be as high as possible.


  TPR =   T P   ( T P + F N )    



(1)







Precision is determined following Equation (2) by checking how many of the positive classes that the model adequately predicted are really positive [91].


  Precision =   T P   ( T P + F P )    



(2)







Following Equation (3), accuracy is defined as the percentage of true predictions made by the model across all classes. The highest level is preferable. Its formula is as follows [91]:


  Accuracy =   T P + T N   ( T o t a l )    



(3)







The FPR or False Positive Rate is shown in Equation (4) [90]; it measures the percentage of negative occurrences that the model incorrectly forecast as positive.


  FPR =   F P   ( T N + F P )    



(4)







The percentage of positive cases incorrectly anticipated as negative cases is known as the false negative rate (FNR), and is determined as shown in Equation (5) [90]


  FNR =   F N   ( T P + F N )    



(5)







The TNR or True Negative Rate is shown in Equation (6); Specificity is another name for it. It is described as the percentage of adverse events accurately foreseen as adverse [90].


  TNR =   T N   ( T N + F P )    



(6)







It is challenging to compare two models if one has great recall and low accuracy or vice versa. The F1-score is therefore used to compare them. It is employed to simultaneously assess memory and precision [92]. Equation (7) is used to compute the F1-score:


   F1-Score  =   2 ∗ R e c a l l ∗ P r e c i s i o n   ( R e c a l l + P r e c i s i o n )    



(7)







Efficiency at different threshold levels for classification problems is known as the AUC–ROC curve. A model makes more accurate predictions if the AUC is near 1 [93].




7. Research Gaps in the Existing Literature


The research gaps detailed below were identified through our thorough assessment of the literature.



	
Insufficiently large datasets: due to the potential loss of reputation or money, the majority of victim organizations are reluctant to disclose information regarding attacks undertaken against them. Furthermore, there are no complete databases in the public domain that include all traffic kinds, including genuine, low rate, high rate, and flash traffic [37,39,40,42,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,75,76,77,81]. Therefore, experimental settings are necessary to provide extensive datasets for the thorough validation of DDoS detection methodologies.



	
Access to skewed datasets: occurrences of DDoS attacks are typically highly skewed in comparison to genuine events in the datasets currently available [37,39,40,53,54,55,56,60,61,62,63,64,65,66,67,70,71,72,75,77]. Therefore, a large number of cases in each class are required in order to execute deep learning techniques effectively. For effective study in this area, good enhancement strategies are needed to provide a large enough volume of all forms of traffic.



	
Demand for high-quality preprocessed data: the caliber of the preprocessed data affects how accurate the resulting deep learning model is. As a result, effective preprocessing methods are needed for effective DL model training [61,62,63,65,66,67,68,69,70,72,75].



	
Binary categorization: the majority of the currently available literature [37,39,40,42,53,54,57,63,64,65,67,68,70,71,72,73,75,76,77,78,81] concentrates on binary categorization of DDoS assaults rather than multi-class classification.



	
Insufficient effort on unknown data or zero-day attacks: when the instruction and assessment datasets contain the same traits or patterns, ML models are able to function well. However, ML-based algorithms are unable to accurately detect unknown threats in real-life situations, where attacks may be launched using novel patterns. As a result, these models must be frequently updated in order to account for novel and untested assaults [53].



	
Using an offline dataset for evaluation: the majority of the research we reviewed used offline datasets to assess deep learning models [37,39,42,55,56,57,58,59,61,62,63,64,65,66,67,69,70,72,73,75,77,78,81]. The implementation of these models in actual networks remains a work in progress. Real-time evaluation of models would be highly beneficial for adequate verification.



	
No deployment of automated real-time defense models: most DDoS assaults overwhelm the target site in a relatively short amount of time, and network managers are often unable to automatically identify and fight back against these attacks. The primary cause of this is that defense strategies themselves become susceptible to DDoS assaults based on floods. Therefore, high-speed and computationally efficient DDoS solutions are needed in order to automatically stop those attacks.







8. Conclusions and Future Directions


It may be quite difficult to distinguish between DDoS assaults with various rates and patterns and normal traffic. Over the years, many effective ML/DL methods for DDoS attack detection have been suggested by different researchers. Sadly, however, the applicability of these techniques is severely constrained due to attackers constantly changing their attack tactics. Findings involving the SLR protocol are evaluated and drawn from in this review in order to assess the state-of-the-art DDoS assault detection systems based on ML/DL approaches. The literature has been summarized in Section 4 in accordance with the suggested taxonomy for DDoS attack detection using ML/DL techniques, with each study’s respective advantages and disadvantages listed. The accuracy rate reported in much of the literature is over 99%. Because the majority of these studies assessed their models using offline data analysis for evaluation and comparison, certain metrics for performance may vary in a real-world or production settings. In particularly, we note that existing papers have generally not employed the same DS or assessment techniques, making comparisons between their results difficult.



With respect to the datasets most often used in the literature, 29% of studies utilized the current well-known research dataset CICIDS2017, 23% used the CICDDoS2019 dataset, 18% used the ISCX2012 dataset, 10% used the NSL-KDD dataset, 10% used the KDDCUP99 datset, 5% used the UNSW-NB15 dataset, 3% used the CSE-CIC-IDS2018 dataset, and 2% used the Kyoto 2006 dataset. Figure 5a displays the efficacy of the investigated ML/DL-based DDoS attack detection techniques on the CICIDS2017 dataset. It can be seen that methods relying on CNN [64,67], DNN [56], AE–SVM [76], and CNN–LSTM [39] have all been able to achieve accuracy better than 99%. Figure 5b shows how well the investigated ML/DL-based DDoS attack detection methods performed on the CICDoS2019 dataset. Techniques relying on CNN-based ResNet [69], LSTM [73], DNN [57,58,59], and GRU [37] all demonstrated accuracy over than 99%.



On the ISCX2012 dataset, the LSTM, CNN, and LSTM–Bayes techniques all showed accuracy lower than 98.8% [70,71]. On the NSL-KDD dataset, only the CNN technique in [63] demonstrated accuracy above 99%, and it required complex calculations to achieve this.



We can conclude from this study that the most commonly used preprocessing techniques are BOW, Z-score normalization, one-hot encoding, and min-max normalization.



Another conclusion of our review relates to performance metrics. Of the reviewed studies, 29 employed accuracy measurements for evaluating their techniques, compared to 22 studies each using the precision, recall, and F1-score metrics and six studies each using the FPR and AUC metrics. These findings are shown in Figure 6; it can be seen that the majority of papers did not report the testing/training time for their methodologies, despite the fact that these measurements are crucial for system implementation in real-world or production settings.



With respect to future research directions, our discoveries on ML/DL techniques for DDoS attack detection point towards the following paths for further study:




	
Lack of actual implementation of ML/DL systems: most research focusing on analysis of these models has neglected the crucial need to evaluate the performance of these models in the real-time situations where DDoS attacks actually occur. There remains a pressing need for ML/DL models that have been verified using real-world scenarios.



	
ML/DL models rely on dynamically and frequent updating: models that can be dynamically and routinely updated in accordance with new types of attacks are a necessity due to constant and rapid changes in attack patterns, and is a crucial element in today’s world of quickly developing new technologies that carry with them more sophisticated threats. However, no such DL models are available in the literature.



	
Requirement for lightweight ML/DL models: lightweight models are necessary for networks such as the Internet of Things, MANETS, and wireless sensor networks, as these have limited computational power and memory and are highly susceptible to security threats. In the future, it is expected to become increasingly necessary to develop effective and portable DL models for these contexts.



	
Need for appropriate datasets: the current datasets lack diversity in terms of the types of attacks and quality of the data recordings they contain, leading to biased detection systems that are unable to identify all types of attacks. It is essential to have sufficient datasets in order to ensure accurate and effective detection models.








To close, addressing these areas of research is important in order to realize significant advances in this field and bridge the gaps that currently exist in the literature.
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	Artificial Neural Network
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	DDoS
	Distributed Denial of Service



	DL
	Deep Learning



	DNN
	Deep Neural Network



	DoS
	Denial of Service



	DT
	Decision Tree



	FNR
	False Negative Rate



	FPR
	False Positive Rate
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	Graphics Processing Unit



	IDS
	Intrusion Detection System



	IoT
	Internet of Things



	IP
	Internet Protocol



	KNN
	k-Nearest Neighbours



	LR
	Logistic Regression



	LSTM
	Long short-term memory



	LUCID
	Lightweight Usable CNN in DDoS Detection



	MKL
	Multiple Kernel Learning



	ML
	Machine Learning



	MLP
	Multilayer Perceptron



	MSE
	Mean Squared Error



	NB
	Naïve Bayes



	NID
	Network Intrusion Detection



	NN
	Neural Network



	PDR
	Packet Delivery Ratio



	RF
	Random Forest



	RNN
	Recurrent Neural Network



	SDN
	Software Defined Network



	SLR
	Systematic Literature Review



	SML
	Shallow Machine Learning



	SVM
	Support Vector Machine



	TCP
	Transmission Control Protocol



	TL
	Transfer Learning



	TNR
	True Negative Rate



	TPR
	True Positive Rate



	UDP
	User Datagram Protocol



	WSN
	Wireless Sensor Network



	DL
	Deep Neural Network



	ELM
	Extreme Learning Machine



	FAR
	False Alarm Rate



	FCN
	Fully Connected Network



	FN
	False Negative



	FP
	False Positive



	TN
	True Negative



	TP
	True Positive



	AI
	Artificial Intelligence



	KC
	KDD Cup



	KY
	Kyoto



	NK
	NSL-KDD



	UN
	UNSW-NB15



	C7
	CIC-IDS2017



	C8
	CSE-CIC-IDS2018



	I2
	ISCX2012



	C9
	CICDDoS2019



	FNR
	False nagative rate



	FPR
	False Posotive rate
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Figure 1. Survey protocol overview. 
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Figure 2. Systematic Literature Review method. 
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Figure 3. Methodology for generalized machine learning/deep learning-based DDoS detection systems. 
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Figure 4. Taxonomy of machine learning-based and deep learning-based DDoS detection systems. 
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Figure 5. Accuracy of the studied ML/DL approaches on (a) the CICIDS2017 dataset [38,49,53,55,56,57,62,64,65,67,72] and (b) the CICDDoS2019 dataset [37,42,53,58,59,68,69,73]. 
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Figure 6. The proportion of ML/DL methods that utilized different performance indicators. 
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Table 1. Comparison of various research papers in detail (√ = Yes; × = No).
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	Review Article
	Ferrag et al. [16]
	Aleesa et al. [17]
	Gamage et al. [18]
	Ahmad et al. [19]
	Ahmad et al. [20]
	This Article





	Focused
	Cyber security intrusion detection
	IDS
	NID
	IDS
	IoT security
	DDoS



	ML/DL
	DL
	DL
	DL
	ML/DL
	ML/DL
	ML/DL



	Systematic study
	×
	√
	DL
	√
	√
	√



	Taxonomy
	×
	√
	√
	√
	×
	√



	Preprocessing strategy
	×
	×
	×
	×
	×
	√



	Types of attack used in existing literature from the datasets
	×
	√
	×
	×
	×
	√



	Strengths
	×
	×
	√
	×
	×
	√



	Weaknesses
	×
	×
	√
	√
	√
	√



	Research gaps
	×
	×
	×
	×
	×
	√
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Table 2. Fields used for data extraction.
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	Field
	Description





	Title
	Provides the study paper’s title



	The approach used
	Lists the various ML/DL-related methods that were employed in the article.



	Datasets
	Lists the various datasets that were utilized in the study for the analysis.



	The number of features
	List of the datasets’ chosen features.



	Identification of attack and legitimate classifications
	Names of the attacks used in the article



	Preprocessing strategy
	Explains how the data were preprocessed before the model was trained.



	Model setup and performance optimization for experiments
	Describes how experiments were carried out and lists the model parameter values leading to the best performance.



	Performance metrics
	Provides the findings when using different measures for comparison of one model to another.



	Strengths
	Describes the model’s positive attributes.



	Weaknesses
	Lists the model’s shortcomings.



	Summary
	A succinct description of the fields mentioned above
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Table 3. Methodologies, strengths, and weaknesses of different studies using ML/DL for DDoS detection.
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	Reference
	Methodology
	Strengths
	Weaknesses





	Shen et al. [43]
	Used BAT algorithm with Ensemble Method for Optimization.
	When used in an ensemble setting, several ELMs showed good performance.
	Used outdated datasets, including Kyoto, NSL-KDD, and KDDCup99. Additionally, the model’s detection accuracy for the U2R attack class was lower.



	Shone et al. [44]
	Utilized RF with Non-Symmetric Deep Auto Encoder
	Presented a non-symmetric deep AE and RF classifier-based DDoS detection, which lowers the model complexity
	The model was examined with outdated datasets, and its performance on the minority R2L and U2R classes was on the low side.



	Ali et al. [45]
	Employed a Particle Swarm Algorithm and a Fast Learning Network
	The suggested model outperformed other FLN-based models using several additional optimization strategies
	Outdated dataset used. Additionally, fewer training data led to a lower detection rate.



	Yan et al. [46]
	Utilized SVM and a Sparse Auto Encoder
	SVM was effectively used as a classifier with SSAE for feature extraction to identify DDoS attacks
	The model was evaluated using an outdated dataset; while the model’s detection rates for U2R and R2L attacks were respectable, they were lower than for the other attack classes in the dataset.



	Naseer et al. [47]
	Comparison of several ML/DL-based IDS models
	Used a GPU-integrated testbed to compare ML/DL-based DDoS detection methods
	The flaws were evaluated using an earlier dataset called NSL-KDD.



	Al-QatfM et al. [48]
	A self-taught learning model was employed using an autoencoder and SVM
	The effective notion of self-taught learning based on Sparse AE and SVM was proposed as a DDoS detection model
	An older dataset called NSL-KDD was used. Additionally, no outcomes were provided regarding the model’s effectiveness against minority attack classes



	Marir et al. [49]
	Used SVM and Deep Belief Network
	DBN was utilized to extract features, which were then passed on to an ensemble SVM before being predicted through a voting method
	Model complexity and training require a longer time with more deep layers.



	Yao et al. [50]
	K-Means Clustering and Random Forest-based multilevel model
	The clustering idea was applied in combination with RF to offer a multilayer intrusion detection model; the model performed better than average in identifying assaults
	Used the outdated KDDCup99 dataset to test the model.



	Gao et al. [51]
	Employed a voting system and ensemble ML techniques
	Used an adaptive ensemble model combining many basic classifiers such as DT, RF, KNN, and DNN, and used an adaptive voting mechanism to select the best classifier
	An earlier dataset called NSL-KDD was used to test the model; the results on weaker attack classes were insufficient.



	Karatas et al. [52]
	Comparison of the performance of several ML algorithms by first lowering the dataset imbalance ratio using SMOTE
	SMOTE progressively increased the detection rate for the minority attack classes
	Longer execution times



	Sabeel et al. [53]
	Two ML models (DNN and LSTM) were proposed for the detection of DDoS assaults
	The performance of these models significantly improved, with DNN and LSTM accuracy levels of 98.72% and 96.15%, respectively. AUC values for the DNN and LSTM were 0.987 and 0.989, respectively
	The authors did not use real-time detection, and only binary class classification was carried out.



	Vir. et al. [54]
	Identifying DDoS assaults in the cloud utilizing DT, KNN, NB, and DNN algorithms
	The DNN classifier outperformed DT, KNN, and NB in terms of accuracy and precision, achieving 96% on the cloud dataset
	Employed an outdated dataset; there was no information provided regarding the LAN or the cloud dataset.



	Asad et al. [55]
	Developed a DNN architecture
	The proposed DeepDetect model outscored other strategies and produced an F1-score of 0.99. Additionally, the AUC value was very near to 1, demonstrating great accuracy
	This strategy was only tested against DDoS assaults at the application layer.



	Mural. et al. [56]
	Identified sluggish DoS assaults on HTTP and suggested a data flow-based DNN algorithm
	The model could categorize assaults with a 99.61% overall accuracy
	Only slow HTTP DoS attacks were assessed using this method; the CICIDS2017 dataset was used.



	Sbai et al. [57]
	Identified DF or UDPFL attacks in MANETs using the CICDDoS2019 dataset and suggested a DL model DNN using two hidden layers and six epochs
	Recall = 1, Precision = 0.99, F1-score = 0.99, and Accuracy = 0.99
	This study focused solely on DF or DPFL attacks, and used the CICDDoS2019 dataset.



	Amaizu et al. [58]
	Combined two DNN models with distinct designs and a PCC feature extraction approach for DDoS attack detection in 5G and B5G scenarios
	99.66% accuracy rate and a 0.011 loss; all models except a CNN ensemble were outperformed by the suggested framework
	Because of its complicated structure, the suggested model’s performance in a real-time environments may suffer as a result of longer detection times.



	Cil et al. [59]
	Suggested DL model mechanisms for feature extraction and classification built into the model framework
	Nearly 100% accuracy for DatasetA. Additionally, when using DatasetB the model correctly categorized DDoS assaults with a 95% accuracy rate
	For multiclass classification, the suggested model performed less accurately.



	Hasan et al. [60]
	Suggested a Deep CNN model
	The proposed technique performed better than three other ML methods
	The dataset utilized included a limited number of cases and excluded several forms of traffic.



	Amma et al. [61]
	Combined FCNN with Vector VCNN
	The suggested technique outperformed basic classifiers and the most sophisticated attack detection system in terms of high accuracy, reduced false alarms, and enhanced detection rate
	Utilized an outdated dataset and omitted their trials for identifying unidentified assaults



	Chen et al. [62]
	Suggested a Multi-channel CNN architecture for DDoS assaults
	The MCCNN performed better on the constrained dataset
	The outcomes of multi-class and single-class classification models were not significantly different; the complexity of the multi-class model makes it unsuitable for validation in real-time circumstances.



	Shaaban et al. [63]
	Used two datasets to test the suggested model against classification algorithms including DT, SVM, KNN, and NN
	Suggested model scored well and provided 99% accuracy on both datasets
	In this method, the data were transformed into a matrix by extending one column. As a result, this may influence how the model learns.



	Haider et al. [64]
	Suggested a deep CNN framework for the detection of DDoS assaults in SDN
	Ensemble CNN technique performed better than the currently used rival approaches, attaining a collective 99.45% accuracy rate
	This strategy requires longer training and testing periods. As a result, the mitigating mechanism may be impacted, meaning that assaults can cause more damage.



	Wang et al. [65]
	Suggested an information entropy and DL technique to identify DDoS assaults in an SDN context
	The CNN outperformed alternatives in terms of precision, accuracy, F1-score, and recall, with an accuracy rate of 98.98%
	The model Required a longer to perform time detection



	Kim et al. [66]
	Created a CNN-based model to identify DoS attacks
	The CNN model is better able to recognize unique DoS assaults with similar features. Additionally, CNN kernel size had no discernible effect on either binary or multiclass categorization
	Longer time detection



	Doriguzzi et al. [67]
	DDoS assaults were detected using the LUCID approach
	LUCID’s performance was better in terms of accuracy
	The padding might interfere with CNN’s ability to learn patterns. Additionally, there were compromises between accuracy and the amount of memory required. The preprocessing time was not been computed for real-time situations



	de Assis et al. [68]
	Suggested an SDN defense mechanism
	Overall findings demonstrated effectiveness of the CNN in identifying DDoS assaults for each of the test cases
	When using the CICDDoS 2019 dataset, the model exhibited worse accuracy.



	Hussain et al. [69]
	Suggested a technique for converting three-channel picture formats from non-image network data
	The suggested strategy obtained 99.92% accuracy in binary-class classification
	The preparation time for transforming non-images to images was not calculated. Additionally, the processing used to convert the original 60 × 60 × 3 dimensions into the 224 × 224 × 3 dimensions used as the input for the ResNet model was been specified



	Li C et al. [70]
	Suggested a deep learning approach
	DDoS assault detection was 98% accurate
	Long time required for detection



	Priy. et al. [71]
	A DL-based approach was developed
	For all the test cases, it was noted that the LSTM model displayed 98.88% accuracy. The module was able to prevent an attacked packet from reaching the cloud server via the SDN OF switch
	Only DDoS assaults at the network or transport level were examined; real-time feasibility analyses of the proposed model were not conducted.



	Liang et al. [72]
	A four-layered architectural model with two LSTM layers was suggested
	Experimental findings demonstrated that the LSTM-based technique performed better than other approaches
	When the flow consisted of short packets, N was padded with fictitious packets. These padding settings have the potential to degrade performance, and have an impact on how the suggested model learns.



	Shu. et al. [73]
	Two methods, a hybrid-based IDS and a DL model based on LSTM, were proposed for DoS/DDoS assaults detection
	The LSTM-based model reached an accuracy of 99.19%
	A long time was required for detection



	Assis et al. [37]
	Proposed a defense mechanism against DDoS and intrusion assaults in an SDN environment
	The average results for the accuracy, recall, precision, and f1-score were 99.94% and 97.09%, respectively
	The model used a complex framework



	Catak et al. [7]
	Cpmbo a deep ANN and AE model
	The best F1 values with the ReLu activation function were obtained (0.8985). For the activation functions of softplus, softsign, relu, and tanh, the overall accuracy, and precision are close to 99%
	The activation functions are the sole thing this article focuses on



	Ali et al. [74]
	Proposed a deep AE for feature learning and the MKL framework for detection model learning and classification
	The proposed approach was found to be more accurate than alternative approaches
	Used an outdated dataset



	Yang et al. [75]
	A five-layered AE model was developed for efficient unsupervised DDoS detection
	AE-D3F achieved nearly 100% DR with less than 0.5% FPR, although the RE threshold value must be specified. This method compensates for the lack of labeled attack data by training the model using only regular traffic
	Used an outdated dataset



	Kasim et al. [76]
	Suggested a hybrid AE–SVM technique
	In terms of quick anomaly identification and low false-positive rate, the AE–SVM method fared better than other approaches
	Compared to the other two datasets, the suggested model’s accuracy on the NSL-KDD dataset was lower



	Bhardwaj et al. [77]
	Combined a stacked sparse AE to learn features with a DNN for categorizing network data
	The results indicated an accuracy of 98.92%. The suggested approach worked well to address issues with feature learning and overfitting, as the AE was trained with random training data samples to perform feature learning and overfitting was avoided by employing the sparsity parameter
	Performed an offline study rather than evaluating the most recent datasets. Additionally, the suggested model could not compute the detection time.



	Moha. et al. [41]
	Combined the LSTM and Bayes techniques
	The results revealed that, the performance indicators decreased only slightly with the new data, and the outcomes were positive
	Assaults that are unsuited for real-time applications may take the LSTM–BA longer to identify. Comparing the suggested model to the current DeepDefense approach, the accuracy was only improved by 0.16%. IP addresses were transformed into actual vectors using feature hashing, and the preprocessing time was not computed using the BOW.



	RoopakM et al. [39]
	Employed multi-objective optimization, namely, the NSGA approach
	F1-score value of 99.36% and high accuracy of 99.03%. Additionally, The outcomes demonstrated that the suggested model outperformed earlier studies. When compared to previous DL approaches, the training time was cut by an astounding eleven times
	The majority of the cutting-edge methods used in this article did not use the CICIDS2017 dataset; therefore, the analogy appears inappropriate.



	Elsa et al. [42]
	Combined AE and RNN to produce DDoS-Net for identifying DDoS assaults in SDNs
	The results indicated that DDoS-Net performed better than six traditional ML techniques (DT, NB, RF, SVM, Booster, and LR) in terms of accuracy, recall, precision, and F1-score. The proposed method obtained 99% accuracy and an AUC of 98.8
	The dataset used offline analysis, and multiclass classification was not carried out



	Nugraha et al. [40]
	A DL-based strategy was proposed to identify sluggish DDoS assaults in SDNs using a CNN–LSTM model
	The suggested model performed better than other approaches, obtaining more than 99.5 percent across all performance criteria
	The dataset used offline analysis



	He et al. [78]
	A strategy based on DTL was proposed to identify DDoS attacks
	A 20.8% improvement was achieved on detection of the 8LANN network in the target domain. The DTN technique with fine-tuning avoided the decline in detection performance brought on by using a small sample of DDoS attacks
	For model evaluation, only one attack is used in both the source domain and the target domain.



	Chen et al. [79]
	Suggested a minimax gradient-based deep reinforcement learning technique
	When compared to cutting-edge algorithms, the suggested policy-based GPDS algorithm outperformed them in terms of anti-jamming performance
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Table 4. The most current research on ML/DL for DDoS attack detection, showing techniques, datasets, and types of attacks.
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	Ref.
	Year
	Approach
	Dataset
	Classes-of-Attacks





	Shen et al. [43]
	2018
	BAT, Ensembl
	KC, NK, NY
	DoS, Probe, R2L, U2R



	Shone et al. [44]
	2018
	RF, DAE
	KC, NK
	DoS, Probe, R2L, U2R



	Ali et al. [45]
	2018
	FLN
	KC
	DoS, Probe, R2L, U2R



	Yan et al. [46]
	2018
	SVM, SAE
	NK
	DoS, Probe, R2L, U2R



	Naseer et al. [47]
	2018
	GPU
	NK
	DoS, Probe, R2L, U2R



	Al-QatfM et al. [48]
	2018
	SAE, SVM
	NK
	DoS, Probe, R2L, U2R



	Marir et al. [49]
	2018
	SVM, DBN
	NK, UN, C7
	DoS, Probe, R2L, DDoS, Web



	Yao et al. [50]
	2018
	KMC, RF
	KC
	DoS, Probe, R2L, U2R



	Gao et al. [51]
	2019
	ensemble
	NK
	DoS, Probe, R2L, U2R



	Karatas et al. [52]
	2020
	KNN, RF, DT
	C8
	HeartBleed, DoS, Botnet, DDoS



	Sabeel et al. [53]
	2019
	DNN, LSTM
	C7, A9
	Benign, DoS GoldenEye, DoS, DDoS.



	Virupakshar et al. [54]
	2020
	DT, KNN, NB, DNN
	KC
	DoS, Probe, R2L, U2R



	Asad et al. [55]
	2020
	DNN
	C7
	Botnet, DoS, DDoS, Web



	Muraleedharan et al. [56]
	2020
	DNN
	C7
	Botnet, DoS, DDoS, Web



	Sbai et al. [57]
	2020
	DNN
	C9
	Data flooding or UDP flooding attack



	Amaizu et al. [58]
	2021
	DNN
	C9
	UDP, SYN, DNS, Benign



	Cil et al. [59]
	2021
	DNN
	C9
	DDoS attacks



	Hasan et al. [60]
	2018
	CNN
	OBS
	DDoS



	Amma et al. [61]
	2019
	CNN
	NK
	DoS



	Chen et al. [62]
	2019
	CNN
	C7,K9
	DoS, Probe, R2L, U2R, DDoS



	Shaaban et al. [63]
	2019
	CNN
	NK
	DoS, Probe, R2L, U2R



	Haider et al. [64]
	2020
	RNN, LSTM
	C7
	Botnet, DoS, DDoS, Web



	Wang et al. [65]
	2020
	Entropy, CNN
	C7
	Botnet, DoS, DDoS, Web



	Kim et al. [66]
	2020
	CNN
	KC, C8
	Botnet, DoS, DDoS, Web



	Doriguzzi et al. [67]
	2020
	CNN
	I2, C7, C8
	Botnet, DoS, DDoS, Web



	de Assis et al. [68]
	2020
	CNN
	C9
	DDoS attacks



	Hussain et al. [69]
	2020
	CNN
	C9
	Syn, TFTP, DNS, LDAP, UDP



	Li C et al. [70]
	2018
	LSTM, CNN, GRU
	I2
	DDoS attack



	Priyadarshini et al. [71]
	2019
	LSTM
	I2
	DDoS attack



	Liang et al. [72]
	2019
	LSTM
	C7
	Botnet, DoS, DDoS



	ShurmanM et al. [73]
	2020
	LSTM
	C9
	MSSQL, SSDP, CharGen, LDAP, NTP



	Assis et al. [37]
	2021
	GRU
	C8, C9
	DDoS attacks



	Catak et al. [7]
	2019
	AE, ANN
	U5, KC
	DoS, Probe, R2L, U2R



	Ali et al. [74]
	2019
	AE, MKL
	I2, U5
	Fuzzers, Backdoors, Analysis, DoS



	Yang et al. [75]
	2020
	AE
	U7
	(HTTP, Hulk and Slowloris) attack



	Kasim et al. [76]
	2020
	AE, SVM
	C7, NSL, KDD
	(HTTP, Hulk and Slowloris) attack



	Bhardwaj et al. [77]
	2020
	AE, DNN
	C7, NSL, KDD
	(HTTP, Hulk and Slowloris) attack



	Premkumar et al. [81]
	2020
	RBF
	Generated dataset
	DDoS



	RoopakM et al. [38]
	2019
	MLP, CNN, LSTM
	C7
	DoS, Probe, R2L, U2R



	Mohammad et al. [41]
	2019
	LST, BN
	I2
	DDoS



	RoopakM et al. [39]
	2020
	CNN, LSTM
	C7
	DDoS



	ElsayedMS et al. [42]
	2020
	RNN, AE
	C9
	DDoS



	Nugraha et al. [40]
	2020
	CNN, LSTM
	generated
	DDoS



	He et al. [78]
	2020
	LANN
	generated
	DDoS



	Chen et al. [79]
	2022
	reinforcement
	generated
	DDoS
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Table 5. The most recent studies on DDoS attack detection using ML/DL.
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	Ref.
	Preprocessing Strategies
	Hyperparameter Values
	Experimental Setups
	Performance Metrics





	Shen et al. [43]
	
	ELM with a BAT
	
	Accuracy = 99.3%, Sensitivity = 99%, Specificity = 99%, Precision = 99%, F1-score = 99%, FPR = 1%, FNR = 1%



	Shone et al. [44]
	
	NDAEs with RF
	Built-in TensorFlow
	98.81%, saving time and improving accuracy by up to 5%.



	Naseer et al. [47]
	
	CNN, AE, and RNN
	
	Accuracy for DCNN and LSTM of 85% and 89%, respectively.



	Al-QatfM et al. [48]
	
	AE technique
	
	Improved SVM Classification accuracy and time



	Marir et al. [49]
	Multi-layer ensemble SVM
	
	Hadoop cluster
	Enhanced IDS performance.



	Yao et al. [50]
	MSML
	
	
	MSML was superior to other current intrusion detection algorithms in terms of accuracy, F1-score, and capacity.



	Gao et al. [51]
	
	Ensemble learning
	
	Accuracy = 85.2%, Precision = 86.5%, Recall = 85.2%, F1-score = 84.9%



	Karatas et al. [52]
	
	Six different ML models
	
	Accuracy between 4.01% and 30.59%



	Sabeel et al. [53]
	DNN/LSTM
	Input layer = 25 pixels, dense layer = 60 neurons, dropout rate = 0.2, batch size = 0.0001, learning rate = 0.0001
	TensorFlow, Keras 1.1.0
	TPR = 0.998, Accuracy = 98.72%, Precision = 0.949, F1-score = 0.974, and AUC = 0.987



	Virupakshar et al. [54]
	
	
	Two computers with dual-core processors
	Recall = 0.91, F1-score = 0.91, Support = 2140



	Asad et al. [55]
	Cost-sensitive learning and min-max scaling
	Seven hidden layers, input layer = 66 neurons, output layer = 5 neurons, epochs = 300, learning rate = 0.001
	Intel Xeon E5 v2
	AUC = 1, F1-score = 0.99, Accuracy = 98%



	Muraleedharan et al. [56]
	
	Eighty neurons for input, five neurons in the output layer, four hidden layers, Adam optimizer
	SciKit and Keras API
	Precision: Benign = 0.99, Slowloris = 1.00, Slowhttptest = 0.99, Hulk = 1.00, GoldenEye = 1.00, Accuracy = 99.61%.



	Sbai et al. [57]
	
	
	
	Recall = 1, F1-score = 0, Accuracy = 0.99997, Precision = 0.99



	Amaizu et al. [58]
	Min-max
	Two Dropout Layers, 0.001 Learning Rate, 50 Epochs, and ReLu
	Four PCs, one firewall, two switches, and one server
	Recall = 99.30%, Precision = 99.52%, F1-score = 99.99%, Accuracy = 99.66%.



	Cil et al. [59]
	Min-max
	Three hidden layers, 50 units of neurons each, and sigmoid
	Intel Core i7-7700
	Dataset 1: F1-Score = 0.9998, Accuracy = 0.9997, Precision = 0.9999, Recall = 0.9998; Dataset2: F1-Score = 0.8721, Accuracy = 0.9457, Precision = 0.8049, Recall = 0.9515.



	Hasan et al. [60]
	
	Two convolutional layers, a max-pooling layer, a fully connected layer (250 neurons), and SoftMax
	
	F1-score = 99%, FPR = 1%, FNR = 1%, Accuracy = 99%, Sensitivity = 99%, Specificity = 99%, Precision = 99%



	Amma et al. [61]
	Min-max
	Max pooling size = 2, filter size = 3, two hidden layers, output layer with 11-9-7-6 nodes, and ReLu
	
	Normal = 99.3% accurate; Back = 97.8% accurate; Neptune = 99.1% accurate; Smurf = 99.2% accurate; Teardrop = 83.3% accurate; Others = 87.1% accurate.



	Chen et al. [62]
	
	Used a method of progressive training to train an MC–CNN
	
	Accuracy: C7 = 98.87%, KU (two classes) = 99.18%, KC (five classes) = 98.54%.



	Shaaban et al. [63]
	Padding (8 and 41) was transformed into 3 × 3 and 6 × 7 matrices, respectively
	CNN model with softmax function, and ReLu function
	Tenserflow and Keras
	Dataset 1: Accuracy = 0.9933, Loss = 0.0067; Dataset 2: Accuracy = 0.9924, Loss = 0.0076 (NSL-KDD)



	Haider et al. [64]
	Z-score
	Two dense FC layers, one layer to flatten, three 2D CLs, two max PLs, and three 2D CLs with ReLu
	Intel Core i7-6700
	F1-score = 99.61%, Accuracy = 99.45%, Precision = 99.57%, Recall = 99.64%, Testing = 0.061 min, Training = 39.52 min, CPU Usage = 6.025.



	Wang et al. [65]
	Image are created by turning each byte in a packet into a pixel
	Two FC layers, two PL levels, and two CL layers; the limit for entropy values = 100 packets/s
	Intel Core i5, 7300HQ processor, POX controller, one server, and six switches with Hping3 and the TensorFlow framework
	Precision = 98.99%, Recall = 98.96%, F1-score = 98.97%, Accuracy = 98.98%, Training time = 72.81 s, AUC = 0.949



	Kim et al. [66]
	
	117 features and pictures, with 13 and 9 pixels and the kernel size set to 2 and 3, respectively
	Python and TensorFlow
	KC accuracy = 99%, CSE8 = 91.5%



	Doriguzzi et al. [67]
	Min-max
	n = 100, t = 100, k = 64, h = 3, m = 98, batch size = 2048, LR = 0.01, Adam optimizer, and sigmoid
	Two 16-core Intel Xeon Silver 4110 CPUs with TensorFlow and Python
	Accuracy = 0.9888, FPR = 0.0179, Precision = 0.9827, Recall = 0.9952, F1-score = 0.9889



	de Assis et al. [68]
	Shannon Entropy
	CNN model consisting of three layers: a Flatten layer, a 0.5 Dropout layer, and an FC layer with ten neurons, two Conv1D layers, and MaxPooling1D layers with sigmoid and 1000 epochs
	Intel Core i7
	SDN data on average Accuracy, Precision, Recall, and F-measure (95.4%, 93.3%, 2.4%, 92.8%) for CICDDoS 2019.



	Hussain et al. [69]
	Min-max
	Ten CLs and eight PLs in a ResNet18 model, learning rate = 0.0001, momentum = 0.9, epochs = 10 and 50 with SGD optimizer
	
	F1-measure = 86, Precision = 87%, Recall = 86%, Accuracy = 87.06% for multiclass and 99.99% for binary



	Li C et al. [70]
	BOW and a 3D matrix used to convert a 2D feature matrix
	Input, forward recursive, reverse recursive, FC hidden, and output layers making up a DL model.
	128 GB of RAM and two NVIDIA K80 GPUs with Keras and Ubuntu
	Accuracy = 98%



	Liang et al. [72]
	Examined a sub-sequence of n-packet flows
	Two LSTM layers, with a series of ten packets extracted from each flow
	
	F1-score = 0.9991, Precision = 0.9995, Recall = 0.9997



	ShurmanM et al. [73]
	RF
	Three LSTM layers with 128 neurons each and sigmoid function, three dropout layers, and a dense layer with tanh function
	
	Accuracy = 99.19%



	Assis et al. [37]
	MD5
	A dropout layer with a dropout rate of 0.5 and an FC layer with ten neurons and sigmoid function
	Intel Core i7, Keras and Sklearn software
	Average metrics for accuracy, precision, recall, and F-measure values on the C8 dataset: 97.1%, 99.4%, 94.7%, and 97%, respectively. Valid flow classification rate: 99.7%.



	Catak et al. [7]
	Normalization
	Three hidden layers, an output layer with 28, 19, 9, 19, and 28 units, and sigmoid activation function. The input layer has five hidden layers with 28, 500, 800, 1000, 800, and 500 units
	NVIDIA Quadro, Python, Keras, TensorFlow, and SciKit-learn libraries
	F1-score, Accuracy, Precision, and Recall values: 0.8985, 0.9744, 0.8924, and 0.9053, respectively.



	Ali et al. [74]
	Discretized features are those that are not numerical
	Nine MSDAs with different number of layers L = (1, 3, 5, 7, 9, 11)
	NVIDIA Tesla V100 with MATLAB
	Average accuracy on Datasets D1 through D16, = 93%; Accuracy on Dataset D2 = 97%.



	Yang et al. [75]
	Flow split into several sub-flows based on a threshold value of 10 milliseconds
	One input layer, three hidden layers, and one output layer, with 27, 24, 16, 24, and 27 neurons in each layer, respectively
	
	Exp1: DR = 98.32%, FPR = 0.38%; U7: DR = 94.10%, FPR = 1.88%; SYNT: DR = 100%; FPR = 100%; Exp2: DR = 94.14%, FPR = 1.91%.



	Kasim et al. [76]
	Min-max
	25 hidden neurons, 82 hidden input neurons and 82 hidden output neurons, 0.3 learning rate, 0.2 momenta, with 25 input nodes and two output nodes in the SVM. Learning rate = 0.01 and iterations = 1000.
	Intel Core (TM) i7-2760 QM and Python with Keras, Scapy, TensorFlow, and SciKit libraries, and the Rest API
	Training Time = 2.03 s, Testing Time = 21 milliseconds, C7 Accuracy = 99.90%. For the created DDoS assaults, Accuracy = 99.1% and AUC = 0.9988. For the NSL-KDD test, Accuracy = 96.36%



	Bhardwaj et al. [77]
	Min-max
	Two encoding layers with 70 and 50 neurons each, a coding layer with 25 neurons, two decoding levels with 25 neurons each, and ReLu activation in each layer. Utilized the Adadelta optimizer and sigmoid activation in the output layer
	Intel(R) Core-i7 CPU
	NSL-KDD: Accuracy = 98.43%, Precision = 99.22%, Recall = 97.12%, F1-score = 98.57%. C7: Accuracy = 98.92%, Precision = 97.45%, Recall = 98.97%, F1-score = 98.35%



	RoopakM et al. [38]
	
	A 1D CNN layer with ReLu function, LSTM layer with Adam optimizer, dropout layer with a rate of 0.5, FC layer, and dense layer with sigmoid function make up the CNN–LSTM model
	Intel Core-i7 with Keras, TensorFlow, and MATLAB
	Precision = 97.41%, Recall = 99.1%, Accuracy = 97.36%



	Moh. et al. [41]
	Feature hashing and BOW
	Two hidden FC layers of 256 neurons each with ReLU activation function and one neuron with sigmoid activation function make up the LSTM module.
	GPU NVIDIA GTX 1050
	Recall = 97.6%, Accuracy = 98.15%, Precision = 98.42%, TNR = 98.4%, FPR = 1.6%, F1-Score = 98.05%



	RoopakM et al. [39]
	Min-max
	Maxpooling, LSTM, and dropout layers with Relu activation function after a 1D CNN; learning rate = 0.001, batch size = 256, epochs = 100, and dropout rate = 0.2%.
	NVIDIA Tesla VIOO GPUs with TensorFlow and Keras software
	Accuracy = 99.03%, Recall = 99.35%, Precision = 99.26%, F1-score = 99.36%, Training Time = 15,313.10 s



	Elsay et al. [42]
	Min-max
	Four RNN hidden layers in the RNN-AE; the channel counts for the encoder phase are 64, 32, 16, and 8, with two softmax functions
	
	Accuracy for identification of attacks was 0.99%, whereas for benign cases it was 1.00. On the F1 scale, attack cases scored 0.99 and benign cases scored 0.99%. AUC = 98.8



	Premkumar et al. [81]
	
	
	Constant Bit Rate (CBR) application, 200 nodes, 500 s of simulation duration, and 5% to 20% of the regular nodes as attacking nodes.
	Attack rate between 5% and 15%, detection rate between 86% and 99%, and false alarm rate of 15%



	Nugraha et al. [40]
	Min-Max
	Flatten, maxpool, and dropout layers. Following the LSTM layer, there is an FC dense layer with a ReLu function, a dropout layer, and the last dense layer with a sigmoid function. Epochs = 50, training = 0.0005, dropout rate = 0.3, kernel size = 5, and the CNN filter is set to 64
	Python
	Accuracy = 99.998%, Precision = 99.989%, Specificity = 99.997%, Recall = 100%, F1-score = 99.994%



	He et al. [78]
	
	Eight FC layers in 8LANN. Pooling layers and the ReLu function are applied after each layer, with the eighth layer being the exception. 500 batches, a cross-entropy loss function, an SGD optimizer, and a training rate of 0.001 were utilized in this experiment.
	Ubuntu 16.04 with NVIDIA RTX 2080Ti
	Accuracy = 87.8% and Transferability = 19.65.



	Chen et al. [79]
	Game with Post-Decision State (GPDS)
	Addresses the MDP optimization problem by offering a unique policy-based multi-user reinforcement learning game technique
	Tensorflow and Intel(R)
	According to the experimental findings, the suggested GPDS outperforms SOTA algorithms in terms of anti-jamming performance.
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