
Citation: Livada, Č.; Horvat, T.;

Baumgartner, A. Novel Block Sorting

and Symbol Prediction Algorithm for

PDE-Based Lossless Image

Compression: A Comparative Study

with JPEG and JPEG 2000. Appl. Sci.

2023, 13, 3152. https://doi.org/

10.3390/app13053152

Academic Editor: Zhengjun Liu

Received: 16 January 2023

Revised: 22 February 2023

Accepted: 24 February 2023

Published: 28 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Novel Block Sorting and Symbol Prediction Algorithm for
PDE-Based Lossless Image Compression: A Comparative Study
with JPEG and JPEG 2000
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Abstract: In this paper, we present a novel compression method based on partial differential equa-
tions complemented by block sorting and symbol prediction. Block sorting is performed using the
Burrows–Wheeler transform, while symbol prediction is performed using the context mixing method.
With these transformations, the range coder is used as a lossless compression method. The objective
and subjective quality evaluation of the reconstructed image illustrates the efficiency of this new
compression method and is compared with the current standards, JPEG and JPEG 2000.
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1. Introduction

Partial differential Equation (PDE)-based image compression techniques use PDEs
to model the image data and convert it into a set of parameters that can be efficiently
encoded. There are several PDE-based image compression techniques that differ in the
way they model and transform the image data. PDE-based image enhancement methods
were invented to restore missing image regions by uniformly transferring information
from the known surrounding regions. The filling effect has also become the main feature
of PDE-based inpainting methods such as [1–4]. The main idea is to consider the image
data as Dirichlet boundary conditions and interpolate the data in the inpainting regions by
solving the appropriate boundary value problems.

Why use PDE-based image compression? PDE-based image compression methods
offer several advantages over traditional compression techniques such as JPEG and MPEG.
Firstly, they offer higher compression ratios while maintaining better image quality. This is
achieved by modeling the image as a set of partial differential equations and transforming
it into a set of parameters that can be efficiently encoded. The resulting compressed image
contains much less data, causing it to be easier to store and transmit [5]. Secondly, PDE-
based compression methods are more robust to noise and distortion. Unlike traditional
compression techniques, PDE-based methods rely on modeling the image using differential
equations, which can adapt to changes in the image data, causing them to be more tolerant
to noise and distortion. This causes them to be particularly useful in scenarios where the
image quality needs to be maintained despite noise and other distortions [6,7]. Thirdly,
PDE-based compression methods are versatile and can be adapted to various applications.
For instance, they can be used for compressing medical images, satellite images, and video
streams, among others. This causes them to be a valuable tool in various domains, includ-
ing medical imaging, remote sensing, and multimedia [8,9]. Overall, PDE-based image
compression methods offer a compelling alternative to traditional compression techniques.
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They offer higher compression ratios, better image quality, and are more robust to noise
and distortion. Moreover, they are versatile and can be adapted to different applications.

Existing PDE-based compression algorithms. The Embedded Zero-Tree Wavelet (EZW)
algorithm is a compression technique that uses the wavelet transform to decompose an
image into sub-bands, and then applies a PDE-based thresholding to produce a sparse
representation of the image. The resulting sparse representation is then encoded using
entropy coding. EZW is widely used in image and video compression [10]. The SPIHT (Set
Partitioning In Hierarchical Trees) algorithm is a wavelet-based compression algorithm that
uses a PDE-based algorithm to sort and partition the wavelet coefficients in a hierarchical
tree structure. This tree structure is then used to encode the wavelet coefficients using
binary arithmetic coding. SPIHT has been used in various applications, such as satellite
imagery and medical imaging [11].

The Geometric Image Compression (GIC) algorithm is a PDE-based compression
algorithm that uses a geometric representation of images based on a set of partial differential
equations. GIC models the image data as a series of curves, areas, and volumes, and
then applies PDE-based compression techniques to the curves, areas, and volumes to
create a compact representation of the image. GIC has proven to be very powerful in
compressing geometric data such as 3D meshes and point clouds [12]. The Variational
Image Compression (VIC) algorithm is a PDE-based compression algorithm that uses
a variational approach to model the image data. VIC solves an optimization problem
that minimizes an energy function containing both fidelity to the original image and a
regularization term that promotes the smoothness of the compressed image. The resulting
compressed image is then encoded using entropy coding. VIC has shown good performance
in compressing natural and medical images [13].

Variational and PDE-based interpolation and inpainting techniques have been used
to interpolate the scattered data. Lower order PDEs often result in singularities at iso-
lated interpolation points on images, higher-order PDEs provide smoother solutions, but
the violation of an extremum principle can result in undesirable overshoots and under-
shoots [14]. Recently, PDE-based image compression techniques have been developed
using PDE-based interpolation of scattering data [15–20]. The idea is to keep only a small
number of pixels and reconstruct the remaining data using PDE-based interpolation. There
are many subdivision strategies, in particular methods based on quadtree decomposi-
tions [21,22]) and adaptive triangulation ideas can be found in [23–25]. In R-EED [18], the
adaptive triangulation from [17] is replaced by a subdivision into a rectangular structure
with various modifications.

Reliability and efficiency. PDE-based image compression techniques have been
proposed as a means of reducing the size of image data while preserving image quality.
However, these methods have both strengths and limitations that affect their reliability
and efficiency. One of the limitations of PDE-based compression techniques is their high
computational complexity, which can cause them to be computationally intensive and time-
consuming, especially for large images or real-time applications [26]. Another limitation
of PDE-based compression techniques is their sensitivity to image content. PDE-based
methods rely on modeling the image data using PDEs, which may not always accurately
capture the structure and content of the image. In some cases, PDE-based methods may not
perform well for certain types of images, such as those with sharp edges or high-frequency
content [27].

Most PDE-based compression techniques are lossy, which means that they discard
some information from the original image in order to achieve compression; while lossy
compression can be effective in reducing the size of the image data, it can also result in
perceptual distortions or artifacts in the compressed image, which can affect its quality and
reliability [28]. In addition, PDE-based compression techniques may not always achieve
the same level of compression performance as other state-of-the-art image compression
methods, such as those based on deep learning or neural networks. In some cases, PDE-
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based methods may not be able to achieve the same level of compression while preserving
the same level of image quality [7,29].

In conclusion, while PDE-based image compression techniques have shown promise
in reducing the size of image data, their reliability and efficiency depend on various factors,
such as the specific method used, the nature of the image data being compressed, and
the compression requirements of the application. Further research is needed to improve
the reliability and efficiency of PDE-based compression methods, and to address their
limitations and challenges.

Our contribution. The aim of this paper is to investigate the compression capabilities
of unaided PDE-based compression methods and PDE-based compression methods using
data transformations and symbol prediction. The compression methods and ratios for
grayscale compression and binary tree structure compression are evaluated in terms of the
extent to which the quality of a reconstructed image depends on the choice of compression
methods. The improvement of the compression algorithms is performed by applying
data transforms to the input data stream. The data transformations used are delta coding,
context tree weighting, Burrows–Wheeler transform, prediction by partial fitting, and
dynamic Markov coding.

Related work. PDE-based compression was evaluated with range coding and Burrows–
Wheeler transform for grey values only [30] and concluded that it performed better than
EED with this combination. In [31], further analysis of the range coder was performed in
combination with context tree weighting, prediction by partial adaptation, and dynamic
Markov coding.

Organization of the paper. We begin with a brief introduction to PDE-based inpaint-
ing in Section 2. Section 3 discusses possible encoders for grey-level compression. In
Section 4, we describe data transformations applied to grey values to increase their effec-
tiveness. In Section 5, we introduce the context-blending method as a means to improve the
compression. In Section 6, we perform a detailed objective and subjective quality analysis of
four images. Section 7 concludes our work with a summary and an outlook on future work.

2. Partial Differential Equations in Image Compression

Partial differential equations are mainly used for image preprocessing [32–34] or as
a tool for the postprocessing of image errors arising during coding. Partial differential
equations are particularly useful for data compression and interpolation in scattered data,
which was enabled by the improvement of binary tree coding by Distasi et al. [23].

2.1. Pde-Based Interpolation

The main goal of PDE-based interpolation is to reconstruct the original image from
the known pixels without losing their primary information. With PDE-based interpolation,
the image can be reconstructed from sparse data with relative accuracy.

The concept of diffusion is known mainly from the physical context. It is a process that
compensates for concentration differences without creating or destroying mass. This idea can
be applied to image processing tasks, and we will formulate it in a continuous framework.

Let Ω ⊂ IRn be an n-dimensional image domain. An unknown scalar-valued function
v : Ω→ IR must be recovered, of which only its values on a subset Ω1 ⊂ Ω are known. The
goal is to find an interpolating function u : Ω→ IR that is smooth and close to v in Ω \Ω1
and identical to v in Ω1.

This problem can be embedded in an evolution environment with an evolution param-
eter t ≥ 0. Its solution u(x, t) yields the desired interpolating function as its steady state
(t→ ∞). The evolution is initialized with a function f : Ω→ IR initialized to v identical to
Ω1 and set to Ω \Ω1 to any value:
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f (x) :=
{

v(x) if x ∈ Ω1
0 else.

(1)

The evolution is considered

∂tu = (1−c(x)) Lu − c(x) (u− f ) (2)

with f as initial value,
u(x, 0) = f (x), (3)

and reflecting (homogeneous Neumann) boundary conditions on the image boundary ∂Ω.
The function c : Ω→ IR is the characteristic function on Ω1, i.e.,

c(x) :=
{

1 if x ∈ Ω1
0 else,

(4)

and L is some elliptic differential operator. The idea is to solve the steady state equation

(1−c(x)) Lu − c(x) (u− f ) = 0 (5)

with reflecting boundary conditions. In Ω1, c(x) = 1 such that the interpolation con-
dition u(x) = f (x) = v(x) is fulfilled. In Ω \ Ω1, it follows from c(x) = 0 that the
solution has to satisfy Lu = 0. This elliptic PDE can be regarded as the steady state of the
evolution equation

∂tu = Lu (6)

with the Dirichlet boundary conditions provided by the interpolation data on Ω1.
Specific Smoothing Operators. There are many possibilities for the elliptic differential

operator L. The simplest and best studied uses the Laplace operator Lu := ∆u, which leads
to linear isotropic diffusion [35]:

∂tu = ∆u, (7)

also called homogeneous diffusion (HD).
A prototype for a higher-order differential operator is the biharmonic operator Lu := −∆2u

providing the biharmonic smoothing (BS) evolution

∂tu = −∆2u. (8)

Using it for interpolation comes down to thin plate spline interpolation [36], rotation-
ally invariant multidimensional generalizations of the cubic spline interpolation.

The higher-order nonlinear diffusion considered in this paper is related to the differen-
tial operator based on Laplacian Lu := −∆(g(|∆u|2)∆u) proposed by [37]. The fourth-order
nonlinear diffusion equation is

∂tu = −∆(g(|∆u|2)∆u) (9)

where the diffusivity function g is

g(|∆u|2) = 1√
1 + |∆u|2/λ2

. (10)

with some contrast parameter λ > 0. Since the highest derivative operator is 4, it will be
denoted as fourth-order Charbonnier diffusion (4ChD).

Finally, the nonlinear anisotropic diffusion considers Lu := div (g(∇uσ∇u>σ )∇u),
namely edge-enhancing diffusion (EED) [38] with



Appl. Sci. 2023, 13, 3152 5 of 34

∂tu = div (g(∇uσ∇u>σ )∇u). (11)

where the diffusivity function g is the Charbonnier diffusivity [39]

g(|∇u|2) = 1√
1 + |∇u|2/λ2

. (12)

2.2. Binary Tree Triangular Coding

In the B-Tree Triangular Coding Scheme (BTTC), the image is decomposed into a
large number of triangular areas so that they can be reconstructed to a satisfactory quality
using vertex interpolation. The data obtained during triangulation is stored in a binary
tree structure.

This process is shown in Figure 1, where an initial image, Figure 1a, is approximated
by its four vertices. The interpolation is performed using the information about the location
of the vertices and their grey values. If the original image is presented by ( fi,j) and its
approximation is (ui,j) then an error can be defined (ei,j) as ei,j :=

∣∣ui,j − fi,j
∣∣. If (ei,j)

satisfies ei,j ≤ ε for every image element (i, j) with given error threshold parameter ε > 0,
the representation with triangles is considered to be sufficiently good.

(a) (b) (c) (d)
Figure 1. BTTC process. (a) Original image. (b) Triangle division process. (c) Reconstruction of inner
values by interpolation. (d) Repeated triangle division process.

If the above equality is not satisfied, the triangle containing (i, j) is divided into two
similar triangles by reducing its height on the hypotenuse, Figure 1d. This is repeated until
the given threshold for triangle formation is reached.

During this process, two images are generated. One is the mask image containing the
coordinates of the vertices, and the other is a sparse image containing the information of
the grey values in the same vertices.

2.3. Binary Tree Structure

During the triangulation process, a binary tree structure is formed in which each
triangle is represented by a node, while the triangles that are no longer divided are rep-
resented by a leaf. A triangle is divided into two subordinate triangles. To save this tree
structure, a preorder traversal is performed and a 1 is stored for each node and a 0 for each
leaf. Additional space saving is achieved by storing two numbers minimum tree depth and
maximum tree depth. The minimum tree depth is the tree depth up to which all nodes are
dividing (all values are 1 s), and the maximum tree depth is the depth above which nodes
are not divided any more (all values are 0 s).

The process of creating a binary tree structure is shown in Figure 2. In Figure 2a, the
process is shown for a square image and, in Figure 2b, the resulting binary tree is generated.
First, the image is divided by its main diagonal, then the process is repeated for the newly
created triangles. To compress the grey values in all vertices, a zigzag traversal of the sparse
image is performed and stored in the grey value stream. The pseudocode can be seen in
the following text below:
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(a) (b)
Figure 2. Process of creating the B-tree structure. (a) Process of dividing the triangles. (b) Corre-
sponding binary tree structure.

Main algorithm: Image is grayscale image:
Step 1. roottriangle = new Triangle(0,0,Image.width,Image.height)
Step 2. Btree root = new Node(roottriangle,”)
Step 3. CreateChildNodes(root)
Step 4. EncodeImage(root)

Recursive procedure CreateChildNodes(node):
Step 1. Let t = node.triangle
Step 2. midx = t.x + t.wdith/2, midy = t.y + t.width/2
Step 3. topleft = new Triangle(t.x,t.y,midx-t.x,midy-y)
Step 4. botright = new Triangle(midx,midy,t.x+t.width-midx,y+t.height+midy)
Step 5. tlaverage = ComputeAverageColorValue(topleft)
Step 6. braverage = ComputeAverageColorValue(botright)
Step 7. If tlaverage 6=braverage then

node.left = new Node(tltriangle,node.code+’0’)
node.right = new Node(brtriangle,node.code+’1’)
CreateChildNodes(node.left)
CreateChildNodes(node.right)

Procedure EncodeImage(node):
Step 1. If node=NULL return
Step 2. Print node.code
Step 3. EncodeImage(node.left)
Step 4. EncodeImage(node.right)

Finally, due to the high similarity of the tree structure, the data stream is compressed
using Huffman coding [40].

The final compressed file format consists of the following:

• Image height and width (4 byte);
• Minimum and maximum binary tree depth (2 byte);
• Binary tree structure in binary form (1 bit for every node);
• Huffman coded gray values.

– First value of gray value in stream (1 byte);
– Minimum and maximum Huffman binary tree depth (2 byte);
– Huffman binary tree binary characters (1 bit for every node);
– Gray values coded with Huffman coding.

We have further improved this encoding by a lossy requantization step that reduces
the number of grey values in the original image from 256 to 64.
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Binary Tree Decoding and Interpolation

Decompression of the encoded image is performed in two steps. In the first step, a
reconstruction of the mask image is performed, and the stored grey values are placed in
appropriate locations so that the sparse image can be created. For the reconstruction of
the mask vertices, a tree is created in the same order as it was saved. The second step is
the image interpolation, where the vertex mask is used as the interpolation mask. In their
BTTC scheme, Distasi et al. [23] used linear interpolation. In this study, homogeneous
diffusion, biharmonic and triharmonic smoothing, absolute monotone Lipschitz extension
(AMLE), Charbonnier diffusion, and edge-enhancing diffusion are tested.

To check the quality of the interpolation methods, two methods of quantitative error
analysis were used. These methods are: mean absolute error and mean square error of the
decoded image ui,j and the original image vi,j.

Average absolute error (AAE):

AAE (u, v) :=
1

nm ∑
i,j
|ui,j − vi,j|, (13)

where m depicts the image height and n depicts the image width. The smaller value of AAE
represents a smaller deformation of the decoded image compared to the original one.

Mean square error (MSE):

MSE (u, v) :=
1

nm ∑
i,j
|ui,j − fi,j|2. (14)

The square error in the MSE dampens the small differences between two image
elements but emphasizes the big differences. The smaller values of MSE represent a
smaller error.

Implementing different types of interpolation on a test image horse is shown on
Figure 1a; the results are shown in Table 1.

Table 1. Average absolute error (AAE) and mean square error (MSE) for the sparse data interpolation
of the image horse.

PDE Method AAE MSE

Homogeneous diffusion 14.98 366.94
Biharmonic smoothing 13.16 373.52
Triharmonic smoothing 16.25 491.15

AMLE 14.91 376.99
Charbonnier diffusion 18.66 572.03

Edge-enhancing diffusion 12.52 353.12

According to the results shown in Table 1, the best results were achieved by using
the edge-enhancing diffusion; therefore, this compression algorithm will be referred to as
EEDC—Edge-Enhancing Diffusion Compression.

3. Gray Value Compression

To increase the compression ratio of the EEDC, a first possible solution is the gray value
compression. A randomly selected portion of the grey values is selected as an example of
the data to be compressed and is shown in Figure 3. This data stream is generated by the
binary triangular encoding method described above.

[... 164 108 204 220 204 156 140 140 92 76 140 180 100 148 132 76 60

84 180 172 180 156 140 188 172 156 60 140 84 92 124 116 116 116

124 164 132 140 156 172 124 116 140 196 156 60 60 116 140 124 116 ...]

Figure 3. Random part of the gray value stream acquired using the EEDC.
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When looking at the data stream in Figure 3, the regularity, repetition, and redundancy
stand out, i.e., all the phenomena that compression methods use to increase the compression
ratio. The compression methods described and used in this article are: Huffman coding,
arithmetic coding, range coding, and LZ coding family.

3.1. Huffman Coding

Huffman encoding is a lossless variable-length prefix encoding. This greedy algorithm
considers the occurrence of each symbol in an optimal way, i.e., the characters that occur
more frequently receive shorter codewords, while the characters that occur less frequently
receive longer codewords [41]. In this way, Huffman coding reduces the number of bits
needed to represent a set of symbols.

In this subsection, EEDC compression without modification of the grey values is
compared with JPEG and JPEG 2000 compression methods at five compression ratios (0.8,
0.4, 0.2, 0.1, and 0.05 bpp). The compression analysis is performed for the previously
mentioned Figure 1a).

The smaller the value of the AAE parameter, the better the quality of the reconstructed
image. At a compression ratio of 0.8 bpp, as we can see from Table 2, the JPEG and JPEG
2000 compression methods are better than EEDC. At 0.4 bpp, JPEG 2000 achieves the
best result, followed by EEDC, while JPEG has the worst result. At 0.2 bpp, JPEG 2000
is still better than EEDC, but, at 0.1 and 0.05 bpp, EEDC achieves the best quality of the
reconstructed image. Figure 4 shows a graphical relationship of AAE between the above
compression methods at different compression ratios.

Table 2. Comparison of Average Absolute Error for image horse on an unmodified compression algorithm.

bpp JPEG JPEG 2000 EEDC

0.8 1.65 1.39 2.08
0.4 2.91 2.29 2.67
0.2 6.20 3.78 3.80
0.1 10.96 6.75 5.94

0.05 / 12.52 9.31

Figure 4. AAE for image horse and unmodified gray value compression algorithm.
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3.2. Arithmetic Coding

Arithmetic coding, similar to Huffman coding, belongs to a group of entropy coders;
it assigns codes to symbols so that the code length corresponds to the probability of the
occurrence of symbols, while other entropy coders decompose the input data stream into
constituents, i.e., symbols, and replace each symbol with a codeword. Arithmetic coding
encodes the entire message into a single number n for which n ∈ 〈0, 1〉 [42]. Instead of the
Huffman coding used in the original EEDC compression, an arithmetic coding is used, and
the encoder is called EEDC-Arith. An equivalent analysis is performed as in the previous
chapter. The encoders shown in Figure 5 were obtained by applying the new compression
algorithm on the gray values series.

Figure 5. AAE for image horse and modified gray values compression using arithmetic coding.

From the graphical representation of the results in Figure 5, it can be concluded that the
introduction of arithmetic coding did not yield better results, so this compression method
is discarded.

3.3. Range Coding

Range coding also belongs to the family of entropy coders and is very similar to
arithmetic coding, with the main difference being the choice of the interval within which to
search for a number that can represent a range of data as in [43]. In arithmetic coding, the
interval within which a codeword is searched is 〈0, 1〉, while in range coding an interval is
defined at 〈0, N〉, where N is the arbitrarily chosen upper bound of the interval.

Looking at the results presented in Figure 6, we can see that the quality of the re-
constructed image has not improved, i.e., the direct indicator—AAE—is not lower at any
compression ratio. The EEDC with Huffman coding for gray value compression is better
than the EEDC with range coding.

3.4. Lz-Family Coding

In this chapter, a family of compression algorithms is analyzed, based on the work of
Lempel and Ziv [44,45]. These algorithms have a different approach to symbol compression.
Instead of assigning code words to known symbols a priori, the code words are assigned
to recurring symbols in the input data stream. The length of the recurring symbols can
adopt the values from 1 to a certain constant value. There are three basic Lempel–Ziv
algorithms, LZ77, which was described by Lempel and Ziv in 1977 [44], LZ78, which was
described in 1978 [45], and LZW, which was described by Welsh in 1984 [46]. In addition to
the three main algorithms, there are numerous other versions, but we will not discuss them
in this article.
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Figure 6. AAE for image horse and modified gray values compression with range coding.

3.4.1. LZ77

The LZ77 algorithm is also known as the sliding window compression algorithm. This en-
coding algorithm holds n− LS symbols (Ls is the maximum string length to be compressed,
and n is the size of the input buffer) to find a substring within n− LS that corresponds to
the prefix of the input stream to be encoded. The found prefix is encoded with the position
of the substring, its length, and the first symbol of the prefix. The length of the prefix can
vary from 0 to n− LS, and the greater it is, the greater the coding efficiency.

3.4.2. LZ78

The LZ78 coding algorithm is also a dictionary-based coding algorithm. Instead of
searching for the largest substring within a constant number of symbols as the LZ77
algorithm does, the LZ78 algorithm searches for the largest substring within all symbols
that have appeared and represent the prefix to be compressed. In the case of an infinitely
large input string, the location of the largest substring is unbound and complicates the
encoding. To avoid this situation, the input string is divided into large blocks of length n so
that the largest strings can only begin at certain locations and that the location determines
the length of the substring.

3.4.3. Lzw Coding Algorithm

LZW uses the same coding principles as LZ78, but features technical improvements. In
the LZW algorithm, when incrementally parsing the input stream, each word begins with
the extension character of the previously parsed word. LZW uses fixed-length codewords,
while LZ78 uses variable-length codewords. Welsh suggests 12-bit codewords in their
article [46]. Due to the change in incremental parsing, the codeword contains only the index
of the corresponding words in the dictionary, so each stream contains only one character.

3.4.4. Mutual Comparison of the Lz-Family Coders

In this subsection, LZ77, LZ78, and LZW are compared with each other, and the
procedure that achieves the best results is then compared with the original EEDC. The
results of the mutual comparison in terms of coding efficiency are shown in Table 3.

From the results in Table 3, we can conclude that the best algorithm is LZ77. Although
algorithms LZ78 and LZW are improvements of algorithm LZ77, they showed worse results
in this example because their disadvantage is that they do not work well on small files.
They only show their full potential with files that contain large amounts of data. At the
beginning of the encoding process, the initialization of the dictionary occupies a lot of
free memory due to the large amount of different data. As new entries are added to the
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dictionary, the free space becomes smaller and smaller. For comparison with the original
EEDC algorithm, only LZ77 is used.

Table 3. Average absolute error for image horse and LZ-family coders.

bpp LZ77 LZ78 LZW

0.8 3.01 3.77 3.62
0.4 3.51 3.92 3.84
0.2 4.33 4.71 4.58
0.1 7.12 7.90 7.33

0.05 14.22 15.20 14.78

Although the LZ77 algorithm is the best in its family, the LZ77, according to Figure 7,
performs worse than the unmodified EEDC algorithm with Huffman coding. Therefore,
the LZ77 algorithm is also rejected because it did not improve.

Figure 7. AAE for image horse and modified gray values compression with LZ77 coding.

3.5. Comparative Analysis of the Described Coders

In this subsection, all the described coders are compared at five compression rates (0.8,
0.4, 0.2, 0.1, and 0.05 bpp) on the test image horse. The cumulative results are shown in
Table 4.

Table 4. Comparison of average absolute error for image horse and all modified compression algorithms.

bpp JPEG JPEG
2000 EEDC EEDC-

Arith
EEDC-
Range

EEDC-
LZ77

EEDC-
LZ78

EEDC-
LZW

0.8 1.65 1.39 2.08 2.49 2.24 3.01 3.77 3.62
0.4 2.91 2.29 2.67 3.03 2.88 3.51 3.92 3.84
0.2 6.20 3.78 3.80 3.98 3.86 4.33 4.71 4.58
0.1 10.96 6.75 5.94 6.50 6.31 7.12 7.90 7.33
0.05 / 12.52 9.31 10.20 10.08 14.22 15.20 14.78

From careful examination of Table 4, it can be concluded that all of the described
changes in grey level compression did not improve the quality of the reconstructed im-
age. Changing the compression algorithm alone does not produce better results, so a
modification of the input data stream is required.
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4. Data Transformation Impact on Gray Values Compression

To increase the efficiency of compression, it is necessary to transform an input data
stream, as shown in Figure 3. The methods for transforming input data streams described
in this article are:

• Delta coding.
• CTW—Context Tree Weighting.
• BWT—Burrows Wheeler Transformation.
• PPM—Prediction by Partial Matching.
• DMC—Dynamic Markov Compression.

4.1. Delta Coding

Delta coding is a data stream transformation in which symbols are stored as the
difference between the current character and the previous character [47]. Fewer bits are
needed to represent the differences between successive characters than the characters
themselves. The histogram of the image horse can be seen in Figure 8.

Figure 8. Histogram of the image horse.

After applying delta coding on the histogram data, the results can be seen of Figure 9.
When analyzing Figure 9, the frequency distribution is better for entropy coders

because the differences in the frequencies of occurrence of each element are greater. For
example, in Figure 9, there are about 250 elements with value 0 and about 10 elements
with value 100. This difference should be exploited by Huffman coding and increase the
effectiveness of the compression.

Figure 9. Histogram of the image horse after applying delta coding.
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4.2. Context Tree Weighting

The context tree weighting method was first described by Willems, Shtarkov, and
Tjalkens in their 1995 article [48]. Context Tree Weighting (CTW for short) is an effective
implementation of weighting the distribution of codes. The main components of the CTW
codec are the CTW model estimator and the entropy encoder. The CTW model estimator
is responsible for modeling the input stream, i.e., evaluating the probability of the next
symbol occurring, while the entropy encoder uses the predicted probabilities to compress
the input stream.

A very important part of the CTW algorithm is the context tree, which is dynamically
created during encoding and decoding. The context is defined as all previous symbols of
an input stream that is being encoded. Each context that occurs is stored as a path in a
contextual tree. The encoding process consists of four stages:

• Searching for a path in the contextual tree that matches the current context.
• In every node in the contextual tree, the probability of the next symbol Pe is predicted

using data that are stored in the node itself (estimated probability is calculated using
Krichevski–Trofimov estimation method or with Zero-Redundancy estimation method);

• Calculating the weighted probability Pw on all Pe values;
• Sending the weighted probability to entropy coder.

4.3. Burrows–Wheeler Transformation

The Burrows–Wheeler transformation, or BWT for short, was described in a 1994
article by Burrows and Wheeler [49]. In BWT, the input data are not treated as a string,
but the input stream is divided into blocks and each block is encoded independently. This
transformation is most efficient when the input data are processed as one block. The
basic idea is to reorder a current stream S with N symbols into another stream L, and the
mathematical term for the reordering is permutation.

The encoding algorithm adopts a stream S consisting of N symbols S[0], . . . , S[N − 1]
selected from the sorted alphabet X. The encoder creates an N × N matrix M and stores S
in its first row followed by N − 1 copies of the stream S cyclically shifted one symbol to the
left. The matrix is sorted lexicographically by row, and the output of the BWT algorithm is
the last symbol in each permuted stream and the row number where the original stream
is found.

4.4. Prediction by Partial Matching

Prediction by Partial Matching was invented in 1984 by Cleary and Witten [50]. It is a
statistical method for modeling input data streams with a limited context, which can be
viewed as merging multiple contextual models to predict the next symbol. The main idea
of prediction by partial matching is to exploit the knowledge about the previous K symbols
to create a conditional probability for the current symbol.

4.5. Dynamic Markov Coding

Dynamic Markov coding is an adaptive statistical compression procedure in two phases
described by Cormack and Horspool in 1987 [51]. The first phase of this coding process
consists of a finite state machine for predicting the probability of the next symbol and
the second phase consists of an entropy encoder, usually arithmetic coding that performs
the compression. This algorithm was originally developed for binary data, i.e., machine
code, images, and sound. This algorithm reads a bit from the input stream, assigns it
a certain probability value based on its previous occurrence, and switches it to the next
state depending on its value. The algorithm starts with a small finite state machine that is
assigned to new states during the encoding process, causing it to be an adaptive process.
Thus, a finite state automaton can grow very quickly and fill the entire free memory. This
algorithm is divided into two parts:
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• Probability calculation;
• New states addition.

The probability calculation is performed by counting 0 and 1 in the input stream.
Let it be assumed that the finite machine has been in the state S several times in the past
and has received s0 zeros and s1 ones. The easiest way to assign a probability is this
simple expression:

s0

s0 + s1
probability that the input data is 0.

s1

s0 + s1
probability that the input data is 1.

4.6. Possible Combinations of Transformation and Compression

Using the information in the last two sections, which describe all compression methods
used and all data transformations, a table of all possible combinations can be created,
Table 5.

Table 5. Possible combinations of coders and transformations.

Compression Method
Input Stream Transformation

Delta
Coding CTW BWT PPM DMC

Huffman coding X X X X
Arithmetic coding X X X X X

Range coding X X X X X
LZ77 X X X
LZ78 X X X
LZW X X X

From Table 5, it can be seen that, with delta coding, Burrows–Wheeler transform, and
Prediction by Partial Matching, all compression methods can be used. With the context
tree weighting, all entropy encoders can be used, while with Dynamic Markov coding,
only certain entropy encoders can be used, i.e., arithmetic coding and range coding. For all
possible combinations, an analysis of the AAE parameter is performed for the image horse
with a compression ratio of 0.2 bpp, Table 6.

Table 6. AAE for all possible combinations of the compression and transformation.

Compression Method
Input Stream Transformation

Delta
Coding CTW BWT PPM DMC

Huffman coding 3.89 3.91 3.84 4.12 /
Arithmetic coding 4.02 3.91 3.88 4.09 4.53

Range coding 3.91 3.84 3.61 3.93 4.11
LZ77 4.21 / 3.91 4.51 /
LZ78 4.55 / 4.17 5.01 /
LZW 4.34 / 3.99 4.89 /

For the compression to be more efficient than the original EEDC, the value of the AAE
parameter must be lower than 3.80. From the results in Table 6, it can be seen that the
entropy coders achieve better results compared to dictionary coders, which do not use their
full potential due to the small size of the input data. The best result was obtained by a
combination of range coding with Burrows–Wheeler transform; an AAE value of 3.61 was
achieved. In further analysis, this combination will be EEDC-RANGE (BWT).
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4.7. Analysis of the EEDC-RANGE(BWT) Algorithm

In this subsection, the new algorithm is tested at five compression ratios on the
standard test image horse. Table 7 shows the values of the average absolute error for five
encoders: JPEG, JPEG 2000, EEDC, and EEDC-RANGE (BWT).

Table 7. AAE values comparison.

bpp JPEG JPEG 2000 EEDC EEDC-RANGE (BWT)

0.8 1.65 1.39 2.08 2.02
0.4 2.91 2.29 2.67 2.52
0.2 6.20 3.78 3.80 3.61
0.1 10.96 6.75 5.94 5.65

0.05 / 12.52 9.31 8.68

By carefully observing Table 7, it can be seen that the novel algorithm beats its pre-
decessor in all compression ratios. EEDC-RANGE(BWT) is better than the JPEG at 0.1, 0.2,
and 0.4 bpp while it is only better than JPEG 2000 at 0.05, 0.1, and 0.2 bpp. The graphical
representation is shown on Figure 10.

Figure 10. AAE comparison for image horse.

Figure 11 shows a series of reconstructed images at all compression ratios for all
compression methods. Looking at the images shown, it is clear that the differences are more
pronounced at higher compression ratios. The JPEG method was never able to produce a
reconstructed image at 0.05 bpp. At 0.1 and 0.2 bpp, this new method is obviously better
than other methods. At 0.4 and 0.8 bpp, it is difficult to see the differences between the
tested methods. The analysis and the results obtained in this section have shown that the
compression of grey values directly affects the quality of the reconstructed image. The
improvement is due to the introduction of the Burrows–Wheeler transform and range
coding. Still, this method is no better than JPEG 2000 at 0.4 and 0.8 bpp. The question
arises, “Is it possible to achieve better results than JPEG 2000 at all compression ratios?”,
and the answer to this question follows in the next section.
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(a) (b) (c) (d)
Figure 11. Comparative overview of reconstructed images ranging from 0.8 bpp (top row)
to 0.05 bpp (bottom row). Compression methods: (a) JPEG, (b) JPEG 2000, (c) EEDC i, and
(d) EEDC-RANGE (BWT).

5. Binary Tree Structure Compression

In the original compression method (EEDC), the binary tree structure is not compressed
in any way. This structure, a stream of 1s and 0s, is stored in groups of 8 bits—bytes. In this
section, the compression of the binary tree structure is analyzed using the compression
methods and data transformation algorithms described earlier. An example of a binary tree
structure can be seen in Figure 12.

[... 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 ...]
Figure 12. A segment of the binary tree structure obtained using triangular coding.
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When looking at Figure 12, certain blocks/sequences can be seen, but they have a size
of 2 or 3 bits, which cannot be effectively used for increasing the compression ratio. The
compression method EEDC-RANGE (BWT) is the basis of this research and, in this binary
tree structure, compression is implemented in it. After applying data transformation and
compression methods, the results can be seen in Table 8.

Table 8. AAE for possible combinations of data transformation and compression at binary tree
structure coding.

Compression Method
Data Stream Transformation

None Delta
Coding CTW BWT PPM DMC

Huffman coding 4.75 6.12 4.22 4.68 4.66 /
Arithmetic coding 5.02 7.10 4.08 5.11 4.21 3.80

Range coding 5.33 7.24 3.99 5.39 4.13 3.84
LZ77 4.68 5.88 / 4.65 4.34 /
LZ78 4.89 6.01 / 4.93 4.48 /
LZW 4.76 5.94 / 4.87 4.42 /

The data reported in Table 8 proves that not a single value was below the reference
value of 3.61 obtained by EEDC-RANGE (BWT) at 0.02 bpp. The best compression was
achieved with dictionary coders, especially LZ77, due to the repetition of subsets in the data
stream. By using delta coding, a new character, −1, appeared, which caused compression
to be more difficult, as shown by the results in Table 6. Rearranging the bits, as BWT
does, does not provide better results. The best result is obtained by combining DMC with
arithmetic coding, but it is still above the value of 3.61.

Context Mixing Method

The shortcoming of methods that use contexts to predict the next symbol (DMC, PPM,
and CTW) is that the context must be coherent. The best symbol prediction for images
is adjacent horizontal and vertical pixels, but they do not form a coherent context. The
previously mentioned methods do not provide a mechanism for combining statistics from
contexts. Context mixing method combines predictions from a large number of independent
models using weighted averaging [52].

The input data are represented as a stream of 1 s and 0 s. For each bit, each model
independently provides two characters n0, n1 ≥ 0, which can be used as the probability
that the next symbol will be 0 or 1. Considering these two numbers together, they are the
model’s assertion that the next bit will be 0 with probability n0/n or 1 with probability
n1/n, where n = n0 + n1 is the model’s relative confidence in this prediction. Since the
models are independent of each other, the confidence is only meaningful when comparing
two predictions of the same model. The models are combined by a weighted summation of
n0 and n0 over all models as follows:

S0 = ε + ∑ win0i evidence f or 0 (15)

S1 = ε + ∑ win1i evidence f or 1

S = S0 + S1 total evidence

p0 =
S0

S
probability that the next bit is 0

p1 =
S1

S
probability that the next bit is 1,

where wi ≥ 0 is the weight of the i’th model, n0i and n1i are outputs n0 i n1 of the i-th
model, and ε > 0 is a constant that guarantees S0, S1 > 0 i p0, p1 ∈ (0, 1).

After coding each bit, the weights are adjusted in favor of the models that correctly
predict that bit. Let x be the first bit to be encoded in the sequence. The cost of the optimal
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encoding of x is log2 1/px. From the partial derivative of the encoding cost with respect to
each wi in (15) with the constraint that the weights must be non-negative, we obtain the
weight adjustment term:

wi ← max
[

0, wi +
(x− p1)(Sn1i − S1ni)

S0S1

]
, (16)

where ni = n0i + n1i. The term (x− p1) is the prediction error. The weights tend to grow
logarithmically because the term S0S1 grows along with the weights.

The predictions from Equation (15) are sent to arithmetic coder. If the input in the
coder is x then the output from the coder is the length of x together with a number from
a half-open interval [p<x, p<x + p(x)) where p<x is a probability that a random picked
string is lexicographically smaller than x. Within the interval, there is a number with a base
B encoding that has maximum 1 + logb 1/p(x) digits [42]. When p(x) is expressed as a
product of conditional probabilities

p(x1, x2, . . . , xn) = ∏
i

p(xi|x1, x2, . . . , xi−1)

and only 1 s and 0 s are used. Then, the arithmetic code can be computed efficiently so that
it starts with the interval [0, 1), and, for each bit xi, the interval is divided into two parts
proportional to p0 and p1 from Equation (15) and replaced by a sub-interval corresponding
to pxi. If the range is [low, high) and the probability that xi is 0; then, the interval updates
as follows:

mid = low + p0(high− low)

[low, high)← [low, mid) i f xi = 0 (17)

[mid, high) i f xi = 1

As the interval shrinks, the leading digits of the low and high will match; then, these
digits are outputted immediately.

When the interval shrinks, the leading digits of low and high coincide and these digits
are immediately output.

The context shuffling method applied to binary tree compression consists of 18 context
models (10 models for general use, 4 models for long contexts, and 4 models for short
contexts) and 8 sets of weights that choose a 4-bit context consisting of the 4 most significant
bits of the previous data stream. This method was implemented in an EEDC-RANGE (BWT)
encoder and was tested for the horse image with a compression ratio of 0.2 bpp. The
best result for the AAE value is 3.61 using EEDC-RANGE (BWT). When context mixing
is used, the value of the AAE parameter is 3.47, which is significantly better than the
previous algorithm. The new algorithm is named EEDC-BSSP (Block-Sorting Symbol
Prediction) because it uses the block-sorting algorithm (Burrows–Wheeler Transform) for
compressing the grey values and the symbol prediction method (Context Mixing Method)
for compressing the binary tree structure.

6. Quality Analysis of the Reconstructed Image

The measures used to determine the quality of the reconstructed image are divided into
objective and subjective. The objective measurements are determined using mathematical
operations or by the use of measuring devices WB06. The subjective measurements are
determined by human judgement.

For quality analysis of the EEDC-BSSP compression method, four images are used—
horse, beauty, mask, pills—as can be seen on Figure 13.

The images have a size of 257× 257 pixels. The images are compressed using JPEG,
JPEG 2000, and EEDC-BSSP compression algorithms with five compression ratios (0.8, 0.4,
0.2, 0.1, and 0.05 bpp). The images are then decompressed and the reconstructed images
are subjected to further analysis.
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(a) (b) (c) (d)
Figure 13. Test images: (a) horse, (b) beauty, (c) mask, and (d) pills.

6.1. Objective Quality Analysis

Objective quality analysis is based on the difference of the original fi,j and recon-
structed image ui,j. Two metrics are already mentioned and they are AAE, (13), and
MSE (14).

The signal-to-noise ratio (SNR) is a ratio of the power of the signal and power of the
background noise:

SNR( f , g) = 10 · log10

(
σ2(g)
MSE

)
. (18)

The amplitude of image elements has a range:

MAX := |0.2q − 1| (19)

where q is the number of bits needed to display the amplitudes of the original image.
The MSE does not take MAX into consideration so the Peak Signal-to-Noise Ratio (PSNR)
is introduced:

PSNR (u, v) := 10 log10
MAX2

MSE
= 20 log10

MAX√
MSE

. (20)

SSIM (Structure Similarity) is a novel method of calculating similarity of two im-
ages [27]. The main idea is that the human visual system is suited for structural information
processing and this measurement strives to measure differences in this information be-
tween original and reconstructed images. Let xi and yi be two discrete signals where
i = 1, 2, . . . , N. The average value of discrete signal xi is

µx :=
1
N

N

∑
i

xi. (21)

The average value of discrete signal yi is

µy :=
1
N

N

∑
i

yi. (22)

The variance of xi is

σ2
x :=

1
N − 1

N

∑
i
(xi − µx)

2. (23)

The variance of yi is

σ2
y :=

1
N − 1

N

∑
i

(
yi − µy

)2. (24)

The covariance of xi and yi is

σxy :=
1

N − 1

N

∑
i
(xi − µx)

(
yi − µy

)
. (25)
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The SSIM is locally calculated over a window of determined size (usually 8× 8). For
every local window, three parameters are calculated: brightness, contrast, and structure.
The value that depicts the change of brightness intensity is calculated by:

l(x, y) :=
2µxµy

µ2
x + µ2

y
. (26)

The contrast is calculated using the variance between the original and reconstructed
image as

c(x, y) :=
2σxσµy

σ2
x + σ2

y
. (27)

The structural similarity uses the covariance of two images and is calculated by

s(x, y) :=
σxy

σxσy
. (28)

These three components are combined

SSIM(x, y) := [l(x, y)]α[c(x, y)]β[s(x, y)]γ (29)

where α, β, and γ are parameters that define the relative importance of each component.
The special case is when α = β = γ = 1; the resulting SSIM index is provided with the
next expression.

SSIM(x, y) =
4µxµyσxy(

µ2
x + µ2

y

)(
σ2

x + σ2
y

) . (30)

MS-SSIM (Multi-Scale Structure Similarity) is based on SSIM [53], but the contrast
and structure are calculated at different frequency scales, so it tests the image quality at
different observation distances. The brightness is calculated only at the last scale, and the
MS-SSIM is calculated as a combination of all the previously calculated coefficients at all
other scales. The low-pass filter is iteratively applied to the original and reconstructed
images, and the filtered image is requantized by a factor of 2. The original image is referred
to as scale 1 and the largest scale as scale M. The change in brightness intensity (26) is
calculated only at scale M and denoted as lM(x, y). On a random scale j, the contrast cj(x, y)
is computed with (27) and the structural similarity sj(x, y) is computed with (28).

MS− SSIM(x, y) := [l(x, y)]αM
M

∏
j=1

[c(x, y)]β j [s(x, y)]γj . (31)

Similar to (29), the exponents αM, β j, and γj are used to assign the relative importance
to the different components. Just as with the SSIM, the result of this measurement can
range from 0 (no similarity) to 1 (identical images). The disadvantage of this measurement
is that the calculation requires longer than with SSIM.

VIF (Visual Information Fidelity) [54] quantifies the information divided between
the reference image and the distorted image relative to the information contained in the
reference image. It uses NSS (Natural Scene Statistic) together with the distortion model of
the image and the model of the human visual system, HVS. The result can range from 0 (no
similarity) to 1 (identical images).

6.2. Review and Analysis of Objective Measurement Results

In this subsection, a comparative analysis of three encoders—JPEG, JPEG 2000, and
EEDC-BSSP—is performed for five compression rates and four images in Figure 13. These
images were selected based on their characteristics to comprehensively test the new com-
pression method. The image horse contains a large number of color gradients from one
intensity to another, and the details are concentrated in a few parts of the image (head and
tail). The image beauty was chosen because it contains parts with more details (face and
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hair) and also features parts with less details (wall in the background). The image mask
contains a small amount of intensity gradients, but the main reason this image was chosen
is the faster transition between gradients and scattered details throughout the image. The
image pills is selected because it contains a large amount of details and repetitive shapes.

6.2.1. Objective Quality of the Test Image Horse

The reconstructed images for each compression method and ratio are shown in Figure 14.
At the lowest compression ratio (top row), the images look almost the same. At 0.4 bpp, the
differences between JPEG 2000 and EEDC-BSSP are imperceptible, while the degradation
begins for the image compressed with JPEG. At 0.2 bpp, artifacts begin to appear on the
JPEG image, while degradation is observed on the JPEG 2000 image. On the EEDC-BSSP
image, loss of detail is evident but structure is preserved. At 0.1 bpp, the JPEG image is
severely degraded, the structure and details of the JPEG-2000 image are distorted, and
the EEDC-BSSP image still has the original structure but lacks details. At 0.05 bpp, the
JPEG cannot reproduce the image, JPEG 2000 is very blurred, while the EEDC-BSSP image
is degraded in its structure and details, but still a picture of a horse is recognizable. The
data shown in Tables 9–11 are the numerical evidence of the image degradation shown in
Figure 14.

From Table 9, it can be seen that, the lower the parameter AAE, the smaller the
difference between the original and the reconstructed image, i.e., the smaller the distortion.
Furthermore, the parameter MSE should be lower, while the parameter SNR should be
larger, which means that the reconstructed image has better visual quality.

Table 9. Results of the AAE, MSE, and SNR metrics for image horse.

bpp
AAE MSE SNR

JPEG JPEG
2000

EEDC
BSSP JPEG JPEG

2000
EEDC
BSSP JPEG JPEG

2000
EEDC
BSSP

0.8 1.65 1.39 1.97 6.51 3.50 6.22 27.09 29.88 27.44
0.4 2.91 2.29 2.45 19.74 11.15 11.04 22.28 24.89 24.91
0.2 6.20 3.78 3.47 75.08 36.45 29.00 16.61 19.66 20.64
0.1 10.96 6.75 5.46 231.92 115.60 88.25 11.57 14.60 15.82

0.05 / 12.52 8.84 / 353.12 257.27 / 9.47 11.05

Table 10. Results of the PSNR, SSIM, and MS-SSIM metrics for image horse.

bpp
PSNR SSIM MS-SSIM

JPEG JPEG
2000

EEDC
BSSP JPEG JPEG

2000
EEDC
BSSP JPEG JPEG

2000
EEDC
BSSP

0.8 39.99 42.70 40.19 0.97 0.98 0.97 1.00 1.00 0.99
0.4 35.18 37.66 37.70 0.93 0.96 0.96 0.99 0.99 0.99
0.2 29.38 32.51 33.51 0.84 0.92 0.93 0.94 0.98 0.98
0.1 24.48 27.50 28.67 0.74 0.84 0.88 0.87 0.95 0.95

0.05 / 22.65 24.03 / 0.72 0.87 / 0.82 0.89

In Table 10, the parameter PSNR is similar to SNR, i.e., its value increases with the
quality of the reconstructed image. The values of SSIM, MS-SSIM in Table 10, and VIF in
Table 11 range from 0 (no similarity) to 1 (identical images). According to the SSIM values,
EEDC-BSSP is better than the other two compression methods at compression ratios of
0.05, 0.1, and 0.2 bpp, while it is the same as JPEG 2000 at 0.4 bpp and the same as JPEG at
0.8 bpp, but JPEG 2000 has the best result at low compression. MS-SSIM has similar results.
The VIF results tend to be better for EEDC-BSSP at all compression ratios except 0.8 bpp.
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(a) (b) (c)
Figure 14. Comparative overview of reconstructed images for image horse ranging from 0.8 bpp
(top row) to 0.05 bpp (bottom row). Compression methods: (a) JPEG, (b) JPEG 2000, and
(c) EEDC-BSSP.

Table 11. Results of the VIF metric for image horse.

bpp JPEG JPEG 2000 EEDC BSSP

0.8 0.75 0.80 0.75
0.4 0.59 0.66 0.67
0.2 0.38 0.50 0.54
0.1 0.23 0.33 0.38

0.05 / 0.17 0.23
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6.2.2. Objective Quality of the Test Image Beauty

The reconstructed images for each compression method and ratio are shown in Figure 15.
At the lowest compression ratio (top row), the quality of the JPEG image appears to
immediately drop; JPEG 2000 has some edges, while EEDC-BSSP is smooth. JPEG has the
worst image quality for all compression ratios, while JPEG 2000 and EEDC-BSSP are on par
with only a slight difference. EEDC-BSSP is smoother in detail. At 0.05 bpp, the face is not
recognizable on the JPEG 2000 image, while recognizable facial features are preserved on
EEDC-BSSP. The results of the objective quality assessment are shown in Tables 12–14.

(a) (b) (c)
Figure 15. Comparative overview of reconstructed images for image beauty ranging from 0.8 bpp
(top row) to 0.05 bpp (bottom row). Compression methods: (a) JPEG, (b) JPEG 2000, and
(c) EEDC-BSSP.
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Table 12. Results of the AAE, MSE, and SNR metrics for image beauty.

bpp
AAE MSE SNR

JPEG JPEG
2000

EEDC
BSSP JPEG JPEG

2000
EEDC
BSSP JPEG JPEG

2000
EEDC
BSSP

0.8 2.53 2.08 3.01 15.53 8.23 17.16 25.05 27.84 24.70
0.4 4.34 3.27 4.10 41.19 22.82 33.87 20.82 23.41 21.68
0.2 8.34 4.91 5.12 131.02 48.28 51.51 15.80 19.83 19.31
0.1 12.40 8.08 7.82 270.45 140.47 128.15 12.50 15.46 15.81

0.05 / 13.46 12.20 / 384.84 300.65 / 10.86 11.89

From Table 12, it can conclude that EEDC-BSSP performs better than JPEG 2000 only
at 0.1 and 0.05 bpp, while it is better than JPEG at all compression ratios except 0.8 bpp.

Table 13. Results of the PSNR, SSIM, and MS-SSIM metrics for image beauty.

bpp
PSNR SSIM MS-SSIM

JPEG JPEG
2000

EEDC
BSSP JPEG JPEG

2000
EEDC
BSSP JPEG JPEG

2000
EEDC
BSSP

0.8 36.22 38.98 35.79 0.95 0.97 0.94 0.99 0.99 0.99
0.4 31.98 34.55 32.83 0.89 0.93 0.91 0.98 0.99 0.98
0.2 26.96 31.01 30.48 0.76 0.88 0.87 0.91 0.97 0.97
0.1 23.81 26.66 27.05 0.68 0.79 0.80 0.85 0.92 0.93

0.05 / 22.28 23.35 / 0.66 0.73 / 0.78 0.85

The SSIM, MS-SSIM parameters in Table 13, and VIF in Table 14 show similar results
to the AAE, MSE, and SNR values. EEDC-BSSP is very similar to JPEG, but JPEG 2000
outperforms this new compression method at 0.2, 0.4, and 0.8 bpp, respectively.

Table 14. Results of the VIF metric for image beauty.

bpp JPEG JPEG 2000 EEDC BSSP

0.8 0.69 0.74 0.65
0.4 0.53 0.60 0.55
0.2 0.32 0.49 0.46
0.1 0.21 0.32 0.34

0.05 / 0.19 0.23

6.2.3. Objective Quality of the Test Image Mask

The reconstructed images for each compression method and ratio are shown in Figure 16.
At the lowest compression ratio (top row) because of the low detail of this image, it is
quite difficult to distinguish between images at 0.8 and 0.4 bpp. At 0.2 bpp, JPEG starts to
degrade and artifacts appear, especially at 0.1 bpp. JPEG 2000 and EEDC-BSSP are quite
similar, except that JPEG 2000 emphasizes the artifacts that degrade the image more.

Tables 15–17 show the results that follow the quality of the reconstructed images on
Figure 16.

Table 15. Results of the AAE, MSE, and SNR metrics for image mask.

bpp
PSNR SSIM MS-SSIM

JPEG JPEG
2000

EEDC
BSSP JPEG JPEG

2000
EEDC
BSSP JPEG JPEG

2000
EEDC
BSSP

0.8 2.53 2.08 3.01 15.53 8.23 17.16 25.05 27.84 24.70
0.4 4.34 3.27 4.10 41.19 22.82 33.87 20.82 23.41 21.68
0.2 8.34 4.91 5.12 131.02 48.28 51.51 15.80 19.83 19.31
0.1 12.40 8.08 7.82 270.45 140.47 128.15 12.50 15.46 15.81

0.05 / 13.46 12.20 / 384.84 300.65 / 10.86 11.89
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6.2.4. Objective Quality of the Test Image Pills

Figure 17 represents all the reconstructed images of image pills. Due to the high level
of detail, i.e., the high frequencies in the image, it is very difficult to detect errors in the
images at low compression ratios (0.8 and 0.4 bpp). The quality of JPEG images deteriorates
rapidly as the compression rate increases. JPEG 2000 and EEDC-BSSP go head-to-head at
high compression rates, and, at the highest compression rate (0.05 bpp), JPEG 2000 loses
its integrity, while EEDC-BSSP managed to preserve the shapes. The results are consistent
with the quality of the reconstructed images quality Tables 18–20.

(a) (b) (c)
Figure 16. Comparative overview of reconstructed images for image mask ranging from 0.8 bpp
(top row) to 0.05 bpp (bottom row). Compression methods: (a) JPEG, (b) JPEG 2000, and
(c) EEDC-BSSP.
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(a) (b) (c)
Figure 17. Comparative overview of reconstructed images for image pills ranging from 0.8 bpp
(top row) to 0.05 bpp (bottom row). Compression methods: (a) JPEG, (b) JPEG 2000, and
(c) EEDC-BSSP.

Table 16. Results of the PSNR, SSIM, and MS-SSIM metrics for image mask.

bpp
PSNR SSIM MS-SSIM

JPEG JPEG
2000

EEDC
BSSP JPEG JPEG

2000
EEDC
BSSP JPEG JPEG

2000
EEDC
BSSP

0.8 36.22 38.98 35.79 0.95 0.97 0.94 0.99 0.99 0.99
0.4 31.98 34.55 32.83 0.89 0.93 0.91 0.98 0.99 0.98
0.2 26.96 31.01 30.48 0.76 0.88 0.87 0.91 0.97 0.97
0.1 23.81 26.66 27.05 0.68 0.79 0.80 0.85 0.92 0.93

0.05 / 22.28 23.35 / 0.66 0.73 / 0.78 0.85
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Table 17. Results of the VIF metric for image mask.

bpp JPEG JPEG 2000 EEDC BSSP

0.8 0.69 0.74 0.65
0.4 0.53 0.60 0.55
0.2 0.32 0.49 0.46
0.1 0.21 0.32 0.34

0.05 / 0.19 0.23

Tables 18–20 show the results that follow the quality of the reconstructed images on
Figure 17.

Table 18. Results of the AAE, MSE, and SNR metrics for image pills.

bpp
PSNR SSIM MS-SSIM

JPEG JPEG
2000

EEDC
BSSP JPEG JPEG

2000
EEDC
BSSP JPEG JPEG

2000
EEDC
BSSP

0.8 1.75 1.48 1.92 6.55 3.95 5.98 26.15 28.44 26.67
0.4 3.29 2.47 2.59 22.05 12.19 12.40 20.88 23.56 23.41
0.2 6.17 4.25 4.19 72.37 39.12 38.71 15.74 18.41 18.46
0.1 11.94 7.23 6.51 243.65 114.56 102.60 10.55 13.68 14.13

0.05 / 13.34 10.29 / 362.35 257.54 / 8.20 9.92

Table 19. Results of the PSNR, SSIM, and MS-SSIM metrics for image pills.

bpp
PSNR SSIM MS-SSIM

JPEG JPEG
2000

EEDC
BSSP JPEG JPEG

2000
EEDC
BSSP JPEG JPEG

2000
EEDC
BSSP

0.8 39.97 42.17 40.36 0.97 0.98 0.97 1.00 1.00 0.99
0.4 34.70 37.27 37.20 0.92 0.96 0.96 0.98 0.99 0.99
0.2 29.54 32.21 32.25 0.82 0.90 0.92 0.94 0.97 0.97
0.1 24.26 27.54 28.02 0.68 0.82 0.85 0.84 0.93 0.94

0.05 / 22.54 24.02 / 0.69 0.76 / 0.77 0.86

Table 20. Results of the VIF metric for image pills.

bpp JPEG JPEG 2000 EEDC BSSP

0.8 0.76 0.81 0.77
0.4 0.59 0.68 0.68
0.2 0.39 0.50 0.52
0.1 0.21 0.34 0.37

0.05 / 0.18 0.24

6.3. Subjective Quality Analysis

A competent measure of image quality is the subjective image quality, i.e., although
two images may have identical values in the objective quality parameters, the human
visual system can distinguish these two images. The standard procedures for subjective
assessment are specified in Recommendation ITU-R BT.500-11 [55].

The subjective measurements can be divided into several groups in the ITU-R 500
recommendation, with the basic classification being general and alternative methods. Two
general methods are Double stimulus impairment scale—DSIS and Double stimulus continuous
quality scale—DSCQS. The alternative methods are Single stimulus methods—single stimulus
categorical rating and single stimulus continuous quality scale.

The double stimulus impairment scale method is a method in which a pair of images
is observed, one of which is the original image and the other the reconstructed image. For
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each image, the observers provide a rating on the image distortion compared to the original
image. The ratings can vary from 1 to 5, with 1 representing complete distortion of the
image and 5 representing imperceptible distortion. The ratings are provided in Table 21.

Table 21. Image distortion ratings.

Rating Distortion

1 Particularly irritating
2 Irritating
3 Slightly irritating
4 Noticeably
5 Not noticeably

After image grading, the average grade for all images is calculated and that grade is
the Mean Opinion Score—MOS:

MOS =
5

∑
i=1

i · p(i) (32)

where p(i) is a share of grade i in the total number of ratings. The double stimulus
impairment scale provides stable results for the small amount of deterioration caused by
changes in the level of distortion.

In double stimulus, the continuous quality scale method original image is first shown
in the original image, then in the same image or a deteriorated image. The observer rates
the quality of the second image. The evaluation of the reference image and the test image
are performed using descriptive scores via Table 22.

Table 22. Image quality ratings.

Rating Quality

1 Unwatchable
2 Barely watchable
3 Watchable
4 Good
5 Excellent

For optimal conditions in the determining subjective quality, it is necessary to provide
the same screen, distance, and viewing angle for all observers.

6.4. Review and Analysis of Subjective Measurement Results

In this article, the subjective assessment of image quality is performed using the double
stimulus continuous quality scale. The image evaluation was performed by 40 observers,
8 of whom were female and 32 of whom were male. The observers first saw the original
image, then the same image or the decoded image was shown. The subjective evaluation
was performed using Table 22. After grading, the cumulative MOS was calculated for each
tested image. The analysis for the image horse is shown in Table 23.

Table 23. MOS values for image horse at various compression ratios.

bpp JPEG JPEG 2000 EEDC BSSP

0.8 4.53 4.52 4.13
0.4 3.41 3.80 4.24
0.2 2.06 2.81 2.65
0.1 1.23 1.61 1.96

0.05 / 1.13 1.57
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As can be seen from Table 23, the competition was again between JPEG 2000 and
EEDC-BSSP. EEDC-BSSP provided better results at high compression ratios and even
received the best score at 0.4 bpp. At 0.8 bpp, JPEG was surprisingly rated the best. A
graphical representation can be found in Figure 18.

Figure 18. MOS values comparison for EEDC-BSSP with JPEG and JPEG 2000 for image horse.

From Figure 18, it is easy to see which compression method was found to be the best
for a given compression ratio.

The quantitative analysis of the MOS result for the test image beauty is provided in
Table 24 with its graphical representation on Figure 19.

Table 24. MOS values for image beauty at various compression ratios.

bpp JPEG JPEG 2000 EEDC BSSP

0.8 4.51 4.56 4.52
0.4 3.25 4.03 3.71
0.2 2.07 3.05 2.84
0.1 1.31 1.67 1.53

0.05 / 1.11 1.42

Figure 19. MOS values comparison for EEDC-BSSP with JPEG and JPEG 2000 for image beauty.
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The values provided and the corresponding graph show that, for image beauty, JPEG
2000 performs best at all compression ratios except 0.05 bpp, and JPEG performs by far the
worst at all compression ratios.

The calculated values of MOS for the test image mask are listed in Table 25. The graph
of agreement is shown in Figure 20.

Table 25. MOS values for image mask at various compression ratios.

bpp JPEG JPEG 2000 EEDC BSSP

0.8 4.91 4.95 4.92
0.4 3.50 4.04 4.46
0.2 2.91 3.36 3.16
0.1 2.05 2.16 2.17

0.05 / 1.16 1.11

Figure 20. MOS values comparison for EEDC-BSSP with JPEG and JPEG 2000 for image mask.

For the image mask, JPEG was rated the worst for all compression ratios, but still JPEG
2000 and EEDC-BSSP are very close according to the results. It is really hard to distinguish
these two algorithms for this image. The results for these two algorithms are similar except
that, at 0.2 bpp, JPEG 2000 was rated as better than EEDC-BSSP, but, at 0.4 bpp, the roles
reversed, i.e., EEDC-BSSP was better than JPEG 2000.

The numerical values of the MOS rating for the pills image are provided in Table 26
and the graph for this image is shown in Figure 21.

Table 26. MOS values for image pills at various compression ratios.

bpp JPEG JPEG 2000 EEDC BSSP

0.8 4.73 4.84 4.00
0.4 3.16 3.92 3.62
0.2 2.40 2.34 2.73
0.1 1.22 1.91 1.76

0.05 / 1.00 1.14

For the image pills, JPEG 2000 was generally rated as the best compression method,
but had a lower value than EEDC-BSSP at 0.2 bpp (seen as a “drop” at 0.2 bpp in Figure 21).
Interestingly, JPEG was ranked better than EEDC-BSSP at 0.8 bpp, but all other values
followed the same regularity as the previous images.
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Figure 21. MOS values comparison for EEDC-BSSP with JPEG and JPEG 2000 for image pills.

7. Discussion

The objective and subjective image quality analyses performed in this study provide
insight into the effectiveness of the presented algorithm EEDC-BSSP compared to the two
standardized image compression methods, JPEG and JPEG2000. The four test images (horse,
beauty, mask, and pills) were compressed at five different compression ratios ranging from
0.8 (lowest) to 0.05 (highest). The results for each image are presented in an image box
allowing for a clear visualization of the quality loss of each image.

The objective image analysis was performed using several metrics, including AAE,
MSE, SNR, PSNR, SSIM, MS-SSIM, and VIM. These metrics were presented in tables and
used to evaluate the performance of each compression method for the four test images. The
objective image analysis showed that EEDC-BSSP outperformed JPEG and JPEG2000 in
terms of image quality at high compression rates.

The subjective image analysis was performed by calculating the MOS for each image
using the double stimulus impairment method. The values of MOS were presented in tables
and a graph, which showed a clear comparison of the performance of the three compression
methods. The subjective analysis confirmed the superiority of EEDC-BSSP over JPEG and
JPEG2000 at high compression ratios, as evidenced by the higher values of MOS.

Overall, the objective and subjective analyzes show that the presented algorithm
EEDC-BSSP is more effective in preserving the image quality than the two standardized
compression methods evaluated in this study. The results of this study could have impor-
tant implications for applications that require high compression ratios without a significant
loss of image quality, such as medical imaging and satellite imagery. Future work could
include further optimization of the EEDC-BSSP algorithm to improve its performance for
specific applications.

8. Conclusions

In this work, we have presented two extensions of the PDE-based image compression
algorithm EEDC and demonstrated its superior performance compared to JPEG and JPEG
2000 at high compression rates. In particular, we analyzed the impact of grey-level com-
pression and binary tree compression on the quality of the reconstructed image. Although
PDE-based methods are more computationally intensive than transform-based compression
methods (DCT in JPEG and DWT in JPEG 2000), the clever use of the available data and its
statistics enables remarkable performance.
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In our future work, we intend to optimize the EEDC-BSSP method for specific ap-
plications. Possible improvements include automatic selection of the diffusion and con-
vergence rate parameters, i.e., whether decomposition and inpainting can be achieved in
fewer iterations.
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