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Abstract: Tele-ultrasound imaging is useful in various situations. Plane wave imaging provides
a method for ultrafast ultrasound with very high frame rates, which sacrifices image quality and
leads to the problem of a large amount of data and low signal transmission speed in telemedicine
imaging. In this paper, a novel compressive frequency-wavenumber domain beamforming method
is introduced, which integrates Stolt’s f-k method and compressed sensing theory on the lateral
wavenumber. The data load is reduced by the sparsity of the echo signal parallel to the transducer,
which requires a smaller measurement matrix during compressed sensing to reduce memory usage
and accelerate the transmission rate. The signal is compressed in the Fourier domain to obtain greater
stability and better image quality after reconstruction than if it was compressed in the temporal
domain. Simulated data and experimental acquisitions were used to compare compressive Fourier
domain beamforming with conventional delay-and-sum (DAS) beamforming. The results showed
that compressive beamforming within the wavenumber domain provides the image with higher
quality from less data.

Keywords: telemedicine imaging; beamforming; compressed sensing; ultrasound ultrafast imaging;
Stolts’s migration

1. Introduction

Ultrasound imaging has been widely used in clinical disease diagnosis and treat-
ment evaluation due to its non-invasive, real-time, and cost-effective characteristics. Tele-
ultrasound imaging is also an important part of telemedicine imaging. Telemedicine has
evolved in the last few years to improve healthcare system not only for patient outcomes,
but also for education purpose [1]. The obstetric tele-ultrasound has been proved feasible
with a bandwidth of 2 Mbit/s video link [2]. Transmission of real-time ultrasound video
to a remote iPhone with a WiFi connection and a 3G connection were both accomplished.
However, the frame rate was reduced to 1.1 frames/s from 11.9 frames/s of the original
transmitted signal [3]. In order to obtain better image quality and higher frame rate in
telemedicine imaging, the amount of data can be reduced, in addition to increasing the
network bandwidth.

B-mode ultrasound imaging is currently the most widely used clinical ultrasound
diagnostic methods. Traditional B-mode imaging has a frame rate of 30–40 frames/s, which
can meet the requirements of observing the static physiological structure of tissues, such
as imaging of the liver, kidney, and abdomen. With the development of more medical
ultrasound technologies, such as shear wave elastography [4], cardiac imaging, ultrasound
localization microscopy (ULM) [5], etc., higher requirements are placed on the frame rate
of ultrasound imaging. Methods to augment the frame rate of ultrasound imaging include
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multi-line-transmit/receive method, synthetic aperture emission imaging and wide beam
emission imaging [6]. Wide beam imaging is a novel transmission method of ultrasound,
which includes plane waves and divergent waves. A single plane wave transmission
of ultrasound can cover the entire imaging area, and then the full aperture receives and
records the echo signal in order to produce an ultrasound image [7]. At present, plane
wave imaging can obtain the entire image through a single full-aperture transmit-receive,
which can increase the frame rate to more than 10,000 frames/s [8]. It has been applied
to shear wave elastography [9], brain function imaging [10], and ultrasound localization
microscopy [5].

Compared with the focused wave scanning transmission method, the plane wave
transmission method greatly increases the frame rate. However, the signal-to-noise ratio,
the image resolution and the contrast of the echo signal are deteriorated because the
transmitting beam is not focused. The imaging results of a plane wave emitted once have
the problems of poor resolution and low signal-to-noise ratio. In practical applications,
multi-angle compound imaging methods are often used [9]. The multi-angle compound
imaging mode improves imaging quality with the increase of the angle, but the frame
rate will linearly decrease in this way as well. In order to retain the advantages of plane
wave imaging’s high frame rate as much as possible, different beamforming algorithms are
applied to plane wave imaging to improve image quality without reducing the frame rate.

Currently, the commonly used beamforming methods are delay-and-sum (DAS) and
adaptive beamforming algorithm based on minimum variance (MV) [11]. The DAS algo-
rithm is the most basic beamforming algorithm, which applies the fixed weights to the
echo signal after delay processing to reduce the signal side lobes. However, the weight
of the window function used in the traditional amplitude apodization process is usually
a set of fixed parameters preset according to the depth. Therefore, the sidelobe attenua-
tion is at a certain degree, and the width of the main lobe will also increase, that is, the
resolution will not improve [12]. Compared with DAS, the adaptive beamforming uses
the signal received by the transducer to adaptively calculate the weighting value added
to each element. Because this weighting value is dynamic, it has better resolution and
anti-interference ability [13]. However, the MV method of beamforming involves lots
of matrix operation which augment the computation complexity, due to the calculation
of correlation matrix. Roya et al. proposed a compressive sensing-based approach com-
bined with the combination of the adaptive minimum variance (MV) algorithm to reduce
computational burden [14]. Deep learning is an emerging method for beamforming [15].
Different neural networks are used to improve image quality or to augment imaging speed
in beamforming [16,17]. However, this algorithm often requires a lot of data for training or
has a high computational complexity, which is not suitable for high -frequency imaging
in practical settings. Compared with algorithms based on MV, DAS requires a relatively
small amount memory in the temporal domain because there is no matrix computation.
Lu [18] introduced the plane wave imaging process to the Fourier domain, which provided
a new direction for beamforming. Compared with beamforming methods in the temporal
domain, beamforming in the Fourier domain might augment computational efficiency
by applying fast Fourier transform (FFT) [19]. Lu [18] introduced the mapping method
to coordinate the echo signal from temporal spectrum to frequency-wavenumber space,
which achieved to beamform in wavenumber-space. Bernard et al. [20] proposed a novel
remapping method related to the steered angle in reception. After that, Garcia et al. [21]
proposed a beamforming process in the Fourier domain based on the exploding reflector
model (ERM), which is widely used in seismology [22]. Compared with Lu’s method, this
model assumes that the echo waves of the backscatters only propagate in the direction of
the sensor, so that the principle of Stolt’s migration is different from the model proposed by
Lu. This model is closer to the reality, thus improving imaging quality. Then Chen et al. [23]
modified the structure of the algorithm by aligning coordinates before the axial inverse fast
Fourier transform (IFFT) and the lateral IFFT, which enables direct coherent compounding
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in the Fourier domain. Based on f-k migration, a circular statistics vector (CSV) was used
as a weighted factor to achieve better image quality [24].

High imaging frame rate will lead to the problem of large data load and memory
storage. Moreover, a large amount of data also reduces the transfer speed which limits
transmission speed in telemedicine imaging. Compressed Sensing (CS) is a new sampling
theory, which allows the signal to be sampled under the Nyquist sampling rate [25].
This theory is based on the signal’s sparsity, which means the original signal can be
randomly sampled to obtain discrete samples. There is only a small amount of non-zero
information in this discrete sample. The sample can be reconstructed to the original
signal by a recovery algorithm with high quality. Compressed sensing has been widely
used in data acquisition [26], radar [27] and the communication field. Wang et al. [28]
and Szasz et al. [29] considered the transmitted ultrasonic signal as an impulse to form
a sparse measurement matrix with a large number of zero-elements to reduce memory
usage. Then, wavelet sparsity was introduced to the recovery algorithm to reconstruct
the image. Chernyakova et al. [30,31] proposed a CS-based Fourier beamforming with a
Xampling scheme for undersampling. Besson et al. [32] firstly joint compressed sensing
with beamforming in the wavenumber domain. Although compressed sensing allows
the signal to be sampled at a sampling rate lower than the Nyquist sampling rate, the
measurement matrix occupies lots of memory as well. Reducing transducer elements is an
effective method in DAS to reduce the data load with a small measurement matrix [33].

In this paper, we propose a new framework based on Stolt’s f-k and compressed
sensing theory, which is a compressive beamformer in the wavenumber domain, to obtain
a smaller amount of data load during signal transmission and better image quality in
telemedicine. We introduce compressed sensing to the frequency-wavenumber domain,
which reduce data load for transmission and memory storage, as well as maintaining the
image quality and stability compared with that in the temporal domain.

This paper is stated as follows: Section 2 introduced the modified Stolt’s f-k method
and compressed sensing theory in the wavenumber domain at first. Then, beamforming in
the frequency-wavenumber domain and compressed sensing are combined to assemble
the novel framework: compressive beamformer in the wavenumber domain. In Section 3,
simulated data and experimental acquisitions are used in the new framework to compare
with DAS and compressive beamformer in the temporal domain. In Section 4, the influence
of compounding angles on image qualities of different beamformers are discussed. More-
over, memory occupation, computational complexity and telemedicine imaging speed are
discussed. Section 5 provides a conclusion of the novel compressive wavenumber domain
beamforming framework.

2. Materials and Methods
2.1. Plane Wave Stolt’s f-k Method

Stolt’s f-k beamforming method was first proposed based on the exploding reflector
model (ERM), and was widely used in seismic imaging and other fields. Garcia et al. [21]
applied Stolt’s f-k method to ultrasonic plane wave imaging. In seismology, the ERM model
assumes that all sound sources in the underground imaging area generate sound waves at
the same time, and the sound waves only propagate upward. In order to apply the Stolt’s
f-k method to ultrasonic plane wave imaging, Garcia et al. [21] first demonstrated that the
ERM model can be transformed into plane waves at different angles. Under the premise
of the same echo signal, if the real scatterer position in the plane wave is obtained, the
corresponding virtual scatterer position in the ERM model can be calculated according
to the conversion method. On this basis, Garcia et al. [21] used Stolt’s f-k method to
process plane wave signals at various angles, and obtained the virtual scatterer position
under the ERM model. Then the real scatterer position can be calculated by the migration
principle. Coherent compound imaging can be implemented by correcting delay and
aligning spectrum’s coordinates of different angles.
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Shown as Figure 1, for the plane wave emitted with an angle of θ, the longitudinal
position of the inclined echo signal due to the emission angle will be distorted. Before
using the Stolt’s f-k method, the position of received RF data should be corrected at first.
We assume that (xs, zs) is the position of a scatterer, then the travel time of echo signal is:

τs(x) =
1
c
(sin(θ)(xs − x) + cos(θ)zs +

√
(xs − x)2 + zs2) (1)
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Figure 1. Scheme of route for the echo signal travelling from transmitter to receiver.

The signal travels from emitter to scatterer and back to the receiver, depending on the
transducer position (x, 0). To be compatible with the ERM model, the virtual exploding
source is positioned at (x̂s, ẑs) with a propagation speed of ĉ. ĉ is a one-way speed from
scatterer to the receiver. Then the following ERM travel time is:

τ̂s(x) =
1
ĉ

√
(x̂s − x)2 + ẑ2

s (2)

By equalizing τs(x) and τ̂s(x), the relationships of the sound speed and coordinates
between real situation and that in ERM model are obtained by the coefficients as below:

τ̂s(x) =
1
αc

√
(xs + γzs − x)2 + β2zs2 (3)

where (α, β, γ) are defined as follows:
α = 1/

√
1 + cos(θ) + sin2(θ)

β = (1+cos(θ))3/2

1+cos(θ)+sin2(θ)

γ = sin(θ)
2−cos(θ)

(4)

In the equation, α relates the virtual propagation speed ĉ and real speed c. β represents
the scaling ratio between the virtual axial coordinate ẑs and the real axial depth zs. γ refers
to the shift operation between virtual lateral coordinate x̂s and real lateral position xs. The
relationship between virtual arguments and actual arguments are shown as follow:

ĉ = αc
ẑs = βzs
x̂s = xs + γzs

(5)

Assume that a plane wave is emitted at the angle of θ, and the RF data of the echo
signal is ψθ . If the plane wave is backscattered in receiving, the signal received at the probe
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whose coordinate is (x, z = 0) can be present as ψθ(x, z = 0, t). Fourier transform is applied
to ψθ(x, z = 0, t) over time t to obtain the spectrum Gθ(x, z = 0, f ), where f is the temporal
frequency. Because of the time delay τ(x) in the temporal domain, the Fourier transform
should be followed by a phase shift ei2π sin(θ)x/c in the frequency domain, as follows:

Gθ(x, z = 0, f ) =
∫ +∞

−∞
ψθ(x, z = 0, t)e−i2π f tei2π sin(θ)x/cdt (6)

Then the phase-shifted spectrum is Fourier transformed in the lateral dimension

Gθ(kx, z = 0, f ) =
∫ +∞

−∞
Gθ(x, z = 0, f )e−i2πkx xdx (7)

where kx refers to the lateral spatial wavenumber on the transducer surface. Chen et al. [23]
modified the process of beamforming by applying the phase shift once before lateral FFT,
instead of applying another phase shift after migration.

The core of the spectrum migration is to estimate initial spectrum φθ(kx, kz, t = 0) from
the obtained spectrum Gθ(kx, z = 0, f ) as the boundary condition. φθ(kx, kz, t = 0) is the
Fourier transform over actual coordinate (xs, zs). This procedure can be divided into two
steps. The first is mapping Gθ(kx, 0, f ) to φ̂θ(kx, kz, 0), where φ̂θ(kx, kz, 0) refers to Fourier
transform over virtual source (x̂s, ẑs). The second step is to shift φ̂θ(kx, kz, 0) to φθ(kx, kz, 0).

To map Gθ(kx, 0, f ) to φ̂θ(kx, kz, 0), Garcia et al. [21] provided the solution as

φ̂θ(kx, kz, 0) =
ĉkz√

kx
2 + kz

2
Gθ(kx, 0, f (kx, kz)) (8)

where kz is the axial spatial wavenumber perpendicular to the transducer kx and kz are
related to f by

f = ĉsign(kz)

√
kx

2 + kz
2 (9)

Then φ̂θ(kx, kz, 0) should be transformed to φθ(kx, kz, 0) for Fourier transform of the
real coordinates.

φθ(kx, kz, 0) = φ̂θ(kx, (kz − kxγ)/β, 0) (10)

φθ(kx, kz) is the Fourier transform over actual coordinates. Then the final image can
be obtained by applying 2-D Fourier inverse transform over φθ(kx, kz)

ψθ(x, z) =
∫ ∫ +∞

−∞
φθ(kx, kz)e2iπ(kx x+kzz)dkxdkz (11)

ψθ(x, z) is the final image data after beamforming. This procedure augments compu-
tational speed because it replaces time-delay calculation with FFT in the Fourier domain.
This model assumes that the reflected sound wave of the scatterers only propagates in the
direction of the sensor, which makes the principle of spatial spectrum coordinate migration
different from the model proposed by Lu [18]. In reflective ultrasound equipment, the
performance of the scatterers as a reflection model is more suitable to the actual situation
than the pure scattering model, so this method improves the imaging quality.

2.2. Proposed Compressed Sensing Process in the Wavenumber Domain

The transducer with N elements emits a plane wave signal, which equals the number
of lateral numbers. The raw data of echo signal is ψθ(x, z, t) in the temporal domain. The
echo signal is transferred to Gθ(kx, z, f ) in the Fourier domain by 2D-dimensioan FFT. The
ultrasonic echo signal in the wavenumber domain can express sparsity by a transfer matrix
based on directivity vector. To avoid large transfer matrix, we compress the data load by
kx. According to compressed sensing theory, the transfer matrix can be established by the
number of transducer elements and size of the transfer matrix. To ensure that the projection
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vector is sparse, which means there are only few elements non-zero, the number of the
rows of the transfer matrix should be less than columns. The projection coefficient vector is
obtained by projecting the echo signal on the transfer matrix. Then the echo signal of all
transducer elements can be expressed as follows

Gθ(kx) = HS(kx) (12)

where H is the transfer matrix. S(kx) is the projection coefficient vector where echo signal
Gθ(kx) project on transfer matrix H. There are only few non-zero elements in the vector
S(kx) = [0, 0, · · · , s1(kx), 0, · · · , 0, sK(kx), 0, · · · , 0], namely S(kx) is sparse. The transfer
matrix H can be constructed as follows to make the echo signal in the wavenumber domain
Gθ(kx) sparse.

Divide the space [−90◦, 90◦] into 2N parts on average to obtain ϕk = kπ/N and
establish directivity vector δ(ϕk) as follow

δ(ϕk) = [1, e−i2πd sin(ϕk)/λ, e−i2π2d sin(ϕk)/λ, · · · , e−i2π(N−1)d sin(ϕk)/λ]
T

(13)

where d is the kerf between elements of the transducer. λ is wavelength of the plane wave.
Directivity vector can be regarded as the sparse base to construct transfer matrix. Then the
transfer matrix is

H = [δ(ϕ1), δ(ϕ2), · · · , δ(ϕ2N)] (14)

In order to compress signal Gθ(kx), we would like to obtain S(kx) by constructing mea-
surement matrix and re-weight minimum-focal underdetermined system solver algorithm
(RM-FOCUSS) [34]. Compressed sampling is not a direct measurement of Gθ(kx), but a
design of a M× N(M < N) dimensional sampling matrix Λ = [κ1, κ2, · · · , κM], which is
uncorrelated to the transfer matrix H. The projection vector Z(kx) of Gθ(kx) on Λ is

Z(kx) = ΛGθ(kx) = ΛHS(kx) (15)

Sampling matrix Λ represents the compressed sampling method of the echo signal,
which is composed of M sampling bases. Each sampling base is an N-dimension vector,
such as κi = [κi1, κi2, · · · , κiN ]. The i-th row means that the output of all the transducer
elements is projected onto the sampling base, corresponding to a compressed sampling
point. The sampling matrix Λ has M rows in total, which means that only M compressed
sampling points are needed. M transducer elements can be selected for sampling from the
N transducer elements of the original array.

The matrix P = ΛH in [15] is an M× 2N matrix, which is called the measurement
matrix. The measurement matrix is used to sample the observations so that the original sig-
nal can be reconstructed. Theoretical studies [35] have shown that when the measurement
matrix P satisfies the restricted isometry property (RIP) condition, the projection coefficient
vector S(kx) can be solved, and the original signal Gθ(kx) can be reconstructed accurately
by the compressed sampling vector Z(kx). This property ensures that the original space
has a one-to-one mapping relationship to the sparse space, which requires that the sam-
pling matrix randomly selected from the observation matrix must be non-singular. The
measurement matrix can measure the signal to obtain the measurement vector, and then
use the reconstruction algorithm to reconstruct the full signal from the measured value.
When designing the measurement matrix, it is required that the measured value will not
affect the information of the original signal during the sparse expression of the signal, so
as to ensure that the signal can be accurately reconstructed. The theory proves that the
Gaussian random sampling matrix and any fixed transformation matrix can make P satisfy
the RIP condition with a high probability [36], and the Gaussian random matrix can be
easily obtained, so this paper adopts the Gaussian random measurement matrix.

The process to design a sampling matrix Λ is as Figure 2 [33]:
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Define Y(kx) = [y1(kx), y2(kx), · · · , yM(kx)] as the output of the compressed sampling
array elements. The compressed sampling vector is

Z(kx) = ΓY(kx) = PS(kx) (16)

After obtaining the compressed sample vector Z(kx), the re-weight minimum-focal
underdetermined system solver algorithm (RM-FOCUSS) [34] is used to estimate the
projection coefficient vector S(kx). Then the original signal Gθ(kx) can be reconstructed
by [12].

For L plane wave emitted from transducer, the cost function J is established as follow
in order to obtain the sparse signal S(t)

J(p)(S) = ∑2N
i=1

(
∑L

l=1

∣∣si,l
∣∣2)p/2

(17)

when p is closer to 0, the S(kx) expressed by J(p)(S) is more sparse. The Lagrange operator
is defined as

L(S, Ω) = J(p)(S) + ∑L
l=1 ωl

T(PS[:, l]− Z[:, l]) (18)

where ωl is Lagrange operator vector, l = 1, 2, · · · L. S(t) can be obtained by minimum
Lagrange operator L(S, Ω). The solution of RM-FOCUSS algorithm was proposed in [34]
as follow

Wk+1 = diag
[
ck[i]

1−p/2
]

ck+1[i] = ‖sk[i, :]‖ =
[
∑L

l=1

(
sk[i, l]2

)]1/2
, p ∈ [0, 2]

Sk+1 = Wk+1(PWk+1)
H
(
(PWk+1)(PWk+1)

H + σI
)−1

Z

 (19)

where p is related to the sparsity of echo signal. σ is a parameter reflecting the noise.
We could eliminate part of the noise by adjusting σ. After the RM-FOCUSS algorithm,
we obtain the sparse signal S(kx). This sparse signal is the compressed solution after
compressed sensing because of lots of zero elements. Finally, apply [12] to obtain the
full-array signal. This signal is no longer the original signal but with some amelioration
and modification, whether all the information can be recovered and whether the noise can
be eliminated depending on the performance of this compressed sensing process.

The beamforming based on compressed sensing can become a method of sparsity by
reducing the number of transducer elements without reducing the image performance. It
uses the sparseness of the ultrasonic signal to randomly extract part of the signals from
the transducer, restores the original signal with a restoration algorithm, and then performs
beamforming. In beamforming based on the compressed sensing, the transfer matrix, the
sampling matrix and the sparsity solution algorithm all influence whether the reconstructed
signal can retain all the image information.



Appl. Sci. 2023, 13, 3127 8 of 20

2.3. Wavenumber Domain Compressive Beamforming

To improve the compressed rate without sacrificing image quality, we propose the
framework to combine compressed sensing with beamforming in the frequency-wavenumber
domain. According to the characteristic of ultrasonic signal, the energy of the echo signal
concentrates on low frequency. Assume that ψθ(x, z = j, t) represents the j-th line of the RF
data of echo signal. To transform the echo signal to the frequency-wavenumber domain,
the spectrum can be expressed as follows

Gθ(x, z = j, f ) =
∫ +∞

−∞

∫ +∞

−∞
ψθ(x, z = j, t)e−i2π f te−i2πkx xdtdx (20)

After transforming the echo signal into the frequency-wavenumber domain, the
spectrum of signal parallel to the transducer direction become symmetric because of the
characteristic of FFT. We choose the 32nd sampling line and the 10th line of the echo signal
parallel to the transducer as the example, and the spectrum is shown in Figure 3. We
can see that the information of the signal is repeated twice, when the length of the signal
in the wavenumber domain is the same as that in the temporal domain. Thus, we can
select the first half of the data in the sampling direction for beamforming, which make the
amount of data be reduced to 50%. Moreover, the signal in the frequency-wavenumber
domain becomes more centralized with a rapid decay. With these two features of the signal
in the wavenumber domain, compressing echo signal in the wavenumber domain will
lose less information than that in the temporal domain. Thus, for the same compressing
rate, beamforming with compressed sensing in the wavenumber domain will obtain better
image quality.
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In order to improve the image quality further, the multi-angle compound imaging
method is also suitable for this framework. In this way, we introduce the general case of
the algorithm, in which the plane waves are emitted at different angles. The process of this
frequency-wavenumber compressive beamforming method can be summarized as follows:

1. Apply 2-dimensional FFT to the RF raw data ψθ(x, z, t) to transform the echo signal
into the frequency-wavenumber domain as Gθ(kx, z, f ).

2. Select the first half of the data in the sampling direction for beamforming.
3. For plane waves emitted at different angles, the emission delay caused by angles

should be removed by [1] at first.
4. Compress the echo signal in the Fourier domain by the sampling matrix Λ and obtain

the sparse solution S(kx) by RM-FOCUSS algorithm [19]. The ameliorative signal can
be obtained by [12].

5. The Stolt’s migration described by the procedure from [8–11] is applied with the ERM

velocity
_
c as defined in [5].
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6. Restore the data in sampling direction before inverse FFT is applied to the data after
migration to transform the echo signal back to the temporal domain for imaging.

This new framework is proposed to reduce data load and memory by applying the
compressive sensing on the lateral wavenumber, as well as to guarantee the quality and
stability of the imaging signal after compressed sensing. The pseudo-code for tilted plane
wave is shown in Figure 4. The compression rate in this frame work is discussed in
Section 3 by applying this algorithm to both simulated data and in vivo experiments. Part
of the information of the original echo signal will usually be lost after compressing, so the
sampling matrix and the reconstruction algorithm have higher requirements to reconstruct
high quality image. Therefore, the algorithm and the reconstruction algorithm can be
further explored in these two aspects to find a better compressing method.
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2.4. Simulation Settings

Echo data were simulated by Filed II to evaluate the frame work we proposed based on
the quality of the images it generates, and to compare it with DAS method and compressive
beamformer in the temporal domain. Lateral resolution and contrast were the metrics to
assess the image quality in this part. The metrics could be better calculated and analyzed
in this part, because noise and other experimental interference could be ignored easily with
the simulated data.

The numerical phantom was generated by Field II, including backscattering points
and circular regions to calculate the lateral resolution and contrast. The two circular
hypoechoic areas with the diameters of 5 mm and 6 mm in the phantom represented the
anechoic cyst, and the two high-brightness circular areas with the same diameter simulated
high-density parts in ultrasound imaging. There was a column of backscattering points
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arranged longitudinally and a row of scatterers arranged horizontally in the phantom. The
longitudinal scattering points were used to analyze the lateral resolution of different depths.

The specifications of the research linear array transducer manufactured by Verasonics
(L11-4v, Verasonics Inc., Redmond, WA, USA) were used to simulate the echo data. This is a
linear array transducer with 128 elements, whose central frequency is 6.25 MHz. The pitch
of transducer L11-4 is 0.3 mm and the width of each element is 0.27 mm. The transmitted
signal was sampled at a rate of 50 MHz. There were 6066 samples recorded for each scanline
and the image depth was 92.4 mm. The data processing was conducted using a MATLAB
program (Mathworks Inc., Natick, MA, USA).

2.5. In Vivo Experiment

Organs have complicated structures and various influences on echo signal. We applied
different beamformers on data obtained from the brain scan and the heart scan of the
rat to analyze the performance of different beamformers. The process of the transmit
and receive (T/R) for radio frequency (RF) signals was conducted using a Vantage 64 LE
system (Verasonics Inc., Redmond, WA, USA), and the data processing was conducted
using a MATLAB program (Mathworks Inc., Natick, MA, USA). We demonstrated the
beamformers experimentally on RF data acquired linear array transducer called Vermon
(Vermon Inc., Tours, France) with 128 elements. The pitch of Vermon is 0.11 mm. The central
frequency is 18.8 MHz and the sampling frequency is 62.5 MHz. Vermon is a transducer
specially designed for animals. The in vivo rat experiment was performed according to the
Suzhou Institute of Biomedical Engineering and Technology (Chinese Academy of Sciences)
Institutional Animal Ethics Committee (SibetAEC) protocol (2021-B22). We used female
rats of SPF degree which were cultivated by 8 weeks.

3. Results
3.1. Compared with DAS and Stolt’s f-k Method

To analyze the performance of the new beamforming method in B mode ultrasound
imaging, the point scatterers at different depth were used to calculate resolution, and the
hypoechoic region centered at (−5, 40) mm and the strong reflected regions centered at (−5,
70) mm were used to calculate different kinds of contrast. As it shows in Figure 4, the 6 mm
radius cyst called region A is used to analyze the contrast of hypoechoic. The region B with
6 mm diameter is used to analyze the contrast of strong reflected region. Region C in the
red square is used as the background to calculate the contrast. The horizontal resolution
is analyzed by the point scatterer at different positions. After evaluating the performance
of the algorithm in simulation, the in vivo plane wave measurements were executed by
Verasonics research scanner (Vermon Inc., Tours, France) in Section 4. The contrast was
represented by gCNR, which was defined as [37]

gCNR = 1−
∫ ∞

−∞
minx{pt(x), pb(x)}dx (21)

where pt(x) is the probability density distribution in the target region A and region B, and
pb(x) is the probability density distribution of background region C.

The performance of wavenumber domain beamforming is evaluated in two aspects.
The first is to compare the image quality with DAS. The second part is to compare the
image quality with strictly consistent condition and the same compressed rate, so as to
assess the stability of the algorithm and the performance of compressed sensing in the
wavenumber domain compared with that in the temporal domain. Multi-angle RF coherent
compounding can be applied on both DAS and beamforming in the wavenumber domain
to further improve image quality. However, in order to eliminate the influence of the
number of angles on the image quality, we simulated only one plane wave on angle 0◦ to
perform different beamforming algorithms in this section.

We compared the compressive beamforming with Stolt’s f-k migration (represented
by fkCS in the image) with DAS to evaluate the performance of the new process by
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image quality, as well as compared with non-compressive framework. In Section 3.1, the
image quality was evaluated and compared with the compression rate R = 80% in fkCS
(abbreviated as fkCS_80%), and the simulated result is shown in Figure 5 with a dynamic
range of 50 dB. The compression rate is defined as

R =
Nc

No
× 100% (22)

where Nc and No are the amount of data after and before compressed sensing, respectively.
In this part, the image quality is evaluated from different views. Firstly, the lateral resolution
is measured at different depths. Secondly, the contrast of cyst and high reflection region are
calculated and represented by gCNR.
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Figure 5. Simulated images by (a) DAS, (b) fk and (c) fkCS with 80% compression rate with hypoe-
choic, bright region and point scatterers.

The point scatterers in the region D at the depth from 30 mm to 85 mm were involved
to analyze the lateral resolution at different depths. The lateral resolution was estimated by
measuring the full-width at half maximum (FWHM) of the envelop of the signal after beam-
forming. The effect of different depths on lateral resolution with different beamformers is
shown in Figure 6. As shown in Figure 6, the compressive beamforming in the wavenumber
domain provides comparable or better lateral resolution than DAS, when the data load
has been compressed to 80%, especially with increase of the depth. In this study, we use
dynamic aperture in the DAS beamformer with Hanning window to improve the lateral
resolution in near field. However, the resolutions of DAS in near field still not match that
of fkCS, whose compression rate is 80%. With the depth increase, the resolutions of three
imaging method are comparable, but the resolutions vary in deep place. Consequently,
lateral resolution of beamformer in the Fourier domain perform better in near field and
deep place. The contrast of three beamformers is shown in Table 1. With the 20% reduction
of data, the lateral resolution and contrast of fkCS are comparable to the results of Stolt’s
f-k beamformer, and the results of hypoechoic are better than that of DAS. The gCNR of
DAS of bright region is a little better and there are some artifacts around bright regions,
which is because the Hanning window widens the main lobe of the signal when decreases
the sidelobe.
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Table 1. Contrast of DAS, Stolt’s f-k and proposed framework.

gCNR
Hypoechoic Bright Region

DAS 0.8429 0.9385
fk 0.9035 0.8874

fkCS_80% 0.8529 0.8917

3.2. Compared with Compressive Beamformer in the Temporal Domain

To analyze the performance of compressive beamforming method in the wavenumber
domain based on Stolt’s f-k migration (fkCS), we compared the new framework with the
conventional beamforming based on compressed sensing in the temporal domain. To
reduce the influence of different beamformers on image quality, the algorithm of control
group still uses Stolt’s f-k migration during beamforming, but the compressed sensing is
applied to the echo signal before FFT, which means the signal in the temporal domain is
compressed. This framework of the control group is called beamformer in the temporal
domain based on compressed sensing (abbreviated as tmCS). The lateral resolution and
contrast were calculated by the simulated data at different compression rates. The com-
pression rate decreases from 100% to 20% to analyze the changes of the lateral resolution
and contrast. The B mode images after two kinds of beamformers are shown as Figure 7d,e,
whose compression rate is 50%.

With the decrease in compression rate, the beamformer will take up less memory
and less transmission space. However, the information will be lost as well. From B mode
images generated by fkCS in Figure 7d and by tmCS in Figure 7e with a dynamic range of
50 dB, artifacts appear due to the loss of information with the compression rate of 50%. It
can be seen from the B-mode images that at a compression rate of 50%, the image quality of
fkCS is significantly better than that of tmCS. As shown in Figure 7e, when the amount of
the signal is compressed to 50%, the low echo signal will be almost covered and the high
intensity signal will produce artifact. Since the image of tmCS loses half of the signal during
the compression process in the temporal domain, it is more dependent on the nearby signal
when the reconstruction algorithm restores the image. Thus, the low-echo signal will be
covered by the surrounding signal, and the high-intensity signal will affect the surrounding
signal and produce artifacts. In the Fourier domain, due to the symmetry of the Fourier-
transformed signal, the signal can retain more effective information during compression
and reduce the generation of noise and artifacts during reconstruction of signal.
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Figure 7. Contrasts and lateral resolutions with different compression rates, as well as B mode 
images generated by fkCS and tmCS beamforming with hypoechoic, bright region and point 
scatterers: (a) contrast of cyst, (b) contrast of strong reflection region, (c) lateral resolution, (d) B 
mode image of fkCS with 50% compression rate, (e) B mode image of tmCS 50% compression rate. 
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Figure 7. Contrasts and lateral resolutions with different compression rates, as well as B mode images
generated by fkCS and tmCS beamforming with hypoechoic, bright region and point scatterers:
(a) contrast of cyst, (b) contrast of strong reflection region, (c) lateral resolution, (d) B mode image of
fkCS with 50% compression rate, (e) B mode image of tmCS 50% compression rate.

Figure 7c shows effects of compression rate on lateral resolution. In order to reduce the
influence of artifacts of strong reflection area, we choose the point scatterer at (10, 45) mm to
measure resolution. From Figure 7c we can see that the lateral resolutions are comparable
when the compression rate is above 70%. When the compression rate decreases sequentially,
the FWHM of tmCS increases rapidly, while the resolution of fkCS fluctuates slightly. The
image quality of tmCS deteriorates more rapidly because more information is lost during
compression than that in fkCS.

3.3. Results on Brain Scan

Organs have complicated structures and various influences on echo signal. We firstly
apply different beamformers on data obtained from the brain scan of the rat to analyze
the performance of different beamformers during imaging for static organ. The brain scan
B mode images with 60 dB dynamic range based on different beamformers are shown in
Figure 8. The peak signal-to-noise ratio (PSNR) was calculated by area A and area B in
Figure 8, which contains the top and bottom contour of the brain to evaluate the ability of
retaining effective information and removing noise. Area C is the background signal used
to calculate PSNR. The results are shown in Table 2.
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Figure 8. B mode images of rat brain scan based on different beamformers: (a) DAS, (b) Stolt’s f-k, 
(c) fkCS with compression rate of 80%, (d) fkCS with compression rate of 50%, (e,f) are tmCS with 
compression rates of 80% and 50%, respectively. 

Table 2. PSNR of brain scan experiment. 

Beamformer PSNR (dB) 
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Figure 8. B mode images of rat brain scan based on different beamformers: (a) DAS, (b) Stolt’s f-k,
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Table 2. PSNR of brain scan experiment.

Beamformer PSNR (dB)
Top Edge of the Brain Bottom Edge of the Brain

DAS 11.7774 17.9290
fk 17.8474 15.1833

fkCS_80% 17.6321 14.3764
fkCS_50% 16.6327 14.3707
tmCS_80% 16.3555 14.8068
tmCS_50% 15.3797 14.1903

The PSNR is expressed as follows:

PSNR = 20 log20

(
MAXI√

MSE

)
(23)

where MAXI is the maximum value of signal and MSE is the mean-square error of the
signal. The PSNR of the top contour of the brain based on fk and fkCS with 80% compression
rate is the best. When the compression rate is the same, PSNR of fkCS is better than that
of tmCS, which means the ability of eliminating noise of compressive beamformer in the
Fourier domain is better as well. It can be seen from Figure 8a that in the image based on
the DAS, the echo signal of rat’s bottom skull is strong, which influences the brain signal.
This leads to high PSNR of bottom edge and low PSNR of top edge of the brain in Table 2.
This result is consistent with simulated results, which the ability of DAS to eliminate high
refection noise is weaker than beamforming in the Fourier domain.

3.4. Results on Heart Scan

Heart scan requires higher frame rate of the ultrasonic device. Compressive beam-
forming in the Fourier domain provides a method for echo signal data to take up less
space and achieves a higher transfer speed. This experiment is to assess performance of
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beamformers based on high frame rate plane wave imaging. The experimental results
whose dynamic range of 55 dB based on different beamformers are shown in Figure 9. It
can be seen from Figure 9a that in the image based on the DAS, the contour of the upper
edge of the heart is the least obvious. The PSNR was calculated by area A in Figure 9
which contains the contour of the heart. The results are shown in Table 3. The PSNR of the
image after compression performs better than that of DAS and before compression, because
compressed sensing process help to eliminate part of noise by making the signal sparse.
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Figure 9. B mode images based on different beamformers: (a) DAS, (b) Stolt’s f-k, (c) fkCS with
compression rate of 80%, (d) fkCS with compression rate of 50%, (e,f) are tmCS with compression
rates of 80% and 50%, respectively.

Table 3. PSNR of different beamformers on heart scan.

Beamformer PSNR (dB)
Contour of Heart Contour of Cardiac Chamber

DAS 15.9920 17.5155
fk 18.8017 16.0897

fkCS_80% 17.9650 15.3046
fkCS_50% 17.4662 13.3454
tmCS_80% 12.4989 11.0023
tmCS_50% 12.4318 11.4359

The strong reflection signal in the bottom affects the imaging of the cardiac chamber,
causing the bottom contour of the cardiac chamber to be covered by the strong reflection
signal. The area B in Figure 9 which contains the bottom edge of the cardiac chamber, is
used to calculate the PSNR. The contour of the cardiac chamber is the most obvious in
the imaging results based on the algorithms fk and fkCS. The upper edge of the cardiac
chamber of the tmCS image can be seen, and the signal at the bottom edge is almost
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lost. The results of in vivo experiments are similar to that of simulation. Compressive
beamformer in the wavenumber domain provides more stable imaging process with less
data load.

4. Discussion
4.1. Influence of Number of Angles on Compressive Beamformer in the Fourier Domain

Beamformers in the Fourier domain based on Stolt’s f-k migration are compatible
with multi-angle RF coherent compounding imaging method [21]. Then compressive
beamformer in the Fourier domain is also available for multi-angle compounding imaging.
Although the results of fkCS is better than DAS, the image quality will be influenced
with a low compression rate. Multi-angle compounding imaging is a method to improve
image quality from the signal transmitter. In this part, we discuss the influence of the
number of angles on compressive beamforming framework in the wavenumber domain
with different compression rates, as well as comparing with compressive beamforming in
the temporal domain.

Image quality was analyzed by lateral resolution and contrasts. As it shown in
Figure 10, lateral resolution was measured by point scatterer located at (10, 40) mm. Con-
trasts of cyst and strong reflection region were measured with area A and area B in Figure 5.
We discussed the influence of number of angles with Stolt’s f-k migration method and com-
pressive method with compression rates of 30%, 50% and 80%, which was represented by
fk, fkCS_80%, fkCS_50% and fkCS_30%, respectively. The simulated B mode images with
5 angles were shown in Figure 10d–g, respectively. It can be seen that when compression
rate decreases to 30%, the strong reflection region will distort significantly.
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Figure 10. Influence of number of angles on fkCS. (a) gCNR of cyst, (b) gCNR of strong reflection
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images based on beamformer of Stolt’s f-k, and fkCS with compression of 80%, 50% and 30% with
40 dB dynamic range, respectively.

As shown in Figure 10, with the increase in the number of compounding angles, the
lateral resolution and low echo contrast of images generated by different methods have
improved, but the degree of improvement is limited. The main influence of number of
angles on contrast is about low echo area. From Figure 10a, when the number of angles
is less than 5, increasing the number of angles can significantly improve the cyst contrast.
Additionally, the lower the compression rate, the more obvious the effect of the increase of
the angle. With the decrease in compression rate, the contrast of cyst deteriorates, especially
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the change of contrast is unstable with compression rate of 30%. For the lateral resolution
shown in Figure 10c, when the number of angles is less than 12, the increase in the number
of angles can improve the lateral resolution, but the number of angles has similar effects
on images with different compression rates. When the number of angles is greater than
11, increasing the number of angles will not improve the lateral resolution area any more.
At this time, the increase in the number of composite angles will not improve the image
quality, but will reduce the frame rate.

4.2. Memory Occupation, Computational Complexity and Telemedicine Imaging Speed

The compressive beamforming in the Fourier domain is especially practical for tele-
ultrasound imaging, which puts forward a high requirement for imaging speed and data
transfer speed. In this part, we discuss the memory occupation, computational complexity
and transfer speed.

The main difference between the compressive beamformer on the lateral wavenumber
and on the sampling direction is the measurement matrix, which occupies memory and
increases the computational complexity during matrix calculation as well. The measure-
ment matrix P = ΛH can be calculated by sampling matrix Λ and the transfer matrix H.
We define N as the number of elements in the transducer and Ns as the number of time
samples (typically ≥ 1000). In the proposed beamformer, for the compression rate of R,
the dimension of sampling matrix Λ on lateral wavenumber is RN × N. The dimension
of transfer matrix H on the lateral direction in [14] is N × 2N. Then the dimension of
the measurement matrix is RN × 2N. If we apply the compressed sensing on the axial
wavenumber, the dimension of the sampling matrix is RNs× Ns and the dimension of the
transfer matrix is Ns× 2Ns, where R is the compression rate. The transfer matrix H is still
generated by [13,14]. The measurement matrix is RNs× 2Ns in final. Since Ns is usually
many times larger then N, the compressed sensing on the sampling direction will occupy
more memory than that of the lateral wavenumber.

The compressed sensing has been applied on DAS [33] and on Fourier-domain
beamforming on the sampling direction [37]. To compare the computational complex-
ity of different beamformers, we assume that the compressed sensing model applied
on different beamformers is the same. In comparison, the computation complexity of
the DAS proposed by Montaldo et al. is O(N2Ns), and the computation complexity of
beamformer in the wavenumber domain based on Stolt’s f-k migration is decreased to
O(N · Ns log(N · Ns)) [21]. For the Fourier domain beamforming proposed by Chernyakova
et al. [30,31], Fourier series coefficients c[k], which can be generated by the distortion
function qk,m(t, θ), is the key factor to reconstruct the ultrasound image. It must retrieve
O(N(N · Ns · K + Ns · K)) interpolated data to calculate the distortion function and Fourier
series coefficients, where K is the number of Fourier series coefficients, and then perform
O(N · Ns) summations. This method achieves sub-Nyquist frequency-domain beamform-
ing, but increases the computational complexity to O(N2 · Ns · K). Thus, the computation
complexity of beamformer in the wavenumber domain based on Stolt’s f-k migration has
benefits on reducing computational complexity.

To evaluate the telemedicine imaging speed, we obtained the raw RF data from the
Vantage 64 LE system, whose frame rate of data acquisition is 500 frame/s. When data
compression is performed, the data acquisition frame rate will drop to 200 frame/s. Then
raw data is compressed the and is transmitted to PC for final imaging. For the raw data
containing 1000 frames of ultrasound images, the file size is 454.3 MB. The signal processing
steps, including filter, beamforming, and Hilbert transformation are done on the PC. The
time required to acquire one ultrasound image after averaging via telemedicine with DAS
and fkCS method is shown in Figure 11. The time of data acquisition is a little longer
because of compression process, but the time of data transmission is greatly reduced.
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4.3. Limitations and Future Works

Despite the high resolution and contrast compared with DAS, the image quality based
on fkCS is not as good as beamformers based on MV, especially with low compression
rate. It can be seen in Figure 10g that there are artifacts around the bright region when
the compression rate decrease to 30%. Even compound imaging cannot eliminate these
artifacts. In order to further improve the image quality, more research can be conducted
in the compression process and reconstruction algorithm. A good compression process
can not only compress the data load with a lower compression rate, but also improve the
image quality after recovery. In this paper, we chose discrete sinusoidal as the sparse basis
and the Gaussian matrix to construct the sampling matrix. The restoration algorithm is the
re-weight minimum-focal underdetermined system solver algorithm (RM-FOCUSS). There
are many studies in this field which can be combined with plane wave beamforming to
improve the image quality.

In addition, this method is only available with plane wave emitted by linear array
transducer. For the diverge wave emitted by curve array transducer, Stolt’s f-k migration
is not suitable anymore due to the phase shift. Curve array transducers are widely used
in practice, so it makes sense to combine the compressive beamforming with a migration
method suitable for diverge wave.

5. Conclusions

In this paper, we propose a compressive beamforming method in the Fourier domain
based on Stolt’s f-k migration. This framework combines the advantages of beamforming
in the Fourier domain and compressed sensing theory to provide a higher transmission
rate and better image quality during tele-ultrasound imaging, especially for ultrasound
cardiac imaging. Therefore, compared with DAS and beamformers with compressed
sensing in the temporal domain, this framework improves contrast and lateral resolution
of the ultrasound image while reducing data load during transmission and beamforming.
Moreover, the method compresses data load by cutting down the number of transducer
elements, which does not require too much memory for measurement matrix during
sparsity and compression. Our work illustrates that the compressive beamforming on
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lateral wavenumber is a competitive method which is especially useful to increase data
transfer speed and imaging speed.
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