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Abstract: Voice conversion is a process where the essence of a speaker’s identity is seamlessly
transferred to another speaker, all while preserving the content of their speech. This usage is
accomplished using algorithms that blend speech processing techniques, such as speech analysis,
speaker classification, and vocoding. The cutting-edge voice conversion technology is characterized
by deep neural networks that effectively separate a speaker’s voice from their linguistic content. This
article offers a comprehensive overview of the development status of this area of science based on the
current state-of-the-art voice conversion methods.
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1. Introduction

Voice conversion using artificial intelligence is an essential field of science. It is the
science of transforming one voice to sound like another person’s voice without changing
the linguistic content [1]. Voice conversion belongs to the general technical field known
as speech synthesis, which converts text into speech or changes speech properties, such
as voice identity, emotion, or accent [2]. Neural network approaches that were recently
considerably affected the development of numerous voice converter applications [3]. Nowa-
days, most synthesis techniques and algorithms include a deep learning component [4].
Voice conversion using neural networks is a rapidly expanding discipline with significant
breakthroughs. This review aimed to quickly bring readers up to date on the most re-
cent developments in this technology field. This article summarizes the state-of-the-art
neural-network-based voice converter techniques focusing on recent advancements. The
article discusses the most significant technological developments and explains how they
have enhanced the effectiveness and quality of voice conversion. The article also discusses
particular issues that still need to be resolved and offer predictions for the direction of voice
conversion research. Whether the reader is a researcher, a practitioner, or simply someone
interested in this topic, this article provides a comprehensive introduction to the latest
advancements in voice conversion using neural networks.

Currently, a typical voice conversion procedure consists of a part analyzing and decom-
posing the voice to extract individual components/characteristics and a piece involving
the mapping/combining of the extracted elements via reconstructions using a vocoder [5].

The workflow of analysis–mapping–reconstruction also changes as a result of deep
learning approaches. The mapping must successfully obtain an appropriate intermediate
representation of the speech. Embedding in deep understanding provides a new way of
deriving indirect expression, for example, latent code for linguistic content and speaker
embedding for speaker identity. It also makes it easier to separate the speaker from the
scope of the speech [6].

This study aimed to break down the conversion into its components and present the
current testing status in each area. These additional components are as follows (also shown
in Figure 1):
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• Speaker identity extraction—this involves extracting information about the speaker’s
identity from the speech.

• Linguistic content extraction—this involves extracting from statements or appropri-
ately processing other data (e.g., text) to obtain the most time-dependent information
in the output. These include information about the content of speech, rhythm, and
intonation.

• Encoder—this is responsible for the integration and appropriate representation of the
above extractions. As the information fed into the encoder and the information ob-
tained from the extraction of linguistic content latent embeddings are time-dependent,
these two tasks are often combined.

• Decoder/vocoder—these are responsible for processing the data obtained from the
encoder to produce an appropriately manipulated soundtrack in the output. The input
is frequently a spectrogram. However, sometimes, to reduce the number of models
or unnecessary intermediate representations [7], the encoder is combined with the
vocoder, and there is no intermediate representation between them.
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Figure 1. Typical voice conversion pipeline. The input is most often a waveform or spectrogram.
A distortion-free new soundtrack is produced by extracting features from this data and combining
them in the encoder before further processing.

Some of the presented algorithms represent only a part of the task, e.g., proper sepa-
ration of sound components; however, these are described because of their potential use
in the functions mentioned earlier. Furthermore, to maximize the timeliness of the review,
much of the algorithms presented will be from recent work.

The breakdown shown above is for illustrative purposes; it is not as readily apparent
in every algorithm.

Developers recently created an increasing number of zero-shot voice conversion
algorithms. An unsupervised zero-shot voice conversion (VC) aims to change the speaker’s
characteristics in an utterance to match an unseen target speaker without using parallel
training data.

2. Voice Conversion Process

To attain high performance in voice conversion, the models must undergo pre-training
with vast amounts of data, resulting in large models that may be inefficient to use. Mingjie
Chen et al. [8] presented a model that is significantly smaller and, therefore, faster to process
while still providing the same performance. For this purpose, dynamic GAN-VC (DYGAN-
VC) uses a non-autoregressive structure and vector quantized embeddings obtained from a
VQWav2vec [9] model. In addition, they introduced dynamic convolution [10] to improve
the modeling of speech content while requiring the use of a small number of parameters.

In [7], authors proposed an any-to-any voice conversion pipeline. They offered an ap-
proach that uses automated speech recognition (ASR), pitch tracking, and SOTA functions
of a modified vocoder.



Appl. Sci. 2023, 13, 3100 3 of 13

Two-stage pipelines using low-level indirect speech representations, such as mel
spectrograms, dominated recent advances in neural voice processing tests. The authors
in [11] noted that a data-driven approach to learning implicit representations could not
fully realize its potential due to the limitations of predetermined characteristics. They
proposed WavThruVec, which is a two-stage architecture that solves the bottleneck using
multidimensional embeddings as an intermediate representation of speech.

A variational autoencoder (VAE) [12] is a neural network that separates speech into two
parts: speaker identity and language content. It then uses this information to make a target
speaker sound like the source speaker. The VAE concatenates the target speaker’s identity
embedding and the source speaker’s content embedding to accomplish the separation and
deliver the desired sentence. The researchers in [13] found that adding a self-observation
layer to the VAE decoder could improve the accuracy of the speaker classification in voice
transformation. This layer uses non-local information and hides the source speaker’s
identity to create more accurate transformed speech.

Similarly, in [14], zero-shot voice conversion was performed by inserting any speaker
embedding and content obtained from the encoders into the VAE decoder. In addition,
they used a learning strategy by augmenting on-the-fly data during training to make the
learned representation resistant to interference.

The authors of [15] proposed a voice conversion method using a general adversarial
network (GAN) called StarGAN v2. The many-to-many conversion model does not need
large data sets. It is not, however, designed for zero-shot VC. The style encoder used is
capable of transferring not only the characteristics of the speech read but also the emotions
to another voice. The presented model is fully convolutional and, combined with a suitable
vocoder, can operate in real-time conversion.

The developers of the FreeVC algorithm [16] presented a compelling approach using
GANs, which is an extension of the text-to-speech method VITS [17]. This method also
implements an extended conditional VAE and other innovative mechanisms, such as a
monotonic alignment search using normalizing flows [16,17].

2.1. Speaker Identity Extraction

The fundamental aspect of voice conversion is how the model is informed about
a speaker’s voice characteristics. The model uses these voice characteristics during the
conversion process to produce the appropriate timbre in the speech. A modern method is
the use of the D-vector [4]. The mentioned article presents the application of deep neural
networks for verification. During the training stage, the model calibrates itself to classify
speakers correctly. The trained network extracts speaker-specific characteristics from the
last hidden layer when recording a speaker’s speech. The average of these characteristics,
or the D-vector, is taken as the speaker model. At the evaluation, the network extracts
a D-vector for each voice and compares it with the speaker model to verify the speaker.
This algorithm obtained excellent results for the verification task; however, the zero-shot
conversion uses speakers whose speech samples are not present in the training set. When
this happens, using a more generalized characteristics map is better [18]. The authors
proposed a generalized end-to-end loss for speaker verification, which achieved state-
of-the-art results regarding speaker verification. The researchers applied the proposed
system in several VC and voice synthesis systems, including SV2TTS [19], AutoVC [20],
and DYGAN-VC [9]. GE2E employs a cost function that moves speech representation
toward the centroid of speech by the same speaker and away from the centroid of speech
by a different speaker.

For better generalization and better placement of samples in embedded space, algo-
rithm developers also use a normal distribution. The output of the network produces an
average and an expected value. An example is then taken from such a distribution to
represent information about the speaker’s identity. To increase the similarity to the normal
distribution, an additional Kullback–Leibler cost function is then used, which is also used
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in the variational auto-encoders described later [12]. A speaker-encoder structure was used
in HiFi-VC [7].

Conventional speaker embedding averages frame-level characteristics over all frames
in a single speech. Some algorithms, such as WavThruVec [11], use a self-attention mecha-
nism to give different weights to different structures and generate weighted averages and
standard deviations. Self-attention, which is sometimes referred to as intra-observation,
is an attention mechanism that refers to the different positions of a single sequence to
compute its representation [21]. This mechanism captures long-term changes in speaker
characteristics more effectively. WavThruVec uses the ECAPA-TDNN architecture as the
speaker encoder [22]. Despite the considerable difference in the final analysis of speaker
similarity between the use of seen-speech and zero-shot conversions, using a significant
amount of training data led to an increased generalization of the speaker feature extractor.

Long et al. [13] improved the efficiency of speaker style transfer to the VAE in voice
conversion by adding a self-attention mechanism. They also trained the model using the
group lasso division method (RGSM [23]) to capture speaker information’s global and
interdependent nature over a significant period and mitigate overfitting [23]. However, it is
essential to note that the authors did not create a separate representation of the speaker that
is added during the model training. Instead, they jointly separated it from the linguistic
content in the VAE. The decoder separates the content embedding from the speaker latent
space by taking a content embedding from the distribution of a single speech and a speaker
embedding from the average distribution of all samples of voices from the same speaker
group.

The D-DSVAE developers also separate speaker traits from track and speech traits. [14].
In this case, to correctly separate the information, the authors tested different-sized weights
with the Kulbak–Leibner cost function for the speaker features and the speech. In addition,
they assumed that the speaker characteristics were not time-dependent, and thus, they used
average pooling on them by suggesting a suitably modified 1D InstanceNorm method [24].

In addition to VAE, adversarial networks, namely, GANs, are commonly used in
voice conversion. The developers of StarGANv2-VC [15] extracted information about the
speaker’s speech style and identity from the mel spectrogram. The system removes the
speaker’s characteristics by adding a cost function from the discriminator, which classifies
a sound’s authenticity and speaker identity. Furthermore, to induce the generator to create
samples with different styles, a cost function calculates the mean absolute error between
examples of different styles and maximizes it. The style encoder minimizes the difference
between the style obtained from the actual sample and the style generated by the entire
pipeline.

FreeVC [17] tested the performance of two speaker feature extraction methods: pre-
trained and non-pre-trained. The developers of the first type of method trained them on
a large set of speakers, similar to those using GE2E. However, they utilized a different
model instead, namely, BNE-Seq2seqMoL [25]. The authors noted that implementing
the pre-trained method in this algorithm did not produce significantly better results than
training the speaker encoder with the other parts from scratch. These results indicate that
if the linguistic representation is extracted correctly, the speaker encoder learns the missing
parts describing the identity.

2.2. Linguistic Content Extraction

The second component of conversion is how the linguistic information of the speech,
i.e., the content, and the phonemes, is communicated to the encoder. Rhythm, intonation,
and emotion can be conveyed through the speaker encoder and other encoders, as well as
omitted or added. However, isolating the content of the speech from the track is the most
crucial part.

The developers of DYGAN-VC [8] used a VQWav2vec model [9] in their work, the
main aim of which was to present a lighter voice conversion model while maintaining
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SOTA results for linguistic information extraction. The generator receives the data extracted
from the soundtrack and the pre-trained speaker embedding with its help.

Ref. [7] noted that pretreated ASR models extracted little of the speaker’s characteris-
tics from the soundtrack. Furthermore, once trained, they can serve as a cost function to
minimize the loss of linguistic data. This application’s downside is that it does not convey
rhythmic or tonal information. The team utilized an additional F0 fundamental frequency
extractor to address this problem. The ASR and F0 encoder is similar to that used in TTS
Skins [26], except F0 is additionally preprocessed using a network that is almost identical
to BNE-Seq2seqMoL [25]. During training, the authors only modified the F0 weights of the
encoder and the speaker encoder mentioned above. The developers used a conformer [27]
ASR model pre-trained using NVIDIA in the linguistic encoder.

The pre-trained model was also used in WavThruVec [11]. Although the work itself
mainly refers to voice synthesis, it also engages with conversion in its operation. Based on
transformers, the applied pre-trained speech recognition model Wav2vec 2.0 [28] performs
well as a characteristic linguistic extractor. Because these latent activations derived from
this model provide high-level linguistic characteristics, they are more resistant to noise. The
decoder can be trained on large, non-transcribed audio corpora, as Wav2vec 2.0 embeddings
are time-aligned and speaker-independent.

Using VAE, Long et al. [13] and D-DSVAE [14] carried out the separation of linguistic
characteristics in the same way they separated speaker characteristics, with the exception
that they treated these characteristics as an individual for each audio track. They did
not introduce grouping or averaging for them. However, they required suitably adjusted
weights for the cost function during training.

In StarGANv2-VC [15], the mel spectrogram containing the speech content is fed
directly to the encoder/generator. The only additional attribute extracted from the sound
beyond the styles is the fundamental frequency extracted using the pre-trained JDC net-
work [29].

Extracting linguistic information in FreeVC [16] is more complex, as it varies based
on whether the model is in use during the training or inference process. The developers
used the prior pre-trained WavLM model [30] to extract linguistic features, which were
then fed to the bottleneck to reduce speaker information and noise. In addition, the authors
implemented a mechanism to change the dimension of the input data to degrade individual
speaker features in the spectrogram. This implementation reduces the need for fine-tuning
the dimensions of the bottleneck in the linguistic extractor. The authors then projected the
latent representation into the mean and variance of the distribution. The normalization
flow, conditioned on the speaker embedding, was adapted to improve the complexity of the
prior distribution. VITS [17] envisions it as consisting of multiple affine coupling layers [31]
designed to preserve volume with a Jacobian determinant of 1.

2.3. Generation

As the importance of the intermediate representation obtained from the encoder
processing the audio tracks is negligible in the VC pipeline, these issues are often combined.

StarGANv2-VC [15], which is based on GANs, uses a single discriminator and genera-
tor to generate audio tracks with speaker-specific style vectors derived from a style encoder.
The encoder processes the soundtrack in the generator, and the JDC network mentioned
in the previous section extracts the fundamental frequency. The characteristics obtained
at the output are then fed to a decoder, to which style information is also added using
AdaIN [32]. The result of the decoder, and thus, the generator, is a mel spectrogram with an
altered style. The discriminator, on the other hand, consists of two networks. In addition to
the classic one used in GANs (the real/fake classifier), an additional model is responsible
for speaker classification. A pre-trained Parallel WaveGAN was used to convert the mel
spectrogram to a wave [33].

DYGAN-VC [8], similar to StarGANv2-VC based on its assumptions on GAN, uses
the generator and discriminator models. In addition, the authors compared two ways
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of cross-adapting data obtained from VQWav2vec and the speaker encoder. These were
AdaIN [32] (also used in StarGANv2-VC) and WadaIN [34]. Ultimately, they chose to use
the latter because it indicated the creation of better-quality sound. As mentioned earlier,
the generator structure includes dynamic convolution and the WadaIN. The characteristics
obtained from the VQWav2vec [9] and speaker characteristics obtained from the speaker
encoder are applied to the generator, while they are only used to the WAdaIN block. In
turn, a spectrogram is received at the output. This speech is then fed to a discriminator,
which decides whether it is false or true. The discriminator uses the same architecture as
StarGANv2-VC [15], and Parallel WaveGAN [33] was used as the vocoder.

Authors of HiFi-VC modified the commonly used HiFi-GAN vocoder [35]. As HiFi-
GAN is a separate model responsible for converting a mel spectrogram into a waveform,
the developers changed it to receive characteristics obtained from speaker characteristics
extraction and linguistic characteristics as input. The authors omitted the intermediate
representation and only presented the mel spectrogram at the encoder inputs. In addition,
the speaker characteristics are fed directly into the residual blocks of the modified HiFi-
GAN generator. The VC pipeline is considerably simplified by this approach, and it does
not require fine-tuning the vocoder once the decoder has been trained.

Authors of WavThruVec [11] used a GAN model and cost functions based on HiFi-
GAN as the decoder responsible for combining and processing linguistic and speaker
information.

The authors of D-DSVAE [14] used a modified model from AutoVC for the encoder
responsible for data separation and the decoder. During training, they operated with
one encoder and a single audio track. Still, during conversion, they used two encoders
with two audio tracks: one for extracting linguistic data and the other for identity. Then,
they combined these characteristics and fed them to the decoder, which had the task of
reconstructing the spectrogram at the output. The vocoder used in this work, which was
responsible for converting the spectrogram into a wave, was WaveNet [36], but the authors
noted that it only served for inference and was not used during training. The results of the
modified sound were strongly dependent on the weights used during training.

In the case of Long et al. [13], although the training principle was very similar to
that of the D-DSVAE, as one encoder was used for training and two for conversion, the
models used were different, and the mel frequency cepstral coefficients were used as input
and output data. In addition, the decoder structure implemented an attention mechanism
responsible for catching long-range dependency. A WaveNet was used as a vocoder as in
D-DSVAE.

FreeVC [16] includes a posterior encoder, decoder, and discriminator in its architecture
in addition to the speaker encoder and prior encoder described previously. The posterior
encoder is used only during training to train the latent space. The prior distribution
mentioned earlier in the linguistic feature extraction framework must be close to the
posterior distribution conditioned by the linear spectrogram. This work was done to
correctly estimate the match between the content of the utterance and the target whose
voice is synthesized. The decoder receives the output of the posterior encoder or prior
encoder, depending on whether the model is trained or not, respectively. The decoder and
discriminator used models of the HiFi-GAN algorithm [35].

2.4. Vocoders

Vocoders are tools used to convert a speech spectrogram into sound waves. They are
crucial to the voice conversion process, as they enable the generation of the appropriate
sound based on the spectrogram. Table 1 compares the described methods in terms of
the solutions used. The described methods use Parallel WaveGAN, WaveNet [36], and
HiFi-GAN [35].
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Table 1. Models used in the described VC works. Abbreviations: LN—layer normalization, RC—
residual connections, and LSTM—long short-term memory.

Paper Speaker Identity
Extraction Linguistic Content Extraction Generation Vocoder

[8] GE2E [18] VQWav2vec features [9]
Dynamic convolutions [10]

WadaIN [34]
LN + RC as in [21]

Parallel WaveGAN [33]

[7] 5-layer residual FC similar
to [37]

Linguistic encoder:
TTS Skins [26]
Conformer [27]

F0 encoder:
BNE-Seq2seqMoL [25]

Modified HiFi-GAN [35] Modified HiFi-GAN [35]

[11] ECAPA-TDNN [22] Wav2vec [28] Vec2wav model based on
HiFi-GAN [35]

Vec2wav model based on
HiFi-GAN [35]

[13] β-VAE [38]—average
distribution

β-VAE [38]—individual
distribution for each audio

β-VAE [38]
RGSM [23]

Attention [21]
Post-Net as in [39]

WaveNet [36]

[14]
Modified DSVAE [40]—

time-invariant
disentanglement

Modified DSVAE
[40]—time-variant
disentanglement

Modified AutoVC Decoder
[20]

WaveNet [36]
HiFi-GAN [35]

[15] Mapping network/style
encoder

Encoder +
F0 Encoder:

JDC network [29]

Encoder output + F0
output + style injected by

AdaIN [32]
Parallel WaveGAN [33]

[16] LSTM based on [25]

Prior encoder:
WavLM [30]

bottleneck extractor
posterior encoder based on

flow used only during training

HiFi-GAN [35] HiFi-GAN [35]

WaveNet is a neural network architecture that DeepMind proposed in 2016. WaveNet
is a generative model that can generate audio data based on previous predictions. The
authors proposed a model architecture based on PixelCNN [41], which is applied to images.
WaveNet is very effective at generating natural voice sounds because it relies on dilated
convolutions, which allow for modeling a wide range of information in the input data.
Dilated convolutions previously used in signal processing were used in various contexts,
e.g., signal processing [42,43] and image segmentation [44,45]. In addition, the authors
noted that using gated activation units in PixelCNN works better in modeling audio signals
than rectified linear activation functions [46]. Authors also used residual connections [47]
to accelerate training for deeper models.

Parallel WaveGAN is a GAN-based generative model that was proposed in 2020.
WaveGAN is specifically designed to generate audio data, such as nature sounds or music.
The model uses GAN to develop an artificial audio signal. WaveGAN models are very
effective at generating audio data that is highly realistic and natural. The developers used
two models: a generator and a discriminator typically used for GANs [48]. As part of the
generator, they used a modified WaveNet, but the authors used non-causal convolutions in-
stead of causal convolutions; the input is random noise drawn from a Gaussian distribution,
and the model is non-autoregressive at both the training and inference steps. In addition, to
increase the stability, they introduced multi-resolution STFT auxiliary loss [49,50]. Combin-
ing multiple STFT losses with different analysis parameters helps the generator to obtain
the time-frequency characteristics of speech [51].

As research showed [52], the best performance in vocoder tasks among the presented
three was achieved by the third model: the HiFi-GAN. The authors of the generator
developed a proprietary model using multi-receptive field fusion to work in parallel on
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patterns of different lengths. They increased the receptive field to counter problems such
as identifying long-term dependencies, according to [53]. In addition, they focused on the
issue of identifying diverse periodic patterns. For this purpose, they used two discriminator
models: the author’s multi-period discriminator and the multi-scale discriminator proposed
in MelGAN [54].

2.5. Datasets

It is necessary to use the best possible datasets to achieve good results. For attention-
based algorithms, a large dataset is essential.

The most commonly selected [7,11,13,14,16] dataset for training and testing in the
described works was the VCTK [55]. Some results [11,14] supplemented it with datasets
such as Hi-Fi TTS [56], LibriSpeech [57], CommonVoice [58], AVSpeech [59], or TIMIT [60].
Only [8] used a different dataset, the VCC2020 [61], partly because the work was a com-
parison with another model that used this dataset. In [15], to demonstrate the conversion
ability of stylized speech, a model for additional datasets—JVS [62] and ESD [63]—was
trained separately.

2.6. Model Inputs

Most VC studies [7,8,14,16] used logarithmic mel spectrograms as the soundtrack
input. The same was true for [11] as an input to the speaker encoder. However, for the
pre-trained Wav2vec, the authors gave a wave as the input. In [7], the authors gave the F0
fundamental frequency to extract information such as tonality. In [13], the MFCCs (mel
frequency cepstral coefficients) were used instead of the mel spectrogram.

2.7. Evaluation Methods

Two evaluation methods are used in voice conversion: objective and subjective. In
general, objective evaluation involves calculating some measure of difference or correlation
between the outcome and the target. The works used the WER [7,8,16] (word error rate)
and CER [7,8,15,16] (character error rate) to evaluate linguistic consistency. The authors
of [8] also used mel-cepstral distortion (MCD) [8] to measure spectral changes during
conversion. In [7,16], the PCC (Pearson correlation coefficient) was used to calculate
prosody consistency. In [13], the effectiveness of speaker ratings shows the influence
of attention mechanisms on this factor. A classification accuracy (CLS) metric was also
introduced in [15]. The authors of [14] used the EER (equal error rate) as a metric for the
quality of data separation. In addition, [7,8,11,14–16] provided a mean opinion score (MOS)
for naturalness and similarity. Some works [8,13,15] used MOSnet, which simulated MOS
feedback. Table 2 shows the resulting MOS values of the described algorithms.

Table 2. Information about the described VC works. Abbreviations: CER—character error rate,
CLS—classification accuracy, EER—equal error rate, MCD—mel-cepstral distortion, MOS—mean
opinion score, PCC—Pearson correlation coefficient, WER—word error rate., M-M—many-to-many,
and A-A—any-to-any, 3—exist, 7—no exist.

Paper Evaluations Methods
MOS
M-M

Quality

MOS
M-M

Similarity

MOS
A-A

Quality

MOS
A-A

Similarity
Dataset Public

Code/Demo

[8] MCD/MOS/CER/
WER/MOSNet [64] 3.81 3.87 - - VCC2020 [61] 3 1/3 2

[7] MOS/WER/CER/PCC 4.08 4.08 4.03 3.02 VCTK [55] 3 3

[11] MOS 4.09 - - -

VCTK [55],
Hi-Fi TTS [56]

LibriSpeech [57],
CommonVoice [58],

AVSpeech [59]

7/3 4



Appl. Sci. 2023, 13, 3100 9 of 13

Table 2. Cont.

Paper Evaluations Methods
MOS
M-M

Quality

MOS
M-M

Similarity

MOS
A-A

Quality

MOS
A-A

Similarity
Dataset Public

Code/Demo

[13]
MOSNet [64], average
speaker classification

accuracy
3.74 - 3.58 - VCTK [55] 7/7

WaveNet [14]
EER/MOS

3.40 3.56 3.22 3.54
VCTK [55], TIMIT [60] 7/3 5

HiFi-GAN [65] 3.76 3.83 3.65 3.89

[15] MOS/MOSNet
[64]/CLS/CER 4.09 3.86 - - VCTK [55], JVS [62],

ESD [63], 3 6/3 7

[16] MOS/WER/CER/PCC 4.01 3.80 4.06 2.83 VCTK [55],
LibriTTS [66] 3 8/3 9

1 https://github.com/mingjiechen/dyganvc (accessed on 29 January 2023), 2 https://mingjiechen.github.io/
dygan-vc/ (accessed on 29 January 2023), 3 https://github.com/tinkoff-ai/hifi_vc (accessed on 29 January 2023),
4 https://charactr-platform.github.io/WavThruVec/, 5 https://jlian2.github.io/Robust-Voice-Style-Transfer/
(accessed on 29 January 2023), 6 https://github.com/yl4579/StarGANv2-VC (accessed on 29 January 2023), 7 https:
//starganv2-vc.github.io/ (accessed on 29 January 2023), 8 https://github.com/OlaWod/FreeVC (accessed on
29 January 2023), 9 https://olawod.github.io/FreeVC-demo/ (accessed on 29 January 2023).

3. Challenges

Although neural networks themselves adapt very well to new datasets, there are other
problems that the presented algorithms solve or, in contrast, generate.

One problem may be the lack of sufficient training data. Algorithms of deep neural
networks need a large amount of training data to train neural networks correctly, and in
the case of voice conversion, even more data is usually needed. Algorithm developers are
looking for solutions to disentangle time-variant features from these time-invariant ones to
swap some of these features. This approach opens access to databases that do not require
advanced labeling. Thus, developers mostly use a single training database (VCTK [55]),
which allows for a good performance comparison in a constrained environment. Concern-
ing the presented applications, algorithms using VAE require fewer training data than
those based on GANs or attentions. The authors also see the importance of the training
data in using an external pre-trained vocoder. Developers do not train it from scratch for
the same dataset as the converter but instead use an already appropriately generalized
model.

Another problem is the complexity of human speech and its appropriate resolution.
VAE-based algorithms often require careful adjustment of the bottleneck, which will pre-
vent redundant information from being transferred to the generated signal, and thus,
degrading it. GANs themselves, on the other hand, are not always able to build a suffi-
ciently generalized distribution to allow for the generation of samples outside the training
data area. This problem is evident, for example, in StarGANv2-VC [15], which does not
even include any-to-any covariance in its coverage, or even in FreeVC [16], where one can
see the poor performance of the similarity MOS for out-of-sample data. The developers
of FreeVC [16] and HiFi-VC [7] implemented a combination of these models, obtaining
excellent results in many-to-many conversion but worse results in SMOS for any-to-any
conversion.

One standard procedure for developing a conversion pipeline is for developers to use
pre-trained speaker encoders. This action can generate problems related to the inadequate
quality of a specific component contributing to a decrease in the entire system’s performance.
However, algorithms are emerging, such as the input-degrading FreeVC spectrogram [16]
or the fully VAE-based [11], which integrate speaker feature extractor training into a single
training loop jointly with linguistic feature extraction, which solves this problem to some
extent. In addition, using advanced models, which are most often trained for other purposes

https://github.com/mingjiechen/dyganvc
https://mingjiechen.github.io/dygan-vc/
https://mingjiechen.github.io/dygan-vc/
https://github.com/tinkoff-ai/hifi_vc
https://charactr-platform.github.io/WavThruVec/
https://jlian2.github.io/Robust-Voice-Style-Transfer/
https://github.com/yl4579/StarGANv2-VC
https://starganv2-vc.github.io/
https://starganv2-vc.github.io/
https://github.com/OlaWod/FreeVC
https://olawod.github.io/FreeVC-demo/
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in the model, can slow down the algorithm’s performance during use and training. Among
others, one such algorithm, Wav2vec, was used in [11].

Except for [11], the algorithms presented do not have built-in mechanisms that improve
performance with access to more data during use. Working on algorithms of this type can
increase the quality of the generated samples.

4. Conclusions

In summary, voice conversion is a promising, fast-growing research area that has the
potential to improve the performance of voice conversion applications by better represent-
ing human speech. While some challenges still need to be overcome, the presented models
have shown great potential in achieving high conversion efficiency levels and naturalness
in converted voices. These methods have potential applications in various fields, such
as entertainment, medicine, teaching, and the military industry. The integration of voice
conversion technology into these fields can bring significant benefits, such as the creation
of new voices for virtual characters in video games and animated movies and the ability to
synthesize speech for people with speech impairments. Voice conversion is an exciting area
of research that will continue to evolve and improve. The description of the algorithms
in the second part makes it possible to look at the problem of voice conversion from the
authors’ perspectives of various algorithms. The juxtaposition of their performance results
and the problems they face allows for a global view of the current state of the art. The
presented article certainly provides a better understanding of the current state of the art in
voice conversion using deep learning techniques, and thus, be a good starting point for
developing other or similar techniques.

5. Future Directions

The analysis of the presented methods revealed several solutions that are superior to
others in specific ways. This report highlights some favorable sub-solutions and suggests
selecting the most suitable ones to develop a technique that achieves a high conversion
efficiency. Future work includes plans for implementing such a method. Moreover, the
information in this report about the datasets used and the evaluation methods will establish
an appropriate benchmark for testing the effectiveness of future algorithms.

Although the problem of voice conversion has been faced by algorithm developers for
a long time, some issues still require research. Here are some of them:

• The complex individual nature of human speech voice conversion is a task of great
complexity, as it requires an understanding of various aspects of sound, such as tone,
timbre, intonation, and tempo.

• Real-time performance requirements—in some cases, voice conversion must be done
in real time, meaning that the algorithm must run fast enough for the user to hear the
result in real time.

• Satisfactory results—the resulting quality of voice conversion can be crucial, especially
for commercial applications. Algorithm developers face the challenge of ensuring that
the results are good enough to be helpful to users.

• The flexibility of operation—the algorithm’s performance should adapt to our data.
The final product should also adapt in the case of higher-quality data. Furthermore, if
users have different lengths of statements, the algorithm should work smoothly.

• Developing appropriate metrics for evaluating performance—in order to put voice
conversion algorithms into practice, it is necessary to determine how well they work.
Therefore, algorithm developers must create appropriate quality assessment metrics
that consider various aspects of voice conversion, such as speech fluency, naturalness,
and intelligibility.

Author Contributions: Investigation, T.W.; methodology, T.W. and Z.P.; resources, T.W.; supervision,
Z.P.; validation, Z.P.; writing—original draft, T.W. All authors have read and agreed to the published
version of the manuscript.
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