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Abstract: Although breast cancer, with easy recurrence and high mortality, has become one of the
leading causes of cancer death in women, early and accurate diagnosis of breast cancer can effectively
increase the likelihood of a cure. Therefore, it is particularly important to improve the accuracy of
early diagnosis of breast cancer. However, conventional early diagnosis relies on human experience
and has a low accuracy rate. Therefore, many researchers have proposed various machine learning
methods to improve the accuracy and efficiency of prediction. Most of the existing studies around
breast cancer classification adopt a single algorithm to fit breast cancer data but ignore the applicability
of different breast cancer data features to the model. In this paper, we adopt machine algorithms to
strip the features of machine learning methods from the rest of the features and attempt to enhance
the model effect by designing deep learning model structures to find the hidden patterns in the rest
of the features. In addition, due to strict medical data privacy requirements and high collection
difficulty and cost, the model designed in this paper will be trained on a small number of samples.
As a result, we attempt to find a minimization model for a breast cancer classification algorithm
that features both low cost and high efficiency. At the same time, the deep learning model is further
designed to complement the original model when it is possible to introduce complex data indicators.
Experimental values show that the design model in this paper performs best not only under limited
data and limited indicators but also under limited data complex indicators, demonstrating the
effectiveness of the approach of mixed comparison and feature selection of multiple classification
algorithms. In summary, the fusion model designed and implemented in this paper performs well in
the experiments, and the accuracy of the model test reaches 98.3%.

Keywords: breast cancer classification algorithms; fusing machine learning; deep learning

1. Introduction

Since the middle and end of the 20th century, the global incidence of breast cancer has
been rising year by year. According to cancer statistics from the World Health Organization,
breast cancer is currently the most life-threatening disease for women, with a prevalence
rate of 12.5% in some developed countries. In addition, studies have shown that it is the
most diagnosed type of cancer in the world [1]. Although the breast cancer prevalence
rate remains low in China, the overall situation is still not optimistic, since the incidence
rate and mortality rate of breast cancer among women in China are both higher than the
world standard, and worse still, the incidence of breast cancer is increasingly prevalent
among the younger population. GLOBOCAN is a significant project of the International
Agency for Research on Cancer (IARC), which provides data on incidence, mortality, and
cancer trends for 36 types of cancer in 185 countries/regions worldwide. It estimates that
the most prevalent cancer among Chinese women is cancer in the breast. As early as
eight years ago, in 2009, the Bureau of Disease Control and Prevention of the Ministry
of Health of China, in collaboration with the Cancer Center, conducted a detailed data
analysis of breast cancer data, suggesting that in regions within China where data have
been documented, the incidence rate of breast cancer has jumped to number one, making
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it the most serious malignancy impeding women’s health. Breast cancer has become the
fastest growing cancer in the last decade, with a 37.8% jump in terms of incidence rate
over the last decade. Therefore, breast cancer is no longer a health problem for individual
patients but rather has invariably become a major public health problem.

Traditionally, a breast cancer tumor is diagnosed by observing the presence of the
tumor, the degree of cancer, metastasis location, etc. in a tissue biopsy and pathology
section. However, the amount of such data is basically in the order of 10 billion pixels.
Therefore, if the number of patients exceeds capacity, the workload of medical staff could
become extremely high. In addition, the entire diagnosis process of breast cancer is not only
limited by medical levels in different regions but is also easily interfered by the personal,
subjective factors of doctors. As science and technology advances, medical data are no
longer simply patient information, examination records, etc. Additionally, the data format
has also changed radically and morphed into a mixture of video and voice, or a mixture
of images and text. Such a complex data model has also become unique to healthcare
data. On the one hand, complex data increase the possibility of finding potential causes;
on the other hand, however, they increase the cost of medical detection and raise the
complexity of algorithms, which in turn makes it difficult to reach the right balance in
a limited sample. Under this premise, this paper designs feature selection methods to
find the important parts of complex data to construct a minimal medical aid diagnosis
model. Furthermore, a well-designed deep learning model is introduced to further tune
the minimal medical diagnosis model under the condition of sufficient resources. From the
analysis of the experimental results, under limited conditions, the algorithm designed in
this paper achieves the optimal effect, the value of the model prediction result (f1_score)
reaches 98.24%, the value of recall reaches 98.23%, and the accuracy rate reaches 98.23%.
Overall, the overall effect of the model is better than other individual algorithmic models,
indicating that in the new development period, it is crucial to apply machine learning
techniques in the medical-data-mining segment.

The effective use of medical data requires fast and efficient mathematical methods.
The current machine learning and artificial intelligence technologies have advanced dra-
matically [2]. In the context of the rapid and high development of computer technology,
both technologies have been essentially advanced and widely adopted compared to more
than a decade ago and have affected all aspects of national society, including national
security and people’s daily lives. However, in general, there is still an urgent need for
further development and progress of medical data processing methods and artificial intelli-
gence technologies to improve the utilization of massive data in various aspects, integrate
information resources, and facilitate more automatic and efficient artificial intelligence. The
ultimate goal is to greatly contribute to the progress of national security, people’s lives, and
health care. In the process of sampling data from datasets, there are certain errors in the
sampling data given the inaccuracy of the experimental instruments, improper procedure
management of operators, etc. In the process of measuring the parameters in the samples,
individual characteristics of certain sample parameters are not universal. Therefore, we
would like to, through an experiment, demonstrate that, under the premise of data screen-
ing, it is possible to achieve similar results as by using more data while using parts of the
sample data. Such a method not only reduces the computational volume and speeds up
the computation, but also paves the way for a further saving of medical resources in the
future and for further optimizing the accuracy of the paramedical model by combining the
advantages of different data models when more indicators are available.

Medical data is inherently private, and access to it is often costly and requires so-
phisticated instruments and specialized medical personnel. For paramedical tools that
require large amounts of medical data, it is of great interest to achieve essentially the same
performance metrics with a very small number of samples compared to the original data.
This paper focuses on how to improve the model structure so that the model can still
perform very well with extremely small amounts of data. At the same time, the acquisition
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of any medical metric parameter requires a series of diagnostic methods for judgment, and
therefore poses a number of problems:

a) Increased medical costs. Complex diagnostic methods require more testing costs
and experimental costs to determine whether a patient has a disease, which not only
increases medical costs for the patient, but also places a huge burden on the patient’s
body and mind.

b) Increased likelihood of error. The testing process of every medical indicator may pose
a risk of error because of unpredictable problems in many aspects such as equipment,
as well as in medical personnel.

Therefore, reducing the reliance on the number of indicators without reducing the
accuracy of the model is highly relevant for breast cancer classification studies. Olfa Hrizi [3]
proposes an optimized machine learning-based model that extracts optimal texture features
from TB-related images (TB means tuberculosis) and selects the hyper-parameters of the
classifiers. However, reducing the reliance on the number of indicators does not mean that
a larger number of indicators is less meaningful for paramedicine, but rather that minimal
paramedicine, which is the goal of this paper, can be achieved if more desirable results can
be achieved with a small number of indicators. In the future, if more detection indicators
are available, the judgment effect of the model can be further improved.

Multidirectional diagnosis of breast cancer generates comprehensive and complex
data, and the adoption of complex data during diagnosis may lead to two potential effects.
On the one hand, the complex data contribute differently to the judgment of the results.
While some data can achieve better results using a certain method, other data might not
have the same effect using the same method. In this paper, feature selection mechanism
is introduced based on this, and different features are fitted using different methods to
achieve the best results. On the other hand, the processing of complex data will lead to a
geometric increase in the number of model parameters and computational requirements, in
which case a small amount of data will easily lead to overfitting of the model. Therefore,
this paper designs a feature-splitting mechanism to solve this problem, which proves
quite effective as a result. Starting from the techniques applied to breast cancer data
determination, machine learning (the method of manually designing feature processing)
proves to integrate experience into the model quite well. Yet, for some features where the
manual feature-processing approach is not effective, it is important to find the underlying
connection of data. In this paper, we adopt a form of convolutional neural network to find
this part of the potential connection and attempt to improve the overall performance of the
model by combining experience and potential association through model combination.

From the aspect of the model parameter space, fewer numbers of parameters can
reduce the decision difficulty of the model. In the case of a larger amount of feature data,
the selectable space of each feature will also increase, while the volume of data in the
sample will reduce. As a result, it is difficult for the model to learn all the information. In
addition, a small relative sample means a sparse feature space, making it difficult for the
model to judge sparse data and not easy to fit.

This paper attempts to improve the model, as well as to perform feature selection on
the premise of small samples, to make it possible to adopt as few medical indicators as
possible to make complementary judgments, and to be able to maintain the original overall
medical care level. In addition, to deal with the remaining medical indicators, the paper
attempts to further optimize the judgment accuracy by finding potential connections in the
data via deep learning methods.

2. Related Work

There are various ways to classify breast cancer; for example, microarray technol-
ogy [4] analyzes the expression level of thousands of genes simultaneously. Among the
available tools for diagnosing cancer, microarray technology has been proven to be effective:
classification of triple-negative and non-triple-negative breast cancer patients using a ma-
chine learning (ML) approach using gene expression data [5]. In 2020, Elisabetta Rapiti [6]
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proposed to determine whether the clustering of breast cancer survival is related to patient
and tumor characteristics by focusing on histopathological features such as tumor size,
lymph node status, etc. The relationship between breast cancer and tumor characteristics
has been investigated by immunochemical techniques, and the nature of breast cancer
has been explored. In this paper, after scrutinizing its relevance, we chose to explore the
characteristics and nature of breast cancer from another perspective, i.e., the accuracy of
model fusion in determining the symptoms associated with breast cancer through the
relevant techniques of machine learning.

2.1. Machine Learning

Over the last few decades, machine learning has attracted numerous researchers
because of its powerful scalability and excellent performance on high-dimensional data. As
a branch of artificial intelligence, the basic idea of machine learning is to allow established
models to learn from given data to improve their performance. Machine learning can
be divided into supervised learning and unsupervised learning. Supervised learning
requires that each sample should contain special markers in addition to the feature values.
It predicts the markers from the feature values and then compares the actual markers
to calculate the error and uses a recursive algorithm to correct the model based on the
error. The most common tasks in supervised learning are classification and regression.
Unsupervised learning does not require labeling. It explores the degree of similarity
between instances or examines the value relationships between features based on specific
metrics and methods. The prediction of breast cancer can be seen as a classification problem
in supervised learning. A number of machine learning methods have been proposed in
much of the literature to help diagnose breast cancer. Dr. Zhou [7] proposed a training
model of an artificial neural network (ANN) algorithm using decision tree (DT) algorithm
C4.5 by extracting features of various diseases from a routine model. It was found to
have high accuracy and also a strong generalization ability. Dr. Huang [2] combined a
support vector machine (SVM) with ultrasound texture analysis to classify breast cancer
ultrasound images. In 2007, Dr. Wu [8] proposed a cancer prediction model based on the
SVM algorithm, which effectively solves the problem of small sample learning and limits
overfitting. Dr. Moayedi [9] proposed a three-stage breast cancer diagnosis method with
an optimized SVM classifier for classification, and the accuracy of the image dataset could
reach 96.6%. In 2017, Dr. Wang [10] used a particle swarm algorithm to select features
of high-dimensional mass spectral data, analyzed and compared the results of extreme
learning machine (ELM), k-nearest neighbor (KNN), artificial neural network, SVM, and
random forest (RF), and, as a result, verified the feasibility of ELM in cancer diagnosis [11].
In 2019, Dr. Miao [12] proposed a machine learning training method based on the spark
model and RF with high fault tolerance, fast training speed, and 99.01% accuracy.

2.2. Random Forest

The random forest algorithm is an integrated learning method. In other words, it is
composed of many small models and the output of each small model is combined into the
final output. The random forest algorithm is a typical machine learning algorithm that is
usually adopted to perform classification, regression, or other learning tasks. Based on
the bagging algorithm, the random forest algorithm groups data from the original dataset,
then trains for each grouping to obtain the corresponding decision tree model, and finally
combines and analyzes all the decision data results to get the final random forest model.
The final prediction result of the random forest algorithm is based on the voting algorithm,
and the classification with the highest number of votes is used as the final output result
of the random forest algorithm. The random forest algorithm uses multiple classifiers
for voting classification, which can effectively reduce the error of a single classifier and
improve the classification accuracy. Compared with the ANN, regression tree, and SVM
algorithms, the random forest algorithm has higher stability and robustness, and also
leads in terms of the corresponding classification accuracy. The random forest algorithm is
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good at efficiently processing large-scale data and can be applied to high-dimensional data
application scenarios while also maintaining high classification accuracy in scenarios with
missing data. Figure 1 shows us the Random Forest algorithm.
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2.3. Deep Learning

The convolutional neural network is a deep learning method and an important branch
of machine learning algorithms. Like a multilayer perceptron of artificial neural networks,
it is commonly used to analyze visual images. Convolutional neural networks have long
been one of the core algorithms in the field of image recognition and have a consistent
performance when learning large amounts of data. The most important features of this
network model are self-learning, self-organization, and self-adaptability. For general large-
scale image classification problems, convolutional neural networks can be used to build
hierarchical classifiers and can also be used in fine classification recognition to extract
discriminative features of images for other classifiers. Composed mainly of a convolutional
layer and a subsampling layer, convolutional neural networks extract data features for
classification by convolution. Specifically, it includes input layer, convolutional layer,
pooling layer, nonlinear layer, fully connected layer, classification output layer, etc. Figure 2
below shows the schematic diagram of a convolutional neural network.
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As shown in Figure 2, in the convolutional layer of a convolutional neural network
model, the input data matrix is first convolved by multiple updatable convolutional kernels,
and then undergoes a nonlinear transformation by the activation function, and finally a
feature layer is formed. To reduce gradient descent, the activation function of the convolu-
tional neural network model often adopts the ReLu function. After the convolution layer,
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each output feature map is linked to the original image of the previous input layer by a
convolution operation. The convolution process of the convolution layer is as follows.

xl
j = f

 ∑
i∈Mj

xl−1
i kl

ij + bl

 (1)

where l is the number of layers of the neural network, k is the convolutional kernel of
the network, Mj is the features of the input data, and b is the bias corresponding to the
features of each output. The role of the pooling layer in a convolutional neural network is
to sample the feature images and obtain their subgraphs. Therefore, it is also referred to as
the subsampling layer. If there are m input feature maps after the convolution operation,
the number of feature maps remains the same after sampling, which is still m, but the size
of the output feature map becomes smaller. The pooling layer is calculated as follows:

x1
j = f

(
al

jdown
(

xl−1
j

)
+ bl

j

)
(2)

where down (·) is the down-sampling function, which is mainly used to find the maximum
or average number in the region for a feature matrix of input size n × n. It is called
maximum pooling or average pooling. From the input size, the output feature size is ln of
the input data size. A and b in Equation (2) are the biases of the output features. The fully
connected and output layers are consistent with the basic neural network structure and
the role of the fully connected layer is to expand the feature images sequentially and input
the feature information to the neurons. The learning algorithm of the neural network is
used to continuously improve the parameters to achieve the best output. In this paper, we
mainly adopt a convolutional neural network in data processing and attempt to improve
the accuracy of breast cancer classification while optimizing the classification results by
improving the classification model.

Currently, automatic breast cancer classification recognition includes both traditional
image recognition with manual feature extraction and deep learning-based recognition.
Deep learning can automatically extract image features and exclude the human factors in the
traditional recognition methods. In recent years, research on breast cancer pathology image
classification based on deep learning has developed rapidly, especially the wide application
of convolutional neural networks built on large datasets in natural language processing,
object recognition, image classification recognition, etc., laying a solid foundation for the
application of CNN in breast cancer pathology images. Since Dr. Spanhol and other
researchers made public the BreakKHis breast cancer dataset and introduced the pathology
image dataset in 2015, a series of research results have been achieved in breast cancer
recognition using convolutional neural networks based on this dataset. By adopting six
feature descriptions such as local binary pattern (LBP), gray-level co-generative matrix
(GLCM), and different classification algorithms such as support vector machine and random
forest, the recognition accuracy rate reached 80–85%. Dr. Bayramoglu architected single-
task and multi-task convolutional neural networks to predict malignant tumors, increased
the recognition rate to 83%, concluded that the recognition rate was independent of the
magnification, and, at last, achieved an accuracy rate of 86.3% on breast cancer pathology
images. However, the accuracy of the deep learning model for automatic recognition
of breast cancer pathology images is not yet as high as expected. Pathological tissue
image classification recognition differs from traditional image classification recognition
(e.g., recognition of dogs and cats) in terms of image characteristics and dataset size.
Pathological tissue images have characteristics such as differential ambiguity, feature
diversity, cell overlap phenomenon, and uneven color distribution, especially when the
small size of the current pathological tissue image dataset and the uneven number of benign
and malignant samples will affect the recognition rate. Therefore, improving the dataset
and designing a reasonable learning model, as well as effectively improving the automatic
recognition capability, are all important research directions.
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3. Introduction to the Experiment
Wisconsin Breast Cancer Dataset

As shown in Figure 3, the breast cancer patient dataset adopted in this paper is from
the University of California, Irvine’s machine learning dataset repository, in which the
Wisconsin breast cancer dataset was selected.
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The goal of this dataset is to predict whether the subject’s breast tumor is benign or
malignant, and the dataset is in its original format form, as shown in the following Table 1.

Table 1. Breast Cancer Data Raw Format.

1 ID Diagnosis Mean
Radius

Mean
Texture

Mean
Perimeter

Mean
Area

Mean
Smooth-

ness

Mean
Com-

pactness

Mean
Concavity

Mean
Concave

Points

2 842302 M 17.99 10.38 122.8 1001 0.1184 0.2776 0.3001 0.1471

3 842517 M 20.57 17.77 132.9 1325 0.08474 0.07864 0.0869 0.07017

4 84300903 M 19.69 21.25 130 1203 0.1096 0.1599 0.1974 0.1279

5 84348301 M 11.42 20.38 77.58 386.1 0.1425 0.2839 0.2414 0.1052

6 84358402 M 20.29 14.34 135.1 1297 0.1003 0.1328 0.198 0.1043

The features and feature interpretation of this dataset are shown in Table 2.

Table 2. Dataset feature interpretation.

ID Number

diagnosis M = malignant, B = benign

mean radius radius

mean texture texture

mean perimeter perimeter

mean area area

mean smoothness smoothness

mean compactness compactness

mean concavity concavity

mean concave points concave points

The dataset includes a total of 569 patient data with 32 attributes per patient. The
first of these attributes is the patient’s ID number, the second is the diagnosis, and the
third through the thirty-second features are computed from digitized images of fine needle
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aspiration (FNA) of breast masses. These 10 features cover attributes such as radius, texture,
perimeter, and symmetry of the cells, and then the variance, maximum, and mean of their
nucleus features are calculated separately. Having a multivariate dataset can provide a lot
of useful information for data mining, but it will definitely increase the workload of data
collection and data analysis. Factor analysis is a statistical method that uses a few factors to
reflect most of the information of the original data. Its main steps include correlation testing
of the data, factor extraction, naming and interpretation, calculating factor scores and
evaluating the sample. In the process of constructing a model, more variables are not better.
If ID number is used as a division attribute, 569 nodes will be generated. However, this
is not meaningful at all. Therefore, we remove features like ID number and the predicted
results. As a result, there are 30 attributes in the remaining dataset, since not every attribute
is well-generalized.

4. Methodology

The approach of this paper is divided into three parts. First, a single machine learning
algorithm is used to fit the breast cancer data to the limited data available to find regular
breast cancer features suitable for use as the basis for machine learning algorithm judgments.
Second, a deep learning-based neural network model is designed to learn the remaining
features to sort out the distribution patterns behind features that are relatively difficult to
train for machine learning. Third, we design an algorithm fusion mechanism to combine
the designed machine learning algorithm and deep learning algorithm to improve the
performance, as well as stability, of the model.

Figure 4 is used to illustrate the different modules used and the information transfor-
mation process:
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4.1. Feature Selection Algorithm

To obtain the importance of each feature in the sample, this paper adopts the decision
tree method to count the importance of each feature node for the breast cancer classification
dataset. To prevent the impact from dividing the samples on the experimental results or
the inaccurate feature classification [13], because of individual abnormal sample sets, this
paper repeats the experiments by sampling the data several times and training the decision
tree separately.

Cj =
(
n0 ∗ c0 −∑ ni ∗ ci

)
/T (3)

Shown in Equation (3) is the formula for calculating the degree of importance of each
feature (denoted as j) a, where n0 represents the number of statistical samples supporting
that feature node, c0 represents the calculated Gini [3] value for that feature node, while
ni and ci represent the numbers of samples of all sub-nodes of that node and their Gini
values, and T is the combined number of samples of the calculated nodes in this formula.
T is added to prevent the difference in magnitude caused by the number of samples under
different nodes.

Figure 5 shows the histogram of the number of times each sample was collected after
sampling 30% of the samples from the training set as training samples for 1000 times.
Figure 6 shows the statistical results of the accuracy of the decision tree trained individually
using the 30% of samples obtained from each sampling as training samples.
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As shown in Figure 5, the random sampling method in this paper is uniformly dis-
tributed sampling and each sample is sampled with approximately equal probability. As
shown in Figure 6, 30% of the data are utilized in training, while 70% of the data are used as
testing in the training set. The decision tree classification accuracy level proves to be quite
high, and its feature weight division value is quite informative (As shown in Figure 7).

In this paper, the experiments explore the performance effect of auxiliary classification
models for breast cancer in the case of small-sample experimental data, suggesting that
smaller numbers of features reduce the feature dimensionality, prevent the model from
fitting the data in unnecessary dimensions, and therefore, reduce overfitting for particular
samples. At the same time, since the tree model forms separate branches for each feature
dimension, using low-dimensional key features can reduce the complexity of the overall
tree structure.
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After performing the experiments 1000 times, the importance metric C calculated
for each feature was summed to obtain the final importance value for each feature. This
value, averaged over multiple samplings, eliminates overfitting errors that may be caused
by a single sampling experiment, and the results are more representative of the feature
importance profile on the overall dataset. As shown in (Figure 5), features such as cave
points_worst, perimeter_worst, radius_worst, cave points_mean, and concavity_mean
occupy the vast majority of the information in the data, and these parameters will be used
as input to the machine learning model for learning in the following.
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4.2. Minimalized Auxiliary Diagnostic Model

Minimalized auxiliary diagnostic model is described with the following equation:

S = ω1Msvm

(
Xk
)
+ ω2Mrd f

(
Xk
)

s.t ∑
i

ωi = 1 (4)

where S denotes the final output probability distribution Msvm

(
Xk
)

and Mrd f

(
Xk
)

de-
notes the probability outputs of the SVM, random forest, and neural network, respectively.
ω denotes their corresponding weights. Since the actual performance capability of the data
is known, we can directly determine the weights based on the data characteristics such as
the number of samples and the actual performance. The reason for using a model mecha-
nism that can be very effective against noisy samples, as well as characteristic singleton
samples, is that different models have different sensitivities to different kinds of noise, and
when a model is affected by a particular sample or noise in it, it can be adjusted by referring
to the output of the remaining two models so that the model results do not differ too much
from the true density.

The minimalized auxiliary diagnostic model adopts a combination of SVM model
and random forest. To achieve the effect of the minimalized auxiliary diagnostic model,
the authors chose not to use all 25 features for this part of the model in this paper, but
only 5 filtered extracted features, so that the approximate operation of the model can be
obtained in a real medical scenario at a faster rate. The accuracy of the model trained with
the 5 extracted features will be further discussed below.

4.3. Extraction Neural Network of Feature Hidden Information

Shown in Figure 8 is a diagram of the overall structure of the neural network designed
and implemented in this paper. The overall structure of this neural network can be divided
into six layers. The first layer is the input layer, and all the information needed by the
model is transferred through the input layer to encode our incoming data as digital signals
and then pass them into it. The second layer, the convolutional kernel, adopts 16 3*1*1
convolutional kernels and weights to extract features. The fourth layer and the fifth layer
are two layers of the fully connected neural network containing 128 hidden neurons, whose
main role is to fit this part of the features after weight extraction. The final layer, the output
layer, is responsible for outputting the results of the model.

Le =

((
(Pf − Ps)

2 − 1
)2
)

(5)

Appl. Sci. 2023, 13, 3097 11 of 18 
 

singleton samples, is that different models have different sensitivities to different kinds of 
noise, and when a model is affected by a particular sample or noise in it, it can be adjusted 
by referring to the output of the remaining two models so that the model results do not 
differ too much from the true density. 

The minimalized auxiliary diagnostic model adopts a combination of SVM model 
and random forest. To achieve the effect of the minimalized auxiliary diagnostic model, 
the authors chose not to use all 25 features for this part of the model in this paper, but only 
5 filtered extracted features, so that the approximate operation of the model can be ob-
tained in a real medical scenario at a faster rate. The accuracy of the model trained with 
the 5 extracted features will be further discussed below. 

4.3. Extraction Neural Network of Feature Hidden Information 
Shown in Figure 8 is a diagram of the overall structure of the neural network de-

signed and implemented in this paper. The overall structure of this neural network can be 
divided into six layers. The first layer is the input layer, and all the information needed by 
the model is transferred through the input layer to encode our incoming data as digital 
signals and then pass them into it. The second layer, the convolutional kernel, adopts 16 
3*1*1 convolutional kernels and weights to extract features. The fourth layer and the fifth 
layer are two layers of the fully connected neural network containing 128 hidden neurons, 
whose main role is to fit this part of the features after weight extraction. The final layer, 
the output layer, is responsible for outputting the results of the model. 

 
Figure 8. Overall structure of neural network. 

L = (((P − P ) − 1) ) (5)

On this basis, this paper introduces the expansion loss, as shown in Equation (5), 
which helps differentiate the final output probability distribution of the model, and thus 
reduces the possibility of ambiguous samples in the final result. L = 𝛼 × L  + (1 − 𝛼) × L  (6)

Shown in Equation (6) is the final loss formula designed and implemented in this 
paper. A weighting factor α is introduced in this paper to control the proportional prob-
lem of two loss values, where L  represents the base using key features other 
than those filtered above to get X  other than the features X  as the cross-entropy loss 
function in the neural network training of the input features. 

  

Figure 8. Overall structure of neural network.



Appl. Sci. 2023, 13, 3097 12 of 18

On this basis, this paper introduces the expansion loss, as shown in Equation (5),
which helps differentiate the final output probability distribution of the model, and thus
reduces the possibility of ambiguous samples in the final result.

Le = α× LcrossEntropy + (1− α)× Le (6)

Shown in Equation (6) is the final loss formula designed and implemented in this
paper. A weighting factor α is introduced in this paper to control the proportional problem
of two loss values, where LcrossEntropy represents the base using key features other than
those filtered above to get Xk other than the features Xr as the cross-entropy loss function
in the neural network training of the input features.

4.4. Model Fusion Algorithm

Xk, the breast cancer features with high contribution to the information, are obtained
from the above analysis. In the following analysis, Xr will denote the remaining features
other than the key features.

S = ω1Msvm

(
Xk
)
+ ω2Mrd f

(
Xk
)
+ ω3Mnn(Xr)

s.t ∑
i

ωi = 1 (7)

As shown in Equation (7), the classification distribution of the neural network is
extracted by introducing feature hiding information on top of the original minimalized
assisted diagnosis model Mnn(Xr). In actual deployment of the model, ω3 will be set to
a smaller proportion for optimization. The extraction neural network of feature hidden
information is used to fine tune the model output distribution. The main reason is that the
core idea of feature segmentation is to optimize the accuracy of the minimalized diagnosis
model in the case of small samples, and the idea of model fusion is to give priority to the
accuracy and stability of the minimalized auxiliary diagnosis model.

5. Analysis of Indicators
5.1. Evaluation Indicators

Since models often make various changes according to different requirements in real-
world application scenarios, we use different evaluation metrics to determine whether the
model can function properly under the existing real-world task requirements and environ-
ment. Introducing and considering a variety of different evaluation metrics simultaneously
when studying real-world problems will be of great help in the model selection exercise
conducted in this paper.

In connection with the practical application scenario of this paper, we chose to intro-
duce two different concepts (precision and recall) to assist in solving the relevant problems
involved in this paper.

Precision = TP
TP+FP

Recall = TP
TP+FN

(8)

As shown in Equation (8), precision is mainly based on the actual prediction results of
this paper, indicating the proportion of correctly predicted samples in the positive class
prediction results. Recall is mainly targeted at the original sample of this paper, indicating
the proportion of correctly predicted positive cases in the sample to all positive cases.

After further research, we find that to obtain more-desirable model action results in a
practical application setting, in addition to precision and recall, another two quantitative
methods, the F1 score and ROC curve, need to be introduced to combine the advantages of
precision and recall.

F1 = 2 ∗ precision ∗ recall
precision + recall

(9)
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As shown in Equation (9), the F1 score includes both accuracy and recall in the
calculation, helping both indicators to reach the highest point at the same time, maxi-
mizing the values of both metrics while maintaining the relative balance between them
as much as possible.

TPR = TP
P = TP

TP+FN
FPR = FP

N = FP
FP+TN = 1− TNR

(10)

As shown in Equation (10), the ROC curve can easily and quickly help discover how
well a classifier can analyze the samples at a certain threshold value.

5.2. Cross-Validation

A common method for building models and validating model parameters in machine
learning is cross-validation, which generally evaluates the performance of a machine
learning model using the data obtained from cross-validation. The basic logic of cross-
validation is to select the reused data and the obtained sample data for random classification,
first, to form a training set and a test set with different combinations, and then, to formally
train the model by predicting the prediction results of the model from the formed training
set. By slicing the data in this way, many different test sets and training sets can be obtained,
and the samples in the previous test set may become the samples in the next training set,
i.e., thus came the concept “crossover”. Figure 9 shows the optimal model mixing ratio
derived from the cross-validation method in this paper.
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5.3. Analysis of Experimental Indicators

Shown in Figure 9 is a plot of the results of the random forest model when the value
of max_features is fixed to control 4 to 5. The max_feature parameter is mainly responsible
for controlling the number of features in the selected feature subset. The smaller values of
max_feature, the more distinct the trees in the random forest. The horizontal coordinate
in the graph denotes n_estimators, which is the maximum number of iterations of weak
learners, or the maximum number of weak learners. Numerically, the smaller the value of
n_estimators, the more easily the model is underfitted, while the larger the value is, the
more easily the model is overfitted. The vertical coordinate is max_depth, which mainly
sets the maximum depth of the decision tree in the random forest, and the greater the depth,
the easier it is to overfit. Analysis of the data in the figure shows that the model functions
optimally when the value of max_depth and the value of n_estimators are maintained in a
certain range. The data in the above graph shows that the value of max_features has almost
no effect on the accuracy of the random forest model.

Shown in Figure 10 is a heat map of the effect of SVM involving relevant parameters
on the model. The horizontal coordinate in the figure is gamma, a parameter that comes
with the RBF function after the function is chosen as the kernel. Implicitly, it determines the
distribution of the data after it is mapped to the new feature space; the larger the gamma,
the more the support vectors; the smaller the gamma value, the more the support vectors.
The training and prediction speed of the model receives the effect of the number of support
vectors. The vertical coordinate is C, or the penalty function, which represents the tolerance
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of the model to error. Higher values of C indicate that the model is less tolerant to error
and the model is prone to overfitting. Conversely, the lower the value of C, the more likely
the model is to be underfitted. Therefore, too large or too small a value of C will affect the
generalization ability of the model. The kernel poly in the figure refers to the type of kernel
function used in the algorithm. The so-called kernel function is a method used to transform
the nonlinear problem encountered by the model into a linear problem. At this point,
poly refers to polynomial kernel, kernel rbf (also known as radial basis kernel), and kernel
sigmoid (also known as sigmoid function kernel). The overall effect of the model is optimal
when the value of gamma, as well as the value of C, is maintained in a certain range.
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6. Analysis of Results

When using the Wisconsin breast cancer dataset as the dataset for this experiment, if
the entire data in the dataset are used for model testing, then the accuracy rate can reach
close to 100%, whether via random forest or SVM. However, if a small sample of 30% of
the data in the dataset are randomly selected for model testing, then the accuracy of the
model test drops significantly to 80% using either random forest or SVM. In the case of
taking a small 30% of sample data, the data performance of the fusion model designed
and implemented in this paper is the same as the performance using 100% data; the better
the model accuracy is than the random forest, the better the accuracy of the model when
using the random forest and SVM model alone. In the paper “Bayesian network models
with decision tree analysis for management of childhood malaria in Malawi” [14], a similar
data classification analysis method was used to analyze the related diseases. It used the BN
(Bayesian network) model to predict the attributes associated with malaria. The manually
created BN model in this article performs significantly better in terms of prediction accuracy
but performs slightly worse in terms of f1_score, as well as of recall, compared to the fusion
model designed for this study. In a similar comparison, in the article “In comparison, a
data-driven approach to a chemotherapy recommendation model based on deep learning
for patients with colorectal cancer in Korea” [15], which uses the C3R (colorectal cancer
chemotherapy recommender) chemotherapy recommendation model to perform predictive
processing of relevant data involved in clinical care, since this model is optimized based on
the existing CDSS.

It outperforms some of the other models in terms of model performance, but it still
lacks in terms of accuracy and recall when compared with the fusion model designed and
implemented in this paper. Shown in Table 3 is data such as accuracy, as well as precision,
for training with a 30% data sample using the three models of this paper alone and using
the five extracted features for model training. The data in the table shows that the model
accuracy of the fusion model and the random forest and SVM reaches 95%, while the
neural network model test accuracy is only 80%, which indicates that the neural network
is less effective in model training under the condition of small samples, and the model
test training has a higher degree of decay and is less stable compared to other models.
The models designed in the two articles cited in this paper were able to outperform other
single models in this condition in all data; for example, the accuracy BN reached 98.23%
and C3R reached 98.24%. In other words, the model prediction effect has been very good.



Appl. Sci. 2023, 13, 3097 15 of 18

However, compared to the overall performance situation of the fusion model it is still
slightly inadequate. In general, the data of each model is relatively smooth, indicating
that the model has achieved its best results while having stability, and the test results
are representative.

Table 3. Training results for each model taking five extracted features under 30% small sample data.

Method Accuracy Recall f1-Score Precision

random forest 95.90% 94.02% 91.23% 92.23%

SVM 94.35% 90.35% 90.35% 91.56%

neural network 81.37% 80.76% 81.15% 82.11%

dual-fusion model 98.23% 98.22% 98.23% 98.25%

triple-fusion model 98.24% 98.23% 98.24% 98.26%

BN 97.23% 97.21% 97.23% 97.26%

C3R 97.24% 97.22% 97.21% 97.25%

Shown in Table 4 is its data, such as accuracy, as well as precision for training using
30% of the data sample with the three models of this paper alone. The models are trained
using all 25 features involved in this paper. The data in this table shows that the accuracy
and accuracy of the models using all 25 extracted features is reduced compared to the above
table using 5 extracted features and the accuracy of the model training for both random
forest and SVM is maintained at 91%. The neural network likewise barely performs
model training properly using all 25 features, with accuracy remaining at 80%. Under
these conditions, the model designed by the article cited in this paper also decreases in
effectiveness but still outperforms the other individual models overall. Accuracy rates of
98.24% and 98.23% are achieved for both BN and C3R, respectively, which are slightly worse
than the fusion model prediction results. Overall, the data of the models are relatively
smooth, indicating that the models have achieved their best results while having stability,
and the test results are representative.

Table 4. Training results for each model taking 25 extracted features under 30% small sample data.

Method Accuracy Recall f1-Score Precision

random forest 93.85% 93.85% 93.88% 94.04%

SVM 93.85% 93.83% 93.84% 93.85%

neural network 96.49% 96.49% 96.50% 96.57%

dual-fusion model 98.24% 98.24% 98.23% 98.23%

triple-fusion model 98.25% 98.24% 98.26% 98.24%

BN 98.24% 98.23% 98.25% 98.24%

C3R 98.23% 98.23% 98.26% 98.23%

Shown in Table 5 is the model training results of the fusion model designed in this
paper under all sample data. It is clear from the data in the table that the accuracy of the
three individual models, random forest, SVM and neural network, achieves 95%, while
the recall and accuracy also remain between 95% and 96% under all the sample data. The
training results of the fusion model, on the other hand, are not much different from each
of the other individual models and are slightly better than the other individual models,
reaching 98.49% in terms of accuracy and maintaining 98.24% in terms of recall, as well as
accuracy. The BN and C3R models designed by the two articles cited in this paper achieved
98.24% and 98.23% accuracy, respectively, in this case, and the model prediction results are
significantly better than the separate models in this paper. Yet, the overall performance
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effect was still different from the fusion model designed in this paper. At the same time,
the model data fluctuates only slightly, indicating that each model has achieved the best
and most stable test effect, and the test results are representative.

Table 5. Training results of 25 feature models under all sample data.

Model Accuracy Recall f1-Score Precision

random forest 95.61% 95.61% 95.63% 95.78%

SVM 96.49% 96.49% 96.51% 96.47%

neural network 98.23% 98.22% 98.21% 98.21%

dual-fusion model 98.24% 98.23% 98.24% 98.24%

triple-fusion model 98.25% 98.24% 98.26% 98.25%

BN 98.24% 98.23% 98.24% 98.25%

C3R 98.23% 98.24% 98.25% 98.24%

Based on the data in the Table 6, we hereby conclude that the fusion model designed
and implemented in this paper tests almost identically in both environments of 30% small
sample data and full sample data, and the accuracy is maintained at 98.22% in both
cases, while the recall of the fusion model reaches 98.21% and the f1_score reaches 98.21%,
compared to the fusion model with only a slight bias in the 30% small sample setting.
On the contrary, although the training results of the three individual models of random
forest, SVM, and neural network are not much different from the fusion model under the
full sample data, the accuracy rate of the three individual models can successfully reach
96.21%. However, the accuracy rate of the model training decays relatively severely under
the premise of the small sample data, while the accuracy rate of the neural network model
under the small sample environment of 30% can only reach 80%, and the recall rate can
also only reach 80.76%, which is a significant decay compared to the 96.21% accuracy of
the neural network model in the full sample case. The models designed by the two articles
cited in this paper can also maintain some excellent prediction results under the premise of
small samples and outperform other individual models, but the results are much worse
than the fusion models designed in this paper. At the same time, the data of each model
are relatively smooth and the degree of fluctuation is not significant, indicating that each
model achieves its optimal effect while successfully having stability and the test results are
representative. Therefore, the fusion model designed and implemented in this paper has
the obvious advantage of being able to maintain high accuracy, as well as accuracy under
small sample conditions, compared to other individual models.

Table 6. The fusion model designed and implemented in this paper and the test results in two
environments with full sample data.

Model Accuracy Recall f1-Score Precision

fusion model 98.22% 98.21% 98.21% 98.23%

random forest 95.60% 95.62% 95.61% 95.79%

SVM 96.46% 96.39% 96.49% 96.45%

neural network 96.21% 96.22% 96.20% 96.21%

BN 98.10% 98.11% 98.11% 98.10%

C3R 98.11% 98.09% 98.12% 98.11%
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7. Conclusions

This paper focuses on the minimization model in the context of a limited breast cancer
dataset. The features that contribute the most to the information of the breast cancer
classification model are investigated through a feature selection approach, thus helping to
reduce the model parameter space and achieving the minimalized model. A relatively small
number of metrics is used to make initial judgments on breast cancer data while achieving
more desirable accuracy results. With sufficient experimental resources, this paper, at the
same time, investigates the introduction of more metrics to enhance the overall combined
performance of the model to achieve the best accuracy results. Future work will investigate
more relevant auxiliary diagnostic tools of breast cancer and will combine metrics, as well
as image data, for comprehensive multimodal aid diagnosis, while exploring ways to apply
the algorithm to other similar diseases.
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