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Abstract: Blockchain technology is used to support digital assets such as cryptocurrencies and tokens.
Commonly, smart contracts are used to generate tokens on top of the blockchain network. There are
two fundamental types of tokens: fungible and non-fungible (NFTs). This paper focuses on NFTs and
offers a technique to spot plagiarism in NFT images. NFTs are information that is appended to files to
produce distinctive signatures. It can be found in image files, real artifacts, literature published online,
and various other digital media. Plagiarism and fraudulent NFT images are becoming a big concern
for artists and customers. This paper proposes an efficient deep learning-based approach for NFT
image plagiarism detection using the EfficientNet-B0 architecture and the Triplet Semi-Hard Loss
function. We trained our model using a dataset of NFT images and evaluated its performance using
several metrics, including loss and accuracy. The results showed that the EfficientNet-B0-based deep
neural network with triplet semi-hard loss outperformed other models such as Resnet50, DenseNet,
and MobileNetV2 in detecting plagiarized NFTs. The experimental results demonstrate sufficient to
be implemented in various NFT marketplaces.

Keywords: NFT; blockchain; plagiarism check; EfficientNet-B0; deep neural network; triplet semi-hard
loss

1. Introduction

Blockchain technology is avant-garde for digital entities. NFTs allow for the open
transfer of ownership and the provable scarcity of digital goods. These new characteristics
have enormous power for innovators. They can sell one-of-a-kind and authenticated things
on a blockchain-based marketplace rather than spreading their works of art, such as images,
music, or other creations, on platforms that are typically difficult to monetize. By relying
on the irrefutable blockchain history of NFTs rather than the reseller’s word, consumers
may be confident in the legitimacy of any digital commodity they purchase [1].

An NFT is a digital asset that cannot be exchanged for another NFT as each token
has a unique value, confirmed through data sets such as blockchain, token ID, token type,
metadata, and contact address. NFTs can take the form of rare and unique images, movies,
video game items, and artistic works [2]. NFTs controlled by a blockchain network indicate
ownership of physical or digital items. The Ethereum network is currently one of the most
widely utilized blockchain networks. On this network, people can deploy smart contracts
and mint NFTs, allowing them to run Ethereum network apps. Since this network has been
supported and regulated by a community, they do not need any devotion in any particular
person to utilize it, provided the community has enough members. [3].

Although the highlighted advantages of NFT, NFT forgery and counterfeiting [4] have
increasingly become a problem in the industry. For example, more than 80% of the NFTs
are found in OpenSea, one of the NFT marketplaces. These recently made through its free
minting tool were either spam, fake supplies, or plagiarized creations [5]. To overcome this
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issue, this paper proposes a method to detect plagiarism in NFT marketplaces by enhancing
deep neural networks.

Few research articles describe how to check NFT images for plagiarism. Pungila et
al. [6] have developed a technique for approximation design matching for NFT image
plagiarism detection, with special relevance to blockchain-driven NFT platforms and
ecosystems. The authors used a non-deterministic finite automaton (NDFA) approach in
conjunction with a sliding window idea and local thresholds at the node level to trace
partial matches. This technique is comparable to other similarity measures currently used
in text mining for plagiarism detection. On the other hand, numerous methods have been
developed to identify images that have been plagiarized, such as Ibrahin et al. [7] who
suggested an improved approach to identify image plagiarism using RGB (red, green, and
blue) and HSV (hue, saturation, and value) color spaces, using Tamura texture, and the
clever edge technique for shape to retrieve features from photos and save to databases. The
results were displayed with true and false statements and similarity indices in ascending
order. However, the precision of the modified images is low grade.

Gayadhankar et al. [8] have proposed a plagiarism detection method based on GAN
and employ CNN, primarily used in the preprocessing stage. In this method, the dataset is
first analyzed by the GAN, and then its output is fed into the CNN. The model will then
indicate whether or not a GAN created the image. Nevertheless, the authors should have
explained how they achieved the results in more detail, and there was no comparison to
other methods. Furthermore, deep convolutional neural networks, such as those used by
Meuschke et al. [9], can recognize several types of image similarity observed in academic
work and may identify plagiarism in images. The adaptability of the technique is achieved
by incorporating approaches for assessing various image features, selectively deploying
analysis techniques based on how well they complete the input image and applying
an adaptable strategy for recognizing suspicious image similarities. However, images
resembling one another do not appear as suspicious outliers in noticeably bigger data sets.

Based on the aforementioned related works, several attempts have been made to ad-
dress the problem of NFT image plagiarism using artificial intelligence methods. However,
many of these methods have depended on traditional deep learning architectures such as
convolutional neural networks (CNN). They have yet to include more recent advancements
in computer vision, such as EfficientNet. The proposed work in this paper overcomes
this limitation using an EfficientNet-based model that has demonstrated state-of-the-art
performance to detect plagiarized images in the NFT system. In addition, training the
model with the triple semi-hard loss function has enhanced the model’s ability to distin-
guish between images with similar features. The proposed work offers a novel method
for detecting NFT image plagiarism that incorporates recent computer vision and deep
learning developments. While further testing and evaluation are needed, the proposed
method has the potential to outperform existing methods and enhance the security and
integrity of NFT-based art.

This study proposes an EfficientNet-based approach using the EfficientNet-B0 ar-
chitecture to detect plagiarism in NFT images. Our specific contributions include the
following:

• Preprocessing the NFT dataset and using it to generate augmented images.
• Detecting plagiarized NFT images based on EfficientNet-B0-based deep neural net-

work (EfficientNet-B0-DNN) with triplet semi-hard loss.
• Developing a network suitable for actual NFT ecosystems and providing high accuracy

and reliable performance.
• Comparing several modern deep learning methods and pointing out the EfficientNet-

B0-DNN method outperforms other CNN methods such as ResNet50, DenseNet, and
MobileNetV2 in terms of loss and accuracy.

The remainder of the study is organized as follows: in Section 2, we introduce the
concept of NFTs, and the proposed solution scheme, detail the augmentation process for
the dataset, and describe the NFT image dataset used in the research. Section 3 explains
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ResNet50, DenseNet, MobileNetV2, and EfficientNet-B0-DNN techniques that we com-
pared. Section 4 presents the hyperparameter settings we used, the Euclidean distance and
triplet semi-hard loss as performance criteria, results, and a comparison of our proposed
method with other models. Finally, in Section 5, we summarize the key findings, draw
conclusions, and suggest areas for future research.

2. System Overview
2.1. NFTs Concept

NFTs are cryptographic tokens originally developed on the Ethereum blockchain
and later adopted by other blockchains. NFTs are distinguishable from fungible tokens,
such as bitcoins, where each token is equivalent and imperceptible. Because NFTs are
non-fungible, each token is guaranteed to be distinctive, conferring right privileges over a
digital treasure to its bearer [10]. Specifically, producers can easily prove ownership of their
digital goods, such as artwork, images, and films, by using NFTs. Moreover, by definition,
each non-fungible token (NFT) is distinctive and non-divisible; there should be an infinite
number of NFT types. Academics generally categorize NFTs into six main groups based on
their common applications: art, metaverse, gaming, collectibles, utility, and others [11].

In addition, Shilina et al. [12] explained the NFT as a token, as a unit of account, is a
form in a dispersed blockchain controlled by a computer algorithm of a smart contract, in
which the amount of the equity on the accounts of token holders are documented, allowing
them to be transferred from one wallet to another. The idea of the non-fungible token
was first introduced in the Ethereum Improvement Proposal (EIP) 721 [13] and further
developed in EIP-1155 [14,15]. ERC-721 is a non-fungible token standard, which is different
from fungible tokens. It can be unique because every token has a uint256 variable called
tokenID that is globally distinctive. The ERC-721 standard includes basic capabilities such
as transferFrom and ownerOf for tracking and transmitting NFTs in its smart contract API.
ERC-1155 is a standard extension that can represent both non-fungible and fungible tokens.
It delivers a representational interface for many tokens. Algorithms 1 and 2 demonstrate
standard interfaces for ERC-721 and ERC-1155, respectively.

Algorithm 1: ERC-721 Standard Interface
interface ERC721 {
function transferFrom(address _from, address _to, uint256 _tokenId) external
payable ;

function ownerOf(uint256 _tokenId) external view returns (address) ;
function balanceOf(address _owner) external view returns (uint256) ;
...
}

Algorithm 2: ERC-1155 Standard Interface
interface ERC1155 {
event TransferSingle(address indexed _operator, address indexed _from,
address indexed _to, uint256 _id, uint256 _value) ;

event TransferBatch(address indexed _operator, address indexed _from,
address indexed _to, uint256[] _ids, uint256[] _values) ;

function balanceOfBatch(address[] calldata _owners, uint256[] calldata _ids)
external view returns (uint256[] memory) ;

...
}

There are some differences between ERC-721 and ERC-1155. To begin with, each
ERC-721 transaction requires a single operation. Meanwhile, with ERC-1155, a single
transaction can contain several operations. Second, we may employ the ERC-1155 token
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standard as a vital infrastructure to enable batch token transfers. According to the ERC 721
token standard, a separate smart contract must be created for each NFT or token transfer.
To transmit many NFTs through an ERC-721 system, transactions for each one needed to
be created. Third, when assets are transferred via the ERC-721 standard to the incorrect
address, they cannot be reverted. On the other hand, the ERC-1155 token standard provides
a special function called the “safe transfer” function [16].

2.2. Proposed Solution Scheme

The proposed design architecture for the plagiarism detector on the NFT system is
depicted in Figure 1. It is based on the lack of a built-in method on the blockchain to
confirm that the person minting an NFT has the right to the asset they are minting [17].
Therefore, we propose a system to identify plagiarized NFT images as an AI model placed
before the minting process to verify that only original and legally obtained images are being
minted as NFTs. We employ an AI model to check for plagiarism before minting, which is
expected to reduce computing costs because the model only needs to be run once for each
image. Additionally, it can decrease the need for numerous copies of the same image to
be stored, which can save cost and storage space. This study analyzes and compares the
processing times for all models mentioned earlier.

This paper outlines five requirements for using blockchain technology in the NFT
system. First, choosing the right blockchain platform, such as Ethereum, due to its scal-
ability, security, and transaction speed [18]. Second, developing a smart contract with a
token can be assigned to each individual work of art. Thus, the owner of the NFT has
blockchain-based evidence of the asset’s authenticity. This is crucial because there have
been instances in the past where individuals have attempted to manipulate already-sold
NFTs [19]. Third, building interoperability to ensure that the NFTs created on the blockchain
are interoperable, which refers to the ability to exchange data between different blockchain
platforms and networks [20]. Fourth, deploying IPFS to cover storage and security, since
we need to store the NFT image securely and immutably on the blockchain [21] [22]. Due
to our system being intended to allow NFT-based art, it is crucial to take into account the
supporting technologies. The usage of IPFS in our study indicates how we took the NFT
system into account and worked to address the issue of NFT picture plagiarism as a whole.
IPFS can be used as a decentralized storage system that ensures the NFTs cannot be altered
or deleted by anybody, including the creator of the image [23]. Fifth, integrating with AI,
which is necessary to ensure that the AI model for plagiarism checking is appropriately
integrated with the blockchain platform so that it can interact with the NFTs and verify
their originality.

The proposed system has two flows: one from creators who upload NFT images,
represented by the red line, and one from users who download or purchase NFT images,
represented by the blue line, as shown in Figure 1. The proposed solution addresses the
issues of combining all anti-plagiarism-related tasks into a single procedure and ensuring
security and privacy protection. A decentralized app with all the capabilities and ser-
vices, including anti-plagiarism and advanced application programming interface (API), is
included in the proposed solution.

One of the best decentralized options for storing NFT files is IPFS (InterPlanetary File
System), a distributed system for uploading, storing, and accessing websites, programs,
data, and files. IPFS offers a decentralized way to host and access content as a P2P
file-sharing protocol, with user operators hosting a portion of the total data, resulting
in a unique and cutting-edge system for storing and distributing files or other content.
Unlike the conventional hypertext transfer protocol (HTTP) protocol, IPFS uses a content-
addressing method. Each content within the IPFS ecosystem has a unique hash that acts as
a content identification (CID). As a result, users of IPFS can find any file, website, and other
data by searching for the relevant cryptographic hash instead of searching by location [24].
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Figure 1. Proposed solution scheme of NFT plagiarism checker.

We have developed a novel strategy that uses current computer vision and deep
learning developments, including the EfficientNet-based model with the triple semi-hard
loss function. Although our system does not employ specific NFT-related features, it can be
implemented in any NFT system or marketplace. Our method may effectively identify NFT
image plagiarism. Furthermore, because of the nature of blockchain-based ownership and
transfer, our proposed approach was designed and optimized for the NFT system, which
presents a unique environment for picture plagiarism. According to the findings of our
experiments, the proposed method can successfully improve the security and integrity of
NFT-based art by precisely identifying plagiarized images in this study.

2.3. NFTs Image Dataset

In this work, a publicly available NFT-Classifier dataset from Kaggle was used [25].
The dataset includes three of the most popular NFTs collections available, known as art
categories BAYC (Bored Ape Yacht Club), Crypto Punks, and Azuki. A total of 3000 photos
in various sizes and aspect ratios are included. The 24× 24 pixel size and 2000× 2000 pixel
size, respectively, make up the smallest and largest images. There are an equal number
of images in each collection category in the dataset utilized in this study. This harmony
facilitates model training by preventing the model from becoming biased toward a certain
class [26]. Furthermore, the dataset that NFT-inspired works of art in an image file format
(.png). Only the image files were used in this work. The dataset was divided into 70%
training and 30% validation portions, with all images resized to a size of 224 by 224. Figure
2 shows sample images of the NFT dataset used in this paper.
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Figure 2. Sample images of NFT dataset [25].

To train the model using NFT images, we first collect a dataset of NFT images from
the above open-access resources along with their associated metadata, including file size,
format, and structure. Next, the images are preprocessed by resizing them to a fixed size of
224 by 224 and standardizing their pixel values. For the model architecture, we employ
four different models: ResNet50, DenseNet, MobileNetV2, and EfficientNetB0. Each model
is trained separately using the preprocessed images and their associated metadata. During
training, we use a triplet semi-hard loss function for all models, which encourages the
model to differentiate between similar and dissimilar NFT images. The compared models
are trained using the Adam optimizer with a learning rate of 0.001 and a batch size of 64
over 100 epochs, along with other hyperparameters mentioned in Table 1.

2.4. Image Augmentation

Image augmentation is the process of modifying an image to generate variants of the
same matter in order to give the model a wider range of training examples. Due to the
impossibility of precisely capturing every possible real-world scenario, augmentation is
essential. By increasing the image collection, we can incorporate additional challenging-to-
discover real-world scenarios and increase the training data sample size. By expanding the
training data to generalize to many scenarios, the model can acquire knowledge from a
broader range of events [27]. In this study, we randomly change an input image’s rotation,
brightness, shear, horizontal flip, and scale, as depicted in Figure 3. This method forces the
model to take into account how an image can appear in a range of scenarios, such as in the
case of NFT image plagiarism.
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Figure 3. Sample of augmented images of NFT dataset. (a) Augmentation in brightness, (b) augmen-
tation in shear, (c) augmentation in scale, (d) augmentation in rotation, (e) augmentation in horizontal
flip.

Table 1. List of hyperparameters of ResNet50, DenseNet, MobileNetV2, EfficientNet-B0.

Hyperparameter Models Compared (ResNet50, DenseNet, MobileNetV2,
EfficientNet-B0)

ine Activation ReLU

Batch Size 64

Learning rate 0.001

Training data 70%

Validation data 30%

Loss Function Triplet semi-hard loss

Optimizer Adam

Embedded dimension 128

Epoch 100

3. Methodology

Transfer learning is a common approach in computer vision and sentiment analysis,
where the computational power required to process large datasets can be significant. The
basic idea behind transfer learning is to utilize knowledge gained from a task with big
labeled training data to tackle a new task with limited data. This method starts the learning
process with patterns already discovered in a related task, rather than starting from scratch,
using several models implemented in this study, such as ResNet50, DenseNet, MobileNetV2,
and EfficientNet-B0. Transfer learning involves using a pretrained deep learning technique
to address a new but related problem [28].

3.1. ResNet50

ResNet, also directed to as the Residual Network, is a type of convolutional neural
network (CNN) that was invented by He et al. [29] in 2015. CNNs are frequently used by
applications that employ computer vision (CV) [30]. ResNet-50 is a 50-layer convolutional
neural network that comprises 48 convolutional layers, one intermediate pool layer, and one
MaxPool layer. These residual neural networks are artificial neural networks (ANNs) that
are constructed using residual blocks. Figure 4 illustrates the ResNet50 model architecture.
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Figure 4. ResNet50 model architecture.

3.2. DenseNet

A DenseNet [31] is a type of convolutional neural network (CNN) that employs dense
connections amid layers via dense blocks. In this architecture, all layers with matching
feature-map sizes are directly linked to one another. To maintain the feed-forward essence
of the system, each layer receives additional information from all preceding layers and
transmits its own feature maps to all subsequent layers. The downsampling of layers,
which modifies the dimension of feature maps, is a crucial component of convolutional
networks. Figure 5 depicts the division of the network into several densely coupled dense
blocks in the DenseNet architecture to facilitate downsampling. The convolution and
pooling layers amid blocks are referred to as transition layers.

Figure 5. DenseNet model architecture.

3.3. MobileNetV2

The initial support for the MobileNet model was provided by depthwise separable
convolutions, which is a type of factorized convolution that splits a standard convolution
into a depthwise convolution and a 1× 1 convolution commonly known as a pointwise
convolution [32]. In contrast, MobileNetV2 features two distinct block types, with one
having a stride of one and the other being a shrinking block with a stride of two. Both block
types consist of three separate tiers. The first layer in this model is a 1× 1 convolution
with ReLU6, followed by a depthwise convolution, and then a 1× 1 convolution with no
non-linearity. It is noted that deep networks only have the classification ability of a linear
classifier in the non-zero volume part of the output domain if ReLU is reapplied. Figure 6
depicts the MobileNetV2 model architecture and a comparison to MobileNet [33].

In general, ResNet-50 is a convolutional neural network with 50 layers. We may load
a pretrained version of the network from the ImageNet database that has been trained
on more than a million images. As a result, the network has learned rich feature rep-
resentations for various images [34]. The DenseNet model was created using the same
fundamental concept as ResNet, but its name refers to its dense connections between the
earlier and later layers [35]. In comparison, the MobileNetV2 was created to maximize
accuracy successfully while considering the limited resources for an embedded or on-
device application. MobileNetV2 is a compact, low-latency, low-power model that may
be customized to accommodate different use cases’ resource limitations. Based on the
experimental results of the studies in this paper, MobileNetV2 has a lesser accuracy than
Densenet and ResNet50, but it is faster and lighter [36] in training time.
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Figure 6. (a) MobileNet model architecture and (b) MobileNetV2 model architecture.

3.4. EfficientNet

The architecture of a convolutional neural network and the scaling strategy employed
by EfficientNet [37] involves uniformly scaling all width, depth, and resolution dimensions
through a compound coefficient. Unlike conventional methods that arbitrarily scale these
elements, EfficientNet’s scaling approach involves uniformly increasing network depth,
width, and resolution using a preselected set of scaling coefficients.

For example, if we plan to use 2N times better computing power, we can improve
the network’s depth by αN , width by βN , and image dimensions by γN , where α, β, and γ
are constant coefficients established through a small grid search on the original method.
EfficientNet utilizes a compound coefficient, φ, to scale the network’s width, depth, and
resolution uniformly and based on established rules.

The EfficientNet method uses a compound scaling technique to enhance network
depth, width, and resolution in proportion to the size of the input image. This ensures
that the network has enough layers to cover the larger receptive area and more channels
to detect finer details in the larger image. Furthermore, mobile scaling can be applied to
any CNN architecture, and the results are sufficient, although the baseline architecture
significantly impacts overall performance. With this in mind, the authors developed a new
foundation architecture called the EfficientNet-B0-Based DNN with Triplet Semi-Hard Loss.
The building blocks of the base EfficientNet-B0 network are the squeeze-and-excitation
blocks and the inverted bottleneck extra blocks of MobileNetV2. The EfficientNet model
architecture is shown in Figure 7.

Figure 7. EfficientNet model architecture.

4. Experiment and Results

The deep neural network (DNN) is one of the key components of deep learning (DL),
and it can be utilized for image plagiarism checks and various applications. Here, we
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compare models including ResNet, DenseNet, MobileNetV2, and EfficientNet-B0 in order
to develop the image plagiarism checker box in the proposed solution architecture, as
depicted in Figure 1.

4.1. Hyperparameters Setting

In order to ensure a fair comparison with other models, the hyperparameters must be
set to optimal and equivalent values. In this study, we set all the models being compared
to the same hyperparameters, as shown in Table 1. ReLU activation was chosen because
it is less computationally expensive and rectifies the vanishing gradient problem, which
is better than other activation functions such as tanh and sigmoid [38]. Furthermore,
the default learning rate value of 0.001 was used in most Keras optimizers because it is
recommended for beginners [39]. Based on the insights from FaceNet embeddings, we
selected an embedded dimension of 128. This model was initially used for face clustering,
verification, and identification, and provides greater precision with only 128 bytes per
face [40]. The batch size of 64 was chosen because it is appropriate for the amount of data
used in the study, and using a mini-batch size that is a power of 2 is recommended [41].

We chose to use the Adam optimizer, as it is a well-known deep-learning training
technique that uses exponentially weighted moving averages to manage the gradient’s
momentum and the second moment, also known as leaky averaging. This optimizer tracks
the relative prediction error of the loss function through a weighted average, making
it more effective than the standard stochastic gradient descent (SGD) technique, which
ignores the effects of outliers [42].

4.2. Performance Criteria
4.2.1. Euclidean Distance

In this paper, Euclidean distance was chosen because it can produce a better recall
rate and precision when compared to other distance approaches, such as the Manhattan
distance and Hamming distance [43].

Euclidean distance is a granular method for determining similarities between two
letter sequences that computes a numerical similarity by accounting for the numeric values
of the respective ASCII codes [6]. Assuming that the two points (u, v) are those where
u = (a1, b1) and v = (a2, b2), the Euclidean distance between these two points is determined
as specified by

EUd =
√
(a1 − a2)2 + (b1 − b2)2. (1)

If there are more than two dimensions among the pinpointed data, however, Euclidean
distance is considered by

EUd =

√
n

∑
i=1

(ai − bi)2. (2)

The Euclidean formula is used to determine how similar the query image is to those in
the dataset. The model employs the Euclidean distance calculation to determine the level
of similarity between two images during the comparison stage of plagiarism detection [7].

4.2.2. Triplet Semi-Hard Loss

Triplet Loss trains a neural network to maximize the distance between embeddings
of different classes while ensuring that embeddings of the same class are closely grouped
together. This is achieved through selecting an anchor sample, along with a positive and
negative sample [44]. This triplet loss aims to guarantee that a picture xa

i (anchor) of a
certain entity is closer to all other images xp

i (positive) of that entity than it is to any image
xn

i (negative) of any other entity. Figure 8 illustrates this.
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Figure 8. The triplet loss trains a neural network to increase the difference between the embeddings
of different classes while minimizing the difference between the embeddings of the same class by
selecting an anchor, a positive sample, and a negative sample.

The number of triplets that can readily satisfy the requirement in Equation (3) would
increase if all potential triplets were generated. Since they would still be propagated
over the network, these triplets would not support training and would slow down the
computation.

‖xa
i − xp

i ‖
2
2 + α < ‖xa

i − xn
i ‖2

2, ∀(xa
i , xp

i , xn
i ) ∈ τ. (3)

where the boundary amid positive and negative pairings is defined by α. τ, which has a
cardinality of N represents the complete set of all possible triplets in the training set.

Therefore, L is equal to the loss that is being reduced in the below equation:

N

∑
i
[‖ f (xa

i )− f (xp
i )‖

2
2 + α < ‖ f (xa

i )− f (xn
i )‖2

2|+ α]+. (4)

Using a smaller batch size while choosing the hardest negatives, on the other hand,
can result in collapsed models (i.e., f (x) = 0) and inadequate local minima early in the
training process. To counteract this, choose xn

i such that:

‖ f (xa
i )− f (xp

i )‖
2
2 < ‖ f (xa

i )− f (xn
i )‖2

2. (5)

where the negatives are contained within the margin α. The function f (x) explains the
embedding function, which receives an image x into a d-dimensional Euclidean space.
The image xa

i is anchor, image xa
p is positive, and xn

p is negative subsequently. The part
‖ f (xa

i )− f (xp
i )‖

2
2 from the equation subtracts the anchor image with the positive image

between the embeddings to determine Euclidean distance. Meanwhile the second part,
‖ f (xa

i )− f (xn
i )‖2

2, calculates the Euclidean distance between the embeddings by subtracting
the anchor image from the negative image. The negative quintessences from Equation (5)
are classified as semi-hard because, while being farther from the anchor than the positive
exemplar, they are challenging because the squared distance is close to the anchor-positive
span. In other words, these are called triplets when the negative creates a positive loss,
despite being further away from the anchor than the positive.

In this study, we prefer the “semi-hard” category among the “easy” and “hard” triplet
categories because it allows the model to learn valuable features without overfitting, and it
generalizes well to the test data [40].

4.3. Results and Comparison

In this study, we applied the EfficientNet-B0 with the Triplet Semi-Hard Loss model to
detect plagiarism using the same dataset for three examples of threshold scores, which are
0.55, 0.65, and 0.75, to acquire the optimum score for examining the plagiarism of images.

Overall, The proposed EfficientNet-B0-based DNN with Triplet Semi-Hard Loss retains
the lowest loss and highest accuracy compared to ResNet50, DenseNet, and MobileNetV2
at various sampling threshold scores, which means that image plagiarism detection can be
ensured.
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According to the experiments, EfficientNet-B0 with Triplet Semi-Hard Loss has reached
the lowest loss, 0.1242, and lowest validation loss, 0.2808, compared to the other methods
as elaborated in Table 2. Furthermore, as shown in Figure 9, the graph of EfficientNet-B0,
represented by the red line, has the lowest loss, and the red dashed line depicts the lowest
validation loss compared to the other three models. These results indicate the efficiency
of the proposed approach in using computation resources. EfficientNet-B0 models use a
compound scaling method that scales the dimensions of the network (depth, width, and
resolution) in a computationally efficient manner, resulting in better performance with
lesser resources [37]. Additionally, using a triplet semi-hard loss function can contribute to
the modest loss since it can lower the training complexity by choosing negative pairs close
to the anchor but adequately distant from it [45].

Figure 9. The comparison of loss and validation loss from ResNet50, DenseNet, MobileNetV2, and
EfficientNet-B0.

Table 2. Comparison of loss and validation loss for all models.

Model Loss Validation Loss Training Times

ResNet50 0.1961 0.3507 228.677
DenseNet 0.2018 0.3346 223.992

MobileNetV2 0.2533 0.4040 222.148
EfficientNet-B0 0.1242 0.2808 230.379

Additionally, Table 2 displays the loss and validation loss and the training time
results for all four models. The MobileNetV2 model’s training time was the shortest at
222.148 min, while the EfficientNet-B0 model’s training time was the longest at 230.379
min. MobileNetV2 has a smaller structure with a size of 14 MB and a depth of 105, whereas
EfficientNet-B0 has a structure size of 29 MB and a depth of 132 [46]. Therefore, based
on model architecture, EfficientNet-B0 has a larger and more complex model than the
other models, with more parameters and layers. This model can increase the training
time as more computations are required to update the weights and biases of the model.
Furthermore, the EfficientNet-B0 model is designed to handle larger images and batch sizes
than the other models, which can raise the training time [47].

Figure 10 illustrates the EfficientNet-b0 model with the lowest maximum distance of
positive pairs, which is represented by the red line, followed by DenseNet with the purple
line, ResNet50 with the green line, then MobileNetV2 with the blue line, respectively. While
the lowest validation maximum distance of positive pairs was achieved by DenseNet with
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a purple dashed line, then followed by EfficientNet-B0 with a red dashed line, ResNet50
with a green dashed line, then MobileNetV2 with a blue dashed line subsequently.

From Table 3, we can see the detailed results of the experiments that EfficientNet-B0
has the lowest maximum distance of positive pairs with 0.4526 and validation maximum
distance of positive pairs of 0.8059 when compared to other MobileNetV2, DenseNet, and
ResNet50. MobileNetV2 has a maximum distance of positive pairs of 0.5889 and validation
of the maximum distance of positive pairs of 0.8457. While DenseNet has a maximum
distance of positive pairs of 0.5223 and validation of a maximum distance of positive pairs
of 0.7032. On the other hand, ResNet50 has a maximum distance of positive pairs of 0.5827
and validation of a maximum distance of positive pairs of 0.8199.

These experimental results indicate that the EfficientNet-B0 model has a better rep-
resentation of the data, which could be determined by the compound scaling method
utilized in EfficientNet-B0. These results also mean that EfficientNet-B0 can learn more
informative and selective features from the input data, which helps it to detect plagiarized
images more precisely. However, the lowest validation maximum distance of positive pairs
was not achieved by EfficientNet-B0, though DenseNet obtained it with 0.7032 among
compared models, which indicates that DenseNet generalizes well to validation data and
is better at detecting plagiarized images on the validation sets. The dense connections in
the DenseNet architecture allow the model to learn more robust features that generalize
well to the validation data [48], which may enable it to identify plagiarized images more
accurately on the validation data.

Figure 10. The comparison of the maximum distance of positive pairs among ResNet50, DenseNet,
MobileNetV2, and EfficientNet-B0.

From Table 3, we can see that the EfficientNet-B0-based DNN has achieved the highest
maximum distance of negative pairs, with a training result of 1.133 and a maximum
validation distance of negative pairs of 1.0150. MobileNetV2 has a maximum distance of
negative pairs of 1.037 and a maximum validation distance of negative pairs of 0.9634,
DenseNet has a maximum distance of negative pairs of 1.090 and a maximum validation
distance of negative pairs of 0.9342, and ResNet50 has a maximum distance of negative
pairs of 1.074 and a maximum validation distance of negative pairs of 0.9817. These
results indicate that the EfficientNet-B0 model can learn more robust features that can
capture subtle differences between the original and plagiarized images, resulting in a
higher maximum distance of negative pairs. Figure 11 compares all models in maximum
negative pairs.
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Table 3. Maximum distance of positive pairs and minimum distance of negative pairs of all models.

Parameter Model Train Validation

ResNet50 0.5827 0.8199
DenseNet 0.5223 0.7032

Maximum Distance
of Positive Pairs MobileNetV2 0.5889 0.8457

EfficientNet-B0 0.4526 0.8059

ResNet50 1.074 0.9817
DenseNet 1.090 0.9342

Minimum Distance
of Negative Pairs MobileNetV2 1.037 0.9634

EfficientNet-B0 1.133 1.0150

Figure 11. The comparison of the minimum distance of negative pairs among ResNet50, DenseNet,
MobileNetV2, and EfficientNet-B0.

From Table 4, we can see that EfficientNet-B0 has the highest accuracy on the training
set among MobileNetV2, DenseNet, and ResNet50 with threshold scores of 0.55, 0.65, and
0.75. This outcome implies that EfficientNet-B0 is better at generalizing to the validation
data and identifying plagiarized images on the validation set when compared to the other
models. The EfficientNet-B0 model can learn more robust features that can capture slight
differences between the original and plagiarized images, resulting in higher accuracy on
the validation set. Figures 12–14 show the results of accuracy and validation accuracy from
the compared models in this study with various threshold scores of 0.55, 0.65, and 0.75,
respectively.

In addition, Table 4 shows that DenseNet has the highest validation accuracy among
the other models (EfficientNet-B0, MobileNetV2, and ResNet50) with threshold scores of
0.55, 0.65, and 0.75. This result is presumably due to DenseNet’s architecture using dense
connections between layers and a feed-forward technique where each layer is connected
to all the other layers. The DenseNet method allows the gradients to flow directly from
any layer to any other layer, enabling the model to learn more robust features that can
capture slight differences between the original and plagiarized images [49]. The dense
connections in DenseNet architecture also reduce the risk of overfitting, allowing the model
to generalize better to the validation data [50].
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Figure 12. Comparison of the accuracy among ResNet50, DenseNet, MobileNetV2, and EfficientNet-
B0 with a threshold score of 0.55.

Figure 13. Comparison of the accuracy among ResNet50, DenseNet, MobileNetV2, and EfficientNet-
B0 with a threshold score of 0.65.

Figure 14. Comparison of the accuracy among ResNet50, DenseNet, MobileNetV2, and EfficientNet-
B0 with a threshold score of 0.75.
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Table 4. The accuracy of all comparison methods is presented with threshold scores of 0.55, 0.65, and
0.75.

Threshold Score Model Accuracy Validation Accuracy

ResNet50 0.9941 0.9352
DenseNet 0.9977 0.9646

0.55 MobileNetV2 0.9898 0.9180
EfficientNet-B0 0.9990 0.9588

ResNet50 0.9977 0.9700
DenseNet 0.9995 0.9864

0.65 MobileNetV2 0.9980 0.9607
EfficientNet-B0 0.9997 0.9838

ResNet50 0.9987 0.9883
DenseNet 0.9995 0.9963

0.75 MobileNetV2 0.9990 0.9862
EfficientNet-B0 0.9996 0.9927

The augmented images in our experiments are used to simulate potential variations of
plagiarized images. These augmented images are a combination of brightness modification,
shear, scaling, rotation, and horizontal flip distortion techniques, and then we used these
augmented images to test our EfficientNet-based model with the triple semi-hard loss
function. Our experiments showed that our model successfully detected augmented images
as plagiarized images with high accuracy. Figure 15 displays the simulation findings.
Figure 16 demonstrates that the original NFT image was uploaded, whereas Figure 15
demonstrates that our proposed model was able to identify plagiarism in the image that
was augmented from Figure 16.

Figure 15. Simulation of detecting plagiarized NFT image.
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Figure 16. Simulation of uploading original NFT image.

As we can see from the simulation in Figure 15, the proposed model can detect
plagiarized images with the nearest distance of 0.2536, which is lower than the threshold
score (0.55, 0.65, or 0.75).

5. Conclusions

Image plagiarism in the NFT system can have a negative impact on both artists and
customers; there is a necessity for a framework to provide a security system to secure
all of the related parts. Developing a reliable detection of plagiarism system is essential
to ensure that people who relate to the NFT system can get protection. We developed
and implemented the EfficientNet-B0-Based DNN with T triplet semi-hard loss to build
image plagiarism detection in the NFT system in this study. Furthermore, the proposed
EfficientNet-B0-Based DNN with triplet semi-hard loss method was implemented for de-
tecting plagiarism NFT images to obtain the lowest loss and the highest accuracy compared
with ResNet50, DenseNet, and MobileNetV2 models for various threshold scores of 0.55,
0.65, and 0.75.

Although we gained promising results, some other studies must be added in the
future. This future research needs to expand the dataset to include a more extensive and
diverse set of NFT images to improve the model’s performance. Furthermore, the proposed
method can be enhanced and deployed in real-world scenarios to determine its efficacy in
detecting plagiarism in NFT images. The proposed solution might be implemented into
current NFT marketplaces such as Opensea, Rarible, SuperRare, etc., adding extra security
for artists and customers. The method can be deployed as a preprocessing step before
placing NFT images on the market, ensuring that only original images are utilized.

In addition, the proposed method can be applied to other digital media besides
images, such as films and music. As the NFT ecosystem increases, the demand for secure
and trustworthy plagiarism detection solutions will also be increased. Implementing the
proposed method in several NFT marketplaces might secure artists’ rights and increase the
credibility and reliability of the entire NFT system.
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