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Abstract: A spherical antenna array (SAA) is an array-designed arrangement capable of scanning
in almost all the radiation sphere with constant directivity. It finds recent applications in aerospace,
spacecraft, vehicular and satellite communications. Therefore, estimation of the direction-of-arrival
(DoA) of electromagnetic (EM) waves that impinge on an SAA with unknown mutual coupling
called for research attention. This paper proposed a spherical harmonic atomic norm minimization
(SHANM) for DoA estimation using an SAA configuration. The gridless sparse signal recovery
problem is considered in the spherical harmonic (SH) domain in conjunction with the atomic norm
minimization (ANM). Because of the unavailability of the Vandermonde structure in the SH domain,
the theorem of Vandermonde decomposition that is the mathematical basis of the traditional ANM
methods finds no application in SH. Addressing this challenge, a low-dimensional semidefinite
programming (SDP) approach implementing the SHANM method is developed. This approach is
independent of Vandermonde decomposition, and directly recovers the atomic decomposition in
SH. The numerical experimental results show the superior performance of the proposed method
against the previous methods. In addition, accounting for the impacts of mutual coupling, an
experimental measured data, which is the generally accepted ground of testing any method, is
employed to illustrate the efficacy and robustness of the proposed methods. Finally, for achieving
DoA estimation with sufficient localization accuracy using a SAA, the proposed SHANM-based
method is a better option.

Keywords: atomic norm; SH; SDP; DoA estimation; SAA; gridless sparse signal recovery

1. Introduction

Various uses of antenna array signal processing depend on the direction-of-arrival
(DoA) estimation, which includes separation of source, spatial filtering, etc. For instance,
DoA estimation of a signal source is specifically important in robotics where the direction
tracking of one or more moving sources permits the recognition of the local surroundings,
which is required in adequate human to robot communication [1–4]. Generally speaking,
the existing methods can be roughly classified into the super-resolution-based methods
and Fourier-transformation-based methods. The angular resolution of the Fourier-based
methods is force-limited by the Rayleigh criterion, and those methods with better resolution
performance than the Rayleigh criterion are referred to as super-resolution methods. Source
signal localization also finds application in signal improvement, signal detection, automated
steering of cameras, and source tracking, among others. DoA information ensures adaptive
beamforming of the received mode pattern for an improved sensitivity of the system in
the desired wave directions, and reduces unwanted interferences [5]. Simply put, it makes
the antenna generate a maximal beam in the users’ desired direction and nulls in the
interference direction, consequently enhancing the behavior of base and mobile stations.
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Hence, estimation of the DoA of electromagnetic waves (EM) impinging on antenna arrays
remains an important and crucial task.

The spherical antenna array (SAA) (depicted in Figure 1) satisfies isotropic require-
ments [6]. The SAA configuration exhibits the capability to receive signals in all directions
with the same strength regardless of the DoA and the polarization [2,5]. In order to explore
the biggest degree of freedom, the SAA must have the ability to determine the polarization
and DoA of the receiving signals impinging on the unit sphere. There are various postulates
that describe the SAA in literature [1,3,5,7–15], but correct theories with deeper intuition of
the signal features of the SAA still beg for research curiosity and attention.

Figure 1. A connected 64-element SAA in anechoic chamber [8].

Various methods or algorithms have been developed for DoA estimation in the spheri-
cal harmonic (SH) domain [16–22]. A good number of these methods calculate metrics over
a dense azimuth–elevation grid in advance of the identification of peaks as the DoAs. Such
algorithms are those that deal with the computation of the steered response power, because
of beamformers that steer in all the source directions, and those that calculate the spatial
spectrum via subspace techniques based on MUSIC (multiple signal classification) [5].
There are widely used methods, such as, the MUSIC method [1], ESPRIT (estimation of
signal parameters through rotational invariance technique) method [5], beamforming, and
ML (maximum likelihood) approaches [4,15]. The above techniques have been investigated
and employed for antenna arrays having arbitrary configurations and produce correct
estimation of DoA. There are more approaches, such as MUSIC group delay [4], the SRP-
PHAT (steered response power with phase transform) approach [5], GCC (generalized
cross-correlation) technique [1,5] adaptive eigenvalue decomposition method [13], 1-D
MUSIC [11] method, and order aware algorithm [8]. In near field, the MUSIC method em-
ployed for spherical configurations [1–3,5] is called SH-MUSIC. Because of the sensitivity
of SH-MUSIC to distortions in the multipath case, Nakamura in [13] developed another ap-
proach named direct path dominance (DPD). In the near field, the mode strength depends
on a source range that is not known a priori. Hence, DPD is measured in the dimension of
time; as such, SH-DPD-MUSIC utilizes higher frames [1]. If near-field frequency smoothing
is applied, then a range dependent source normalization is a requirement. Therefore, other
DoA estimation methods are broken down into the SH domain, which is the minimum
variance distortionless response (MVDR) [8].

At present, different methods for DoA estimation employ a spatial covariance
matrix [5,11,18,19,22–24]. For instance, the steer response power map generated by MVDR
(minimum variance distortionless response) beamformer rejects background noise opti-
mally for all look directions through the adjustment of the beam pattern based on the
MUSIC and spatial covariance matrix [25], which decomposes the spatial covariance matrix
into noise and signal subspaces. The MVDR beamformer comes up as the error in the
placement of beam pattern loss. MUSIC, based on the linear dependency of the reflections
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on the direct path signals, implies the covariance matrix rank is made smaller and the
division between the noise and signal subspaces may be prone to errors.

The generally established mutual coupling correction approaches for antenna arrays
are classified into two classes. The first class deals with the compensation of or calibration
of mutual coupling in decoupled network design and antenna array design. In the second
class, the mutual coupling is corrected by solving the mutual coupling matrix (MCM) via
array signal processing and analysis of electromagnetics (EM) [25]. The implementation of
the first approach is more challenging in engineering. The approach is based on the analysis
of EM, such as the S-scattering parameter technique, and open-circuit voltage techniques
are only applied to transmit mode arrays. The full-wave approach and reception of the
mutual impedance approach require larger measurement data, and the steps involved are
complicated. From the perspective of array signal processing, the blind calibration approach
uses an MCM banded symmetric Toeplitz structure. Mutual coupling calibration can be
achieved using matrix transformation or separation of the mutual coupling coefficient. The
blind calibration approach, when combined with the estimation algorithm, simultaneously
estimates mutual coupling parameters and DoAs [26].

Motivated by the sparse representation method [26,27], spherical sparse signal process-
ing has drawn attention recently. For instance, [28,29], studied sparse recovery for random
sampling in the SH domain. In [30,31], sparse Bayesian learning techniques for DoA es-
timations were developed in the SH domain. This sparse Bayesian learning technique
could exhibit better performance than the `1 norm dependent ones [27], and they have
slow rates of convergence. In addition, grid mismatch issues degrade the aforementioned
sparsity-dependent methods. Dealing with this issue, research has been conducted to
remove the grid modeling error [32].

Lately, a unified scheme was developed for the representation of sparse signals on
the infinite or finite dimensional dictionary in [33]. It leads to the gridless sparse recovery
technique by resolving the optimization problem on the convex hull of an atomic set that is
recognized as atomic norm minimization (ANM). Particularly, atoms that are described by
complex exponentials, Candes and Fernandez-Granda depict that bandlimited signals are
recoverable provided the low-rate samples frequency separation condition is ensured [34].
According to theory, the ANM method is extended to multidimensional frequency mod-
els [35–37], prior knowledge [38], multi-measurement vectors [39] and covariance matrix
scenarios [40–42] for DoA estimation and gridless signal recovery. Conversely, the tradi-
tional ANM techniques are based on the array manifold’s Vandermonde structure, and
therefore applicable only to linear/rectangular arrays.

Using the spherical ANM method in [43] is an easy way to solve the traditional ANM
problem where the elements of the atom are Vandermonde vectors with extra weighting
constrains [44–47]. This method leads to a potential larger dimensional semidefinite pro-
gramming (SDP) challenge than the dimension of samples, that could be computationally
challenging. Based on the detailed real-time utilizations for gridless sparse depiction tech-
niques on the SH manifolds of the DoA, we are inspired to propose a low-dimensional SH
ANM method, which is not yet available in the literature. Moreover, it becomes important
to state that Jie Pan [48] first proposed SHANM. The main novelty of this research in
comparison to [48] is that we specifically extended the SHANM technique to an antenna
array as opposed to a microphone array, supported with real antenna measurement data in
electromagnetics vis-à-vis an SAA, which is the most acceptable justification to examine
and test each method. The main contributions of this paper are summarized as follows.

(a) The gridless sparse signal recovery problem of SH manifolds is studied using ANM
for DoA estimation of signal impinging on an SAA.

(b) The SH atomic norm based on a covariance matrix is defined. Because the SH is not
Vandermonde, the main problem in the extension of the ANM method to the SH
is the formulation of the convex optimization problem without the Vandermonde
decomposition theorem. Dealing with this problem, a low-dimensional semidefinite
programming formulation of the SHANM problem is developed, which consequently
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recovers the atomic decomposition directly with no foundation of the Vandermonde
decomposition theorem.

(c) Consequently, an SHANM-based DoA estimation method is presented for SAA con-
figurations and exhibits improved performance compared to previous methods, par-
ticularly at low SNR (signal-to-noise ratio) and in the case of adjacent sources.

(d) In addition, with the current development in technologies and applications, systems
and circuits are becoming more compact every day, causing the distance between the
elements in the array to be smaller, consequently causing strongly coupled antenna
arrays. This primarily lead to strong mutual coupling, impedance mismatch, and poor
radiation features [49]. Hence, estimating the DoA with mutual coupling remains
an important task. In this work, we accounted for the impacts of mutual coupling
using experimental measured data [8], which is the general and acceptable ground to
examine any method, which we employed to illustrate the efficacy and robustness of
the proposed methods. The proposed method shows sufficient localization accuracy.

2. Signal Model

Considering a spherical antenna array V, the vth radiator is located at uv = (R, φv),
where φv = (θv, ϕv). R, θ, ϕ represent the radius, elevation, and azimuth. There exist I far
field sources situated at ψi = (θv, ϕv) ∈ ξ with ξ = {(θ, ϕ)|θ ∈ (0, π], ϕ ∈ (−π, π]}. The
signal impinging on the SAA G(t) is

G(t) = A(
→
ψ)s(t) + n(t) (1)

where s(t) and n(t) denote the source and noise, respectively. A(
→
ψ) is the array manifold,

A(
→
ψ) = [a(ψi), . . . , a(ψI)] ∈ CV×I .

If Ym
n (θ, ϕ) represents the SH of order n and degree m, then

Ym
n (θ, ϕ) =

√
(2n+1)(n−m)!

4π(n+m)! Pm
n (cosθ)eimϕ

∀0 ≤ n ≤ N, 0 ≤ m ≤ n
(2)

Pm
n (cosθ) denotes the connected Legendre polynomial, the vth element of a(ψi) is then

formulated as the SH series decomposition by neglecting the high order bn(κR) when
n > κR [50]

av(ψi) =
N

∑
n=0

n

∑
m=−n

bn(κR)[Ym
n (ψi)]

∗Ym
n (φi) (3)

where N is the maximum SH order, κ = λ/2π and λ denotes the wavelength, and the
frequency dependent constituent bn(κR) is expressed as [50]

bn(κR) =

{
4πin Jn(κR) open sphere

4πin(Jn(κR)− J′n(κR)
u′n(κR)

un(κR)) rigid sphere (4)

un and Jn are the second kind of spherical Hankel function and the first kind of spherical
Bessel function, correspondingly. J′n and u′n are the derivatives of Jn and un, respectively.

So, in matrix form, the SAA model is

A(
→
ψ) = Y(

→
φ)BYH(

→
ψ) (5)

where the vth original vector of Y(
→
φ) ∈ CV×(N+1)2

and the kth original vector of Y(
→
ψ) ∈ CI×(N+1)2

are defined as [50].

y(φv) =
[
Y0

0 (φv), Y−1
1 (φv), Y0

1 (φv), . . . , YN
N (φv)

]
,

y(ψi) =
[
Y0

0 (ψi), Y−1
1 (ψi), Y0

1 (ψi), . . . , YN
N (ψi)

] (6)
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and B ∈ C(N+1)2×(N+1)2
is

B = diag(b0(κR), . . . , bN(κR)). (7)

Applying the SH transformation as

P(t) = YH(
→
φ)HG(t) = BYH(

→
ψ)s(t) + c(t) (8)

whereH = diag(α1, α2, . . . αv) satisfies [50,51]

YH(
→
φ)HY(

→
φ) = I. (9)

c(t) represents the reshaped/transform added noise. Hence, the SH covariance matrix is
expressed as

R = E
{

P(t)PH(t)
}
= BYH(

→
ψ)RsY(

→
ψ)BH + C (10)

with C = E
{

c(t)cH(t)
}

and Rs = E
{

s(t)sH(t)
}

. We can remark that if E
{

n(t)nH(t)
}
= σ2I,

where σ2 denotes the noise power. The position of the SAA elements
→
φ satisfies the spherical

t-design configuration in [50] (H = I), then C = σ2 I.
Considering the vth column of R in Equation (10) to be rv which can be regarded as

one array measurement. Thus, if H = RsY(
→
ψ)BH , rv can be remodeled as

rv = E{P(t)Pv
∗(t)} = BYH(

→
ψ)hv + cv (11)

where Pv(t) is the ith row of P(t), hv and cv are the vth column of H and C, respectively.
From Equations (10) and (11), the SH covariance matrix in matrix form is [52]

R = BYH(
→
ψ)H + C =

Q

∑
q=1

uqBYH(
→
ψ)ρq + C (12)

where uq represents the Euclidean norm of kth raw of H and ρq is the normalized kth raw
vector of H, i.e., ‖ρq‖2 = 1.

It can be noted that the covariance matrix R in Equation (12) shows a multiple mea-
surement vector formulation, through which a different atomic norm compact derivation
can be developed for the covariance matrix as below.

3. Atomic Norm in the Spherical Domain

From the framework developed in [53], an atomic set where the elements are the
groundwork of depiction to the signals is evaluated. For SH signals, the atomic set Γ
is a function of the atoms in SH vectors Y(ψ) and the signals is expressed as a sum of
different atoms

g =
Q

∑
q=1

uqY
(
ψq
)
, Y

(
ψq
)
∈ Γ. (13)

Equation (13) is known and considered to be atomic decomposition. Evaluating the
most sparse atomic decomposition of g will always give the l0 SH atomic norm as

‖g‖Γ,0 = in f
{

K
∣∣∣g = ∑Q

q=1 uψqY
(
ψq
)
, Y
(
ψq
)
∈ Γ
}

. (14)

Recovering the wave within a convex optimization framework, reference [53] opined
a convex heuristic of the l0 atomic norm, expressed as

‖g‖Γ = inf{t > 0 : x ∈ t conv(Γ)}, (15)
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where conv(Γ) is the convex hull of Γ. Therefore,

‖g‖Γ = inf

{
Q

∑
q=1

uψq|g =
Q

∑
q=1

uψqY
(
ψq
)
, Y
(
ψq
)
∈ Γ

}
, (16)

which is called the SH atomic norm, and the respective dual norm ‖ · ‖∗Γ becomes [54]

‖g‖∗Γ = sup Re
{

Tr
[
gH∂

]}
,

‖g‖Γ ≤ 1
(17)

For the covariance matrix, different atomic norms type are already proposed [55–57].
This article develops another atomic norm of the covariance matrix for DoA estimation
using SAA.

Observing the multiple measurement vector model, an ideal (no noise) covariance
matrix in Equation (12), R = ∑Q

q=1 uqBYH(ψq
)
ρq, then the SH atomic set is defined as

Γ :=
{

B, YH(ψq
)
ρ
∣∣∣ψ ∈, ‖ρ‖2 = 1

}
. (18)

Furthermore, the spherical harmonic l0 norm of the covariance matrix R can be de-
scribed as

‖R‖Γ,0 = inf

{
I|R =

Q

∑
q=1

uqBYH(ψq
)
ρq.vq ≥ 0

}
, (19)

the SH atomic norm of R is expressed as

‖R‖Γ = inf

{
Q

∑
q=1

uq|R =
Q

∑
q=1

uqBYH(ψq
)
ρq.vq ≥ 0

}
, (20)

The section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

4. Resolving the SHANM with SDP

The traditional ANM approaches for the linear spectrum is a function of the theorem
of Vandermonde decomposition to generate the SDP corresponding execution. However,
this method is not directly extendable to SHANM in Equation (20), because of the basic
problem that SH vectors do not have a Vandermonde structure. Dealing with this problem
in this section, we propose an SDP for the SHANM challenge.

4.1. SDP of SHANM

It can be noted that Pm
n (cosθ) is an order n trigonometric polynomial, Pm

n (cosθ) =

∑n
v=−n γn,m,leivθ with unique coefficients {γn,m,l}, and the SH in Equation (2) is described

using Fourier series as [58]

Ym
n (θ, ϕ) =

n

∑
l=−n

An,mγn,m,leilθeimϕ, (21)

where An,m =
√

(2n+1)(n−m)!
4π(n+m)! . From Equation (21), Equation (8) can be rewritten as

P(t) = BOD(
→
ψ)s(t) + c(t) (22)
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where D(
→
ψ) = [f(ψ1), . . . , f(ψI), and f(ψI) = fθ(θi)

⊗
fϕ(ϕi), fθ(θi) =

[
e−iNθi , . . . , 1, . . . ,

eiNθi
]T ,

fϕ(ϕi) =
[
e−iNϕi , . . . , 1, . . . , eiNϕi

]T
, (23)

O denotes a constant matrix generated by An,mγn,m,l . Hence, putting Equation (22)
into Equation (12), we have

R = E
{

P(t)PH(t)
}
= ÕD(

→
ψ)RsDH(

→
ψ)Õ

H
+ C (24)

where Õ = BO.
Using the relationship shown in Equation (24) regarding the spherical harmonic

steering vector and Vandermonde matrix, starting with a noiseless scenario where C = 0
we arrive at the low-dimensional SDP implementation for the SHANM method.

Proposition 1. For certain location sources
→
ψ , assuming the objective value of the subsequent

optimization puzzle gives the norm ‖R‖T, implying

‖R‖T = min
Q,M

1
2κ2 Tr(ÕS(Z)Õ

H
) + 1

2 Tr(M)

s.t.

[
ÕS(Z)Õ

H
R

RH M

]
≥ 0,

(25)

if the highest SH order N is high enough and a strong duality condition is ensured, then ‖R‖T =

‖R‖Γ, where ‖R‖Γ is the SH atomic norm described in Equation (20) with R ∈ C(N+1)2×(N+1)2
.

κ = ‖Õ‖F =

√√√√ N

∑
l=0

(4l + 1)
4π

‖B‖F, (26)

and S(Z) is a Hermitian matrix, which is a function of Z as [35]

S(Z) =


Z0 Z−1 0
Z1 Z0 0
...

...
. . .

Z2N Z2N−1 . . .

Z−2N
Z−2N+1

...
Z0

 (27)

where Zv is a Toeplitz matrix described by lth row of Z to be

Zl =


Zl,0 Zl,−1 . . .
Zl,1 Zl,0 . . .

...
...

. . .
Zl,2N Zl,2N−1 . . .

Zl,−2N
Zl,−(2N−1)

...
Zl,0

 (28)

4.2. Signal Denoising of SHANM

This subsection deals with noisy scenarios when C 6= 0. The estimation of the covari-
ance matrix obtained through averaging the snapshots in a practical sense is

R̂ =
1
J

J

∑
t=1

P(t)PH(t) = ÕD(
→
ψ)RsDH(

→
ψ)Õ

H
+ ς = R + ς (29)

where ς denotes the outlier from the added noise and the impact of finite snapshots. A
normal method of dealing with the additional noise for the sparse problem is regularization.
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According to [58], for recognized sources, the least fitting error ε could come out to be
the best option, where there is unnoticeable false alarm. Therefore, the signal denoising
problem by SHANM is expressed as

min
Z,M,R

1
2κ2 Tr

(
ÕS(Z)Õ

H)
+ 1

2 Tr(M) s.t.

[
ÕS(Z)Õ

H
R

RH M

]
≥ 0

‖R̂−R‖2
2 ≤ ε2

(30)

where ε = ‖ς‖2 is the optimal choice for covariance matrix R recovery. However, it is
shown here that ε = (N + 1)2σ2.

5. Direction-of-Arrival Estimation

In the previous section, a low-dimensional SDP that is a function of the SH atomic
norm minimization (SHANM) method for gridlesss sparse signal recovery on the manifolds
in the SH domain is presented, which produced source localization. Here, it is demonstrated
how the developed algorithm estimate the DoA using an SAA in free space.

Assuming a far field, the point source estimate of the DoA using an SAA is defined as
recognizing atoms from measurements in the SH domain, and therefore executable based
on the SHANM method.

The DoA estimation using the SHANM-based approach steps from the recovered
covariance matrix

R̃? = ÕS
(

Z̃?
)

Õ
H

, (31)

where Z̃? represents the optimal solution of Equation (30). Extracting the DoAs using the
SHANM-based method in Equation (31), the following analysis is given.

Based on Proposition 1, (Z?, M?) expressed as

S(Z?) =
I

∑
i=1

qif(ψi)fH(ψi),

M? =
I

∑
i=1

qiρiρ
H
i ,

(32)

Therefore, it can be said that the principal component of R̃? spans the space range of
Equation (32). This inspired the application of the subspace approach to the recovered
covariance matrix R̃? to be

R̃? = Us ∑
s

UH
s + σ2UNUH

N . (33)

Decomposition of the eigenvalue of R̃? produces the signal subspace Us and noise
subspace UN , and then

Ξ(Us) ≈ Ξ(BYH(
→
ψ)) (34)

where Ξ(·) represents the spanned subspace, such that the SH-ESPRIT algorithm is appli-
cable to Us for 2D estimation of DoA. Furthermore, the Legendre polynomial recurrence
relationship, assuming

D1 = diag{ 0 ,−1, 0, 1, . . . ,−N + 1, . . . , N − 1},
D2 = diag

{
I−1,0, I−2,−1, I−2,0, I−2,1, . . . , I−N,−N+1, . . . , I−N,N−1

}
,

D3 = diag
{

I+1,0, I+2,−1, I+2,0, I+2,1, . . . , I+N,−N+1, . . . , I+N,N−1

} (35)

and
E = D2U(−1)

s D3U(1)
s (36)
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where I±n,m =
√
(n∓m)(n±m + 1) and U(−1)

s , U0
s , U(1)

s is produced from Us [55], then

D1U0
s = E

[⋂T⋂H

]
, (37)

then
⋂

can be expressed as ⋂
=
(

EHE
)−1

EHD1U0
s . (38)

The computation of eigenvalues ui, i = 1, 2, . . . , I, of
⋂

, the DoA of the ith source can
be obtained by θ̂i = tan−1|ui| and ϕ̂i = arg(ui), respectively.

6. Numerical Simulation, and Experiment

Here, the proposed SHANM-based DoA estimation method is evaluated and analyzed
against the l1 norm dependent approach in [51], the SH-ESPRIT in [52], TSDA (elevation
estimations with U-SH-ESPRIT and azimuths estimation with U-SH-RMUSIC) in [53], CV-
VSBL in [54] and Cramer–Rao bound (CRB) in [55]. Comparisons were also made among
the methods using real measurement data from the experiment, which in the end, is the
acceptable ground to test any procedure.

Firstly, an SAA with radius, r = 1.8 cm, and made up of 32 radiators operating at 8.4
GHz (Figure 1) that are uniformly positioned on a rigid sphere, is utilized during numerical
experiments or simulations [6,8,11]. The range between two consecutive samples in the
uniform sampling framework remains constant. The uniform sampling framework gives
rise to small platonic solids. The event appears majorly for a specific number of elements [6].
The highest order of the SAA is 4. A total of 600 different Monte Carlo simulations were
conducted using Matlab software (2019b version) operating on a laptop personal computer
(PC); Intel CPU, Core i7-8565U, 8th Gen., RAM 16 GB, 1 Terabyte. We employed two
iterations in the simulations. To avoid aliasing problems, kr was maintained to be smaller
than order N. In addition, narrowband amplitude modulation (AM) waves at far field
were employed in each simulation case. Both the SHANM approach and SH-ESPRIT are
referred to as SH-ANM-ESPRIT. The approaches that are based on discretion sparsity
estimated DoAs via searching for the I biggest spectrum peaks using 0.2◦ grid interval. The
performance metric used was the root mean square error (RMSE), and it is expressed as

RMSE =

√√√√ 1
MI

I

∑
i=1

M

∑
j=1

(θ̂ij − θi) (39)

where M is the number of simulation trials, and I is the number of source. θ̂ij and θi
represent the estimates and the true value of the ith DoA at the jth attempt.

6.1. Resolution Ability Comparison

It is assumed that two sources are situated at (θ, ϕ) = (40◦, 60◦) and (40◦ + ϑ, 60◦ + ϑ),
and the angle of separation ϑ ranges from 1◦ to 30◦. The on-sphere super resolution
approach presented by Bendory et al. [58] as S-R-Sphere is referred to and compared with
the average error of the DoA estimates of the SH-ANM-ESPRIT approach and S-R-Sphere
approach under an ideal (without noise) single snapshot scenario. The average estimate
error of 250 trials against the angle of separation is as depicted in Figure 2. It can be
observed that both approaches share identical error levels in the estimation of the DoA,
i.e., they probably share a similar resolution. Evaluating the complexity in computation,
the average run time for each trial was computed for the two approaches. The proposed
approach took about 0.5499 s and the S-R-Sphere approach took 1.3737 s per trial. This
implies that the proposed method is more computationally efficient.
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Figure 2. Error in DOA estimation against angle of separation in an ideal (no noise) single
snapshot scenario.

6.2. Behavior under Uncorrelated Sources

The SHANM based approach is compared with the baselines using uncorrelated
sources. It is assumed two equal power independent sources arrive at the SAA from
(θ, ϕ) = (30◦, 60◦) and (40◦, 130◦). A total of 250 snapshots were employed per trial and
SNR values varied from 0 to 20 dB.

The RMSE values of the SH-ANM-ESPRIT, TSDA, SH-ESPRIT, and CV-VSBL ap-
proaches are as depicted in Figure 3. For azimuth, SH-ANM-ESPRIT gives a similar level
of accuracy as the TSDA approach, and gives better performance in elevation estimation.
In addition, the proposed method exhibits superiority in performance when compared
with other methods. It is important to note that the l1 − norm dependent approach shows
worse performance among sparsity-based approaches. This could be because of the prob-
lem faced while choosing the regularization variable, and the impacts to the truncating
SVD processing.

Figure 3. Comparison of performance at various SNRs under uncorrelated sources at
(θ, ϕ) = (30◦, 60◦) and (40◦, 130◦). SNR is from 0 dB to 20 dB, 250 snapshots. (a) Azimuth.
(b) Elevation.

Furthermore, a comparison of the methods against the number of snapshots at 0 dB
SNR is presented. Two uncorrelated sources are positioned at (θ, ϕ) = (30◦, 60◦) and
(36◦, 138◦). Figure 4 shows that SH-ANM-ESPRIT exhibits the best performance.
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Figure 4. Comparison of performance with different value of snapshots under uncorrelated sources
at (θ, ϕ) = (30◦, 60◦) and (36◦, 138◦), 0 dB SNR. (a) Azimuth. (b) Elevation.

In addition, the SH-ANM-ESPRIT method is compared with the l1 − norm, CV-VSBL,
TSDA, and SH-ESPRIT methods against the angle of separation in terms of resolution
probability. The interval of the grid is between 1◦ with 3 dB SNR. Assuming two uncorre-
lated sources are at (θ, ϕ) = (30◦, 60◦) and (40◦ + ϑ, 60◦ + ϑ), the elevation of two signals
requiring solution and that both

∣∣θ̂1 − θ1
∣∣ and

∣∣θ̂2 − θ2
∣∣ < |θ1 − θ2|/2, and the probability

of resolution of the azimuth could be described in a similar way.
In all, the SH-ANM-ESPRIT approach performs better than other approaches, as

demonstrated in Figure 5. Therefore, SH-ANM-ESPRIT shows a super-resolution ability of
DoA estimation.

Figure 5. Resolution probability against angle of separation under uncorrelated sources at
(θ, ϕ) = (40◦, 60◦) and (40◦ + ϑ, 60◦ + ϑ), 3 dB SNR. (a) Azimuth. (b) Elevation.

6.3. Behavior under Correlated Sources

This subsection investigates, under correlated sources, the level of robustness of all
methods. The two sources are in the same position with the results given in Figure 3 using
the wave correlation coefficient α = 0.7 and 250 snapshots. Figure 6 shows the illustration
of the RMSE of all the approaches against the SNR. It can be observed that using correlated
sources, each subspace-dependent approaches degrades in performance when compared
with the uncorrelated sources scenario; however, the SH-ANM-ESPRIT approach is robust
with regard to correlated signals. Estimating the azimuth, the SH-ANM-ESPRIT approach
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achieves the best accuracy level among all approaches, as the SNR varies from 10 dB to
20 dB. The performance of the SH-ANM-ESPRIT approach is satisfactory for elevation
estimation.

Figure 6. Comparison of performance with various SNRs under correlated sources (θ, ϕ) = (30◦, 60◦)
and (40◦, 130◦), 250 snapshots, and α = 0.7. (a) Azimuth. (b) Elevation.

Figure 7 shows the RMSE performance of the proposed method, SH-ESPRIT, TSDA,
and l1 − norm against snapshots, where it is assumed two correlated sources situated at
(θ, ϕ) = (30◦, 60◦) and (36◦, 138◦) with α = 0.8 and 5 dB SNR. The results shows SH-
ANM-ESPRIT gives a high level of robustness in relation to highly correlated sources.

Figure 7. Comparison of performance with different value of snapshots under correlated sources at
(θ, ϕ) = (30◦, 60◦) and (36◦, 138◦), α = 0.8. (a) Azimuth. (b) Elevation.

6.4. Experimental Measured Data

In order to fulfil the developing requirement and applications, a particular element’s
number is located on the systems. The inter-element spacing has become smaller, which
leads to serious mutual coupling, causing poor radiation performance, and impedance
matching [1,5,11]. Incorporating the impact of the mutual coupling problem in between
the radiators, a practical measurement data, which is the most acceptable basis for testing
any method, is employed. Hence, experimental data are also employed to analyze and
evaluate the performance of the proposed method against the baselines. The antenna array
is situated at the center of an anechoic chamber. The source is located at 74 DoAs, and
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received from the various merging of four elevations and eighteen various azimuths. The
azimuths from 5◦ to 365◦ with 20 degree step size were selected. Comprehensive detail
regarding the measurement setup is as presented in Figure 8 [8], where the measured data
were originally published. Performance comparison between SH-ANM-ESPRIT, TSDA,
SH-ESPRIT, and CV-VSBL were conducted. The gross error (GE) of the estimated DoA
for each method against the SNR is processed and the results are as shown Figure 9. The
SH-ANM-ESPRIT shows superiority in performance among all the methods, even with
mutual coupling effect.

Figure 8. Experimental setup for measurement using an SAA. (a) SAA. (b) Configuration of the SPAA
in anechoic chamber [8].

Figure 9. GE versus SNR performance using real measured data for various approaches.
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7. Conclusions

In conclusion, this paper presents a SHANM-based DoA estimation method for EM
waves impinging on an SAA configuration. A gridless sparse electromagnetic wave recov-
ery is considered in the spherical harmonic domain in conjunction with the ANM. Because
of the unavailability of the Vandermonde structure for the SH, the theorem of Vander-
monde decomposition that is the mathematical basis of the traditional ANM methods find
no application in the SH. Addressing this challenge, a low-dimensional SDP approach
implementing the SHANM method is developed. This approach is independent of the
decomposition of Vandermonde, and directly recovers the atomic decomposition in the SH.
The simulation results show the superiority of the proposed method against the state of
the art. Furthermore, considering the mutual coupling impacts, experimental measured
data, which in the end, is the ground truth to test any procedure, is employed to illustrate
the efficiency and robustness of the proposed SHANM-based DoA estimation method.
Finally, both simulation and experimental results are inspiring enough towards practical
deployment of the SHANM-based method for DoA estimation with enough accuracy of
localization using an SAA.
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