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Abstract: Transient heat conduction problems are systematically applied to the fading memory
formalism with different Mittag-Leffler-type memory kernels. With such an approach, using various
memories naturally results in definitions of various fractional operators. Six examples are given
and interpreted from a common perspective, covering the most well-liked versions of the Mittag-
Leffler function. The fading memory approach was used as a template and demonstrated that, if the
constitutive equations are correctly built, it is also possible to directly determine where the hereditary
terms are located in the models.
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1. Introduction
1.1. Motivation of This Study

In recent years, there are “hot discussions” on definitions and applicability of fractional
operators with different kernels [1–7]. In general, these discussions are from a mathematical
point of view [4,8–11], because as a rule, the new operators are formulated constitutively,
declaring their structures, with various kernels: correctly defined but depending only on
the author’s imagination, without any physical backgrounds. The “mischance” in fractional
modeling begins when operators with kernels not related to certain physical problems are
implemented by replacements in already established integer-order models that make the
results questionable.

Moreover, there are quests to see in the new operators what we already know without
understanding that each operator has its physical basis and new properties. Moreover,
there are attempts to “frame” all operators in already existing theories of fractional operator
generalizations, not related to any real-world problems; This is an approach that, to some
extent, is self-motivated and avoids the fact that fractional calculus is a branch of the applied
mathematics; any steps to make it unified and generalized shrink the areas of applications
and suppress its multifaceted nature, still developing in applied mathematical modeling.

Motivated by the idea to show some steps toward fractional modeling by applying
constitutive equations with memories, obeying the causality principle, and having thermo-
dynamic consistency, the following study was developed, using transient heat conduction
with memory as an example.

1.2. Heat Conduction as a Transport Process with Memory

Transport phenomena with hereditaries that can be described by fractional operators
(derivatives) are hot topics in modeling, and the approach to constructing physically
adequate models is of primary importance. Models with memories can describe behaviors
of elastic and viscoelastic solids, Non-Newtonian fluids, electromagnetic materials [12], as
well as transport processes as flux models of diffusion and heat conduction [12–15].

It is well known that the earlier attempt to model transport processes with hereditaries
comes from the works of Boltzmann [16] and Volterra [17]. We will skip the analysis of the
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Volterra constitutive equation but refer to [15] for a comprehensive analysis showing the
differences between the Volterra approach and the fractional calculus modeling, which is the
main task of this study. Precisely we address heat conduction as a physical problem where
the constitutive equation of the flux can be modeled by fractional derivatives. Moreover,
the main goal is to demonstrate that from the constitutive flux equation, following the
fading memory principle (formalism) [18–21] and assuming different memory kernels, we
may derive several operators widely used in fractional modeling. Hence, we will try to
show that fractional operators appear logically from the correctly constructed constitutive
equations rather than constituted as is generally done in mathematical papers- see the
sequel for more details and reference quotations.

The first step in building the study’s exposition logically is to demonstrate the back-
ground in constitutive modeling of heat flux with a finite speed. Because of that, we will
briefly present two examples: (i) How to create a constitutive equation for heat flux using
the Caputo derivative [15] (Section 1.2.1) and (ii) constitutive equation formulation for heat
conductors with fading memories [22] (Section 1.2.2).

1.2.1. Constitutive Fractional Heat Flux with Caputo Derivative [15]

Let us start with the energy balance (the First Law of Thermodynamics) in a rigid
heat conductor

∂e(x, t)
∂t

= −∂q(x, t)
∂x

+ r (1)

where e = ρCpT is the internal energy, q(x, t)is the heat flux, and r is the heat generation
(per unit volume). With the Fourier constitutive equation

q(x, t) = −k(T(x, t))
∂T(x, t)

∂x
, k(T(x, t)) (2)

where k(T(x, t))is the thermal conductivity. This construction of the heat flux has no memory,
propagates with infinite speed, and with the energy balance equation results in the parabolic
Fourier model.

Attempts to model heat flux propagation with a finite speed were done by Cattaneo [23,24]
and Vernotte [25] with slight modifications of the heat flux (via a Taylor series expansion of
the heat flux, in time, and as a first-order approximation), namely

∂q(x, t)
∂t

= q(x, t) + k(T(x, t))
1
τ

∂q(x, t)
∂x

, τ > 0 (3)

with exponential memory (Jeffrey’s memory kernel) R(t) = exp(−t/τ ) , and a finite
relaxation time τ, named the Cattaneo equation (see more details in Section 4.2).

As Fabrizio [15] demonstrated, replacing the time derivative in (2) by a fractional
(Caputo) derivative, we get (in the original notations)

C
−∞Dα

t q(x, t) = q(x, t) + k(T(x, t))
∂T(x, t)

∂x
, α > 0, t > 0 (4)

The thermodynamic restriction from the Second Law of Thermodynamics for a rigid
heat conductor needs the following inequality to be obeyed [14]

∂η(x, t)
∂t

≥
∂e(x,t)

∂t
T(x, t)

+
1

(T(x, t))2
∂T(x, t)

∂x
(5)

where the internal energy e(x, t) and the entropy η(x, t) are state functions.
In this framework, the following extension of (2) was proposed [15]

q(x, t) = C
−∞Dα

t

[
∂q(x, t)

∂x

]
= −k(x)

1
Γ(1− α)

t∫
−∞

1
(t− τ)α

∂

∂t

[
∂T(x, τ)

∂x

]
dτ =

= −k(x)
α

Γ(1− α)

t∫
−∞

1

(t− τ)α+1

[
∂T(x, τ)

∂x
− ∂T(x, τ)

∂x

]
dτ

(6)
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The second version (in the second row) in (6) is an equivalent presentation of the Ca-
puto derivative.

Finally, with the assumption that the internal energy e(x, t) depends only on T(x, t)
(i.e., the density ρ and the heat capacity Cp are temperature independent) and applying the
energy balance equation the following model was obtained

ρCp
∂T(x, t)

∂t
=

∂

∂x
k(x)

α

Γ(1− α)

t∫
−∞

1

(t− τ)α+1

[
∂T(x, τ)

∂x
− ∂T(x, τ)

∂x

]
dτ + r(x, t) (7)

or in a more convenient form, for the presentation in this article, as

∂T(x, t)
∂t

=
∂

∂x
a(x)

1
Γ(1− α)

t∫
−∞

1
(t− τ)α

d
dτ

[
∂T(x, τ)

∂x

]
dτ + r(x, t), a(x) =

k(x)
ρCp

, t > 0 (8)

Remark 1. It is worth noting and important for the entire discussion developed in this article
that the time derivative in the energy balance equation (sometimes termed a continuity equation)
is not replaced by a fractional derivative. The flux constitutive model is satisfying the causality
principle [26–28], that between the cause (temperature gradient) and the result (output of the
system), there is a time shift. This time shift in (7) is assured by the fractional Caputo derivative.
This comment is of great importance for the model’s development in this article, where similar
constructions of heat flux constitutive equations are developed with contributions of different
fractional derivatives.

Remark 2. The construction (6), in the light of the fractional diffusion model (we have a fractional
diffusion model of thermal energy), does not consider a stationary state, that is, when the model
reduces to the Fourier constitutive Equation (2) which is valid for long times where the relaxation of
the heat flux vanishes. In addition, the analysis in [29] provides sufficient information on fractional
modeling of transient heat conduction.

1.2.2. Constitutive Heat Flux with Linear Memory [22]

Following Giorgi and Gentili [22], the internal energy e(x, t) and heat flux q(x, t), and
following the fading memory principle [18–21] are described by the following linearized
constitutive equations (with notations used in this work)

e(x, t) = e0 + Cpθ(x, t) +
∞∫

0

Re(s)θ(t− s)ds (9)

q(x, t) = −k0
∂T(x, t)

∂x
−

∞∫
0

Rq(s)θ(t− s)ds (10)

θ(x, t) = T(x, t) − T0(x, t), T0(x, t) = T(x, 0) is temperature variation field. Further,
Re(t) and Rq(t) are relaxation functions (fading memories), and following the arguments
of Day [21], the fading memory principle is equivalent to Re(t), Rq(t) ∈ L1(R+) and Rq(t).

In this context, the heat capacity Cp(t) , and thermal conductivity k(t) are defined as [22]

Cp(t) = Cp0 +

t∫
0

Re(s)ds, k(t) = k0 +

t∫
0

Rq(s)ds, Cp0 > 0 (11)

and C0 = limt→∞Cp(t), and k0 = limt→∞k(t) are equilibrium heat capacity , and the equilib-
rium thermal conductivity, that is when the memory integrals in (11) are vanishing.

At this point, we will discontinue the discussion of the thermodynamic principles
of fading memory (it will be revisited in Section 3 devoted to model development with
fractional operators), but it is critical to emphasize two principles in the constitutive
model formulation:
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1. The memory integral is an additive part (in the cases discussed here, a linear
contribution) to the constitutive heat flux model. This gives us a great opportunity to
apply fractional modeling through the use of adequately formulated relaxation functions
(memory kernels), as we will do in the sequel to this article.

2. The energy balance equation remains unchanged since the First Law of Thermo-
dynamics holds. This directly means that the time derivative of internal energy cannot be
mechanistically replaced by fractional operators.

Remark 3. We can see that we have two versions of constitutive heat flux formulations, but the
energy balance equation remains unmodified since this is the First Law of Thermodynamics. Any
changes in the balance equation, which is a very common step in fractional calculus publications,
caused by replacing the time derivatives with fractional counterparts are violations of the First Law
of Thermodynamics. The main task of mathematical modeling, as well as fractional modeling, is to
solve correctly constructed models with physically interpretable results, which are often found in
formalistic fractional models obtained by replacement.

Remark 4. Before starting with the development of fractional operators with various Mittag-Leffler
kernels, we have to say that there is no mathematics only for mathematics in this study. Fractional
calculus is applied mathematics invoked by reality since the non-localities are natural phenomena
in the transport processes. Because of that, the following exposition stresses the attention to the
physical background of the modeled problems and their adequate interpretations.

1.3. The Main Task of This Article

The main task of this article is threefold:
1. To start the introduction of correctly formulated models of heat conductors with

memory (actually, these are diffusion models, not diffusion models commonly modeled
in heterogeneous media by application of fractional derivatives), applying the fading
memory formalism.

2. To introduce different fractional operators in a logical way by using different relax-
ation functions (completely monotone Mittag-Leffler functions) and how these operators
are related. From our point of view, this approach is of high importance for fractional mod-
eling, where there are too many operators constituted without any physical background
and then incorrectly applied in the modeling of real-world problems.

3. To analyze the developed constructions of diffusion (heat conduction) models and
perform a comparative analysis regarding existing equations from the literature involving
fractional operators based on various Mittag-Leffler-type kernels.

1.4. Paper Organization in the Sequel

The following part of this article is organized as follows: Section 2.1 provides the basic
definitions and properties of the classical (one-parameter) Mittag-Leffler function (MLF)
Section 2.1.1, two-parameter MLF Section 2.1.2, three-parameter MLF (Prabhakar function)
Section 2.1.3, Prabhakar kernel Section 2.1.4. The main fractional operators based on Mittag-
Leffler type kernels and their interrelations are briefly outlined in Section 2.2. The fading
memory formalism with the concept for model build-up with different kernels are explained
in Sections 3 and 3.2. Constitutive heat flux models with different memories are developed
in Section 4: Exponential memory Section 4.2, with Mittag-Leffler (one-parameter) memory
kernel Section 4.3, with Prabhakar memory kernel Section 4.4. Additional experiments
with some special well-kernels are developed in the Section 5: Rzanitsyn kernel Section 5.1,
Miller–Ross kernel Section 5.2 and Rabotnov kernel Section 5.3, thus, demonstrating how
new operators can be generated from a common viewpoint. An analysis of the developed
models in parallel to some available equations from the literature is developed in Section 6.
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2. Preliminaries on Mittag-Leffler Functions, Their Properties and Available
Fractional Operators

To support the further development of the problems envisaged in this article, we need
some preliminary information on the Mittag-Leffler functions and related operators to be
briefly outlined.

2.1. Mittag-Leffler Functions and Related Kernels
2.1.1. One-Parameters Mittag-Leffler Function

The Mittag-Leffler function is defined as a power-series convergent in the whole
complex plane [30,31]

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, α > 0 (12)

and is an entire function of order 1/α
It is a completely monotone (CM) function [30,32] that implies (−1)m dm

dzm Eα(z) ≥ 0,
i.e., a negative function of class C∞ for all m ∈ N, that it is a Bernstein function since its first
derivative is CM. Our interest is oriented toward the function

Eα(−tα) =
∞

∑
k=0

(−1)ktαk

Γ(αk + 1)
, 0 < α < 1, t > 0 (13)

with a Laplace transform

L[Eα(−tα)] =
sα−1

sα + 1
, L

[
d
dt

Eα(−tα)

]
=

1
sα + 1

, α > 0 (14)

For t→ 0+ the asymptotic expansion matches the stretched exponential [30]

Eα(−tα) = 1− tα

Γ(α + 1)
+ · · · ∼ exp

[
− tα

Γ(α + 1)

]
, t > 0 (15)

while for t→ ∞ the asymptote is a negative power-law ≡ t−α

Eα(−tα) ≈
∞

∑
k=0

(−1)k−1 t−αk

Γ(1− αk)
, t→ ∞ (16)

2.1.2. Two-Parameters Mittag-Leffler Function

The two-parameter of the Mittag-Leffler type is defined as a series expansion

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, z ∈ C, α > 0, β > 0, β ∈ C (17)

For β = 1 we get the classical one-parameter Mittag-Leffler function Eα,1(z) defined by (12).
From the definitions (12) and (17) it follows that [30,31,33]

E1,1(z) =
∞

∑
k=0

zk

Γ(k + 1)
=

∞

∑
k=0

zk

k!
= ez (18)

E1,2 =
∞

∑
k=0

zk

Γ(k + 2)
=

∞

∑
k=0

zk

(k + 1)!
=

1
z

∞

∑
k=0

zk+1

(k + 1)
=

ez − 1
z

(19)

The corresponding Laplace transforms are [30,31,33]

L
[
tβ−1Eα,β(−λtα)

]
=

sα−β

sα + λ
=

s−β

1 + λs−α
(20)
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L
[
tαk+β−1E(k)

α,β(−λtα)
]
=

k!sα−β

(sα − λ)k+1 , k = 0, 1, 2, . . . (21)

Eα,β(−z) is completely monotonic [34,35] for any α ∈ (0, 1], precisely if and only if
α ∈ (0, 1] and β ≥ α [36].

The integral of Eα,β(t) is

t∫
0

Eα,β(λtα)tβ−1dt = tβEα,β+1(λtα), β > 0 (22)

Applying the Riemann–Liouville fractional derivative to (17) we get [33]

0Dµ
t

[
tαk+β−1E(k)

α,β(λtα)
]
= tαk+β−µ−1E(k)

α,β−µ(λtα) (23)

When, k = 0 , λ = 1 and µ = m is an integer we get [33]

dm

dtm

[
tβ−1Eα,β(tα)

]
= tβ−m−1Eα,β−m(tα), m = 1, 2, 3, ..... (24)

For m = 1 we have
d
dt

[
tβ−1Eα,β(tα)

]
= tβ−2Eα,β−1(tα) (25)

When β = 1 (one parameter Mittag-Leffler function), then (25) yields

d
dt
[Eα,1(tα)] =

Eα,0(tα)

t
(26)

In this context, the first derivative of Eα(−tα), defined by (13), and the first derivative of
Eα,β(−tα) are related as follows [30]

d
dt
[Eα,α(−tα)] = t−(1−α)Eα,α(−tα) = − d

dt
Eα(−tα) (27)

For λ 6= 1 we have [33]
d
dt
[Eα,1(λtα)] =

Eα,0(λtα)

t
(28)

That is
t∫

0

d
dt
[Eα,1(λtα)] =

Eα,0(λtα)

t
(29)

2.1.3. Three-Parameter Mittag-Leffler Function

Prabhakar [37] introduced the function (see also [38])

Eγ
α,β(z) =

∞

∑
k=0

γk
Γ(αk + β)

zk

k!
, α, β, γ ∈ C, Re(α) > 0 (30)

where γk is the Pochhammer symbol

γ0 = 1, γk = γ(γ + 1) · · · (γ + k− 1) =
Γ(γ + k)

Γ(γ)
, k = 1, 2, .... (31)

For γ = 1 (30) reduces to (17). For γ = β = 1 we get the one-parameter Mittag-Leffler
function (12).

The three-parameter Mittag-Leffler function Eγ
α,β(−z) is completely monotone (CM)

for 0 < α ≤ 1 and β ≥ αγ [39,40], precisely when 0 < αγ ≤ β ≤ 1 [40].
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The differentiation of the generalized Mittag-Leffler function (30) [38] through the
product zβ−1Eγ

α,β(λzα) leads to

dm

dzm

[
zβ−1Eγ

α,β(λzα)
]
= zβ−m−1Eγ

α,β−m(λzα) (32)

For γ = 1 we have

dm

dzm

[
zβ−1Eα,β(λzα)

]
= zβ−m−1Eα,β−m(λzα) (33)

and for m = 1 the differentiation of Eγ
α,β−m(z) is [41]

d
dz

[
zβ−1Eα,β(λzα)

]
= zβ−2Eα,β−1(λzα) (34)

For β = 1 we get
d
dt

[
Eγ

α,1(λtα)
]
=

Eγ
α,0(λtα)

t
(35)

and for γ = 1 we get (27).

2.1.4. Prabhakar Kernel

Prabhakar [37] studied a generalized Mittag-Leffler function (hereafter termed as
Prabhakar kernel) (see also [40])

eγ
α,β(t) = tβ−1Eγ

α,β(−tα), t ≥ 0 (36)

The Laplace transform of eγ
α,β(t), for some particular values of the parameters is [40,42,43]

L
[
eγ

α,β(t)
]
=

sαγ−β

(sα + 1)γ , <(s) > 0, |sα| > 1 (37)

For λ 6= 1 the Laplace transform and its inverse are [44]

L
[
eγ

α,β(±λtα)
]
=

sαγ−β

(s∓ λ)γ , L−1
[

sαγ−β

(s∓ λ)γ

]
= tβ−1Eγ

α,β(±λtα) (38)

The function eγ
α,β(t) is locally integrable and completely monotone if the conditions

0 < α ≤ 1 and 0 < αγ ≤ β ≤ 1 are satisfied [45].
Asymptotically, for t→ ∞ we have [40]

eγ
α,β(t) ∼


tβ−αγ−1

Γ(β− αγ)
, 0 < αγ < β ≤ 1

− γ
tβ−αγ−1

Γ(β− αγ)
, 0 < αγ = β ≤ 1

(39)

The integral of eγ
α,β(λt) for any t ∈ R+ and λ ∈ C is [43]

t∫
0

uβ−1Eγ
α,β(λuα)du = tβEγ

α,β−1(λtα) (40)

The m− th repeated integration of eγ
α,β(λt) = tβ−1Eγ

α,β(−λtα) [41]

Im
0

[
Eγ

α,β(λtα)
]
= tβ+m−1Eγ

α,β+m(λtα) (41)
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In addition, for any m ∈ N the differentiation is is defined by (32) and in terms of time t is [43]

dm

dtm

[
tβ−1Eγ

α,β(λtα)
]
= tβ−m−1Eγ

α,β−m(λtα) (42)

For m = 1 the differentiation of tβ−1Eγ
α,β(λtα) is (33) [41]

d
dt

[
tβ−1Eγ

α,β(λtα)
]
= tβ−2Eγ

α,β−1(λtα) (43)

2.2. Fractional Operators with Mittag-Leffler-Type Kernels: Definitions and Interrelationships

Here, features of the main “artists” in this study employing different members of
the Mittag-Leffler function family will be briefly encompassed. It is worth mentioning
for a better understanding of the approach taken in the current work that all these frac-
tional operators have been introduced constitutively, without proof of where they come
from [38,40–43,45–49]. To be correct, the procedure is straightforward: we select a kernel,
then insert it into constructions such as the Riemann–Liouville integral or the Caputo
derivative [31,50] to obtain new operators. The sources contain no words that explain how
these memories (kernels) are linked to certain physical models.

The three-parameter Mittag-Leffler function (30), as we mentioned, is CM’s entire
function, and we focus the attention on the so-called Prabhakar kernel (36), which in
particular reduces to [51]

e1
1,1(λt) = exp(λt), e0

1,1(λt) =
tβ−1

Γ(β)
, eγ

α,β(λ = 0, t) =
tβ−1

Γ(β)
(44)

2.2.1. Prabhakar Integral

The Prabhakar integral with base point 0 is defined as [41,51] (in a Riemann–Liouville sense)

P Iγ
α,β,λ f (t) =

t∫
0

eγ
α,β(λ, t− τ) f (τ)dτ, f (t) ∈ L1(0, 1) (45)

Moreover, P Iγ
α,β,λ f (t), for f (t) ∈ L1(0, 1) can be presented as [51]

P Iγ
α,β,λ f (t) =

∞

∑
k=0

γk
k!

λk Iαk+β f (t) (46)

That is P Iγ
α,β,λ f (t) is linear and bounded from Lp(0, 1) into Lp(0, 1) for any 1 ≤ p ≤

∞ [51]. Recalling that for λ = −1 we get e(−1, t) = tβ−1Eγ
α,β(−tα) as CM function, if

0 < αγ ≤ β ≤ 1 as well as [41]

P Iγ
α,β,λ

[
eω

α,µ(λt)
]
= eω+γ

α,µ+β(λt) (47)

2.2.2. Prabhakar Derivatives

The Prabhakar derivative in the Riemann–Liouville sense is defined as [41,49,51]

RLPDγ
α,β,λ f (t) =

d
dt

[
P I−γ

α,1−β,λ f (t)
]

(48)

The Prabhakar derivative in the Caputo sense is defined as [41,49,51]

CPDγ
α,β,λ f (t) = P I−γ

α,1−β,λ
d f (t)

dt
(49)

In this context, for γ = 0 and λ = 0 the Prabhakar integral reduces to the Riemann–Liouville
integral, [51].
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P I0
α,β,0 f (t) =

t∫
0

eγ
α,β(0, t− τ) f (τ)dτ =

1
Γ(β)

t∫
0

(t− τ)β−1 f (τ)dτ = Iβ f (t) (50)

The Laplace transform of CPDγ
α,β,λ f (t) is [51]

L
[

CPDγ
α,β,λ f (t)

]
= sβ−αγ(sα − λ)γ

{
L
[

f (t)−m =
1

∑
k=0

s−k−1 f (k)(0+)

]}
(51)

With m defined as the integer part of β. For m = 0 (also for m = 1) we have [51]

L
[

CPDγ
α,β,λtn

]
= sβ−αγ(sα − λ)−γ Γ(n + 1)

sn+1 (52)

2.2.3. Caputo Derivative

Considering the Caputo derivative [31,50]

CDα
t =

1
Γ(1− α)

t∫
0

(t− τ)−α d f (τ)
dτ

dτ (53)

and its Laplace transform

L
[

CDα
t tn
]
=

Γ(n + 1)
sn−α+1 , α > 0 (54)

we can see that for f (t) = tn, we get [51]

L
[

CPDγ
α,β,0tn

]
= L

[
CPD0

α,β,λ f (t)
]
=

Γ(n + 1)
sn−β+1 = L

[
CDβtn

]
(55)

That is, comparing the Laplace transforms (52) and (54), we see that the Caputo deriva-
tive (53) is a particular case of Prabhakar fractional derivative (49).

2.2.4. Atangana–Baleanu Derivative

Further, the Atangana–Baleanu derivative in the Caputo sense [52]

ABCDα
t f (t) =

M(α)

1− α

t∫
0

Eα

(
− α

1− α
(t− τ)α

)
d f (τ)

dτ
dτ (56)

With a normalization function M(α) such that M(0) = M(1) = 1 , and we may see
that λ = α/(1− α) , has a Laplace transform, when f (t) = tn, can be presented as [51]

L
[

ABCDα
t tn
]
=

M(α)

1− α

1
sα + α

1−α

Γ(n + 1)
sn−α+1 (57)

Thus, we can see that ABCDα
t f (t) is a particular case of CPDγ

α,β,λ f (t). Recall that E1
α,1(z) =

e1
α,1(z) =

∞
∑

k=0

zk

Γ(αk+1) (12).

2.2.5. Caputo–Fabrizio Derivative

Finally, let us consider the simplest case with the Caputo–Fabrizio derivative [53]
(with M(α) = 1 [54]

CFDα
t =

1
1− α

t∫
0

exp
(
− α

1− α
(t− τ)

)
d f (τ)

dτ
dτ (58)



Appl. Sci. 2023, 13, 3065 10 of 31

has a Laplace transform in case with f (t) = tn [51]

L
[

CFDα
t tn
]
=

Γ(n + 1)
sn

1
α + (1− α)s

(59)

Then, considering L
[

CPDγ
α,β,λtn

]
for α = 1 , β = 0 , γ = −1 , and λ = α/(1− α)

we get [51].

L
[

CPD1
1,0,α/(1−α) tn

]
=

Γ(n + 1)
sn

1
s + α

1−α

= (1− α)L
[

CFDα
t tn
]

(60)

That is, the Caputo–Fabrizio derivative is a particular case of the Prabhakar derivative of
the Caputo-sense. Recall that exp(z) = E1

1,1(z) = e1
1,1(z).

All these interrelationships between the derivatives of the Caputo sense naturally come
from the interrelationships between the Mittag-Leffler function Eγ

α,β and the Prabhakar kernel

eγ
α,β when the parameters α ,β and γ take different values as was discussed in Section 2.1.

In the sequel, we can see how these fractional derivatives logically appear through
constitutive equations based on the fading memory formalism when the primary relaxation
function (memory) is defined as the first derivative of a certain kernel based on the Mittag-
Leffler type function.

After this brief exposition of interrelationships between fractional operators based
on the Mittag-Leffler function, we highly recommend the analyses in [55–59] where more
deep relations are developed. At this end, the naturally arising question is: Despite the
mathematical correctness of the generalized operators, their applicability to real-world
physical problems is still questionable, albeit some successful steps in this direction have
been done [40,41,48,49,60–62].

2.3. The Fractional Order in Caputo–Fabrizio and Atangana–Baleanu Derivatives
Caputo–Fabrizio Fractional Operator: The Fractional Parameter

In the definition of the Caputo–Fabrizio operator, the stretched time (t− s) is multi-
plied by a dimensional factor λ = α/(1− α) which should have a dimension s−1 while
actually, it should be dimensionless because physically α is a dimensionless parameter. By
a nondimesionalization of the exponential function with the help of characteristic time of
the relaxation process t0, namely

exp
(t− s)

τ
= exp

(t/t0 − s/t0 )

τ/t0
= exp

(t̄− s̄)
τ̄

(61)

where τ is the relaxation time and in the context used earlier τ = 1/λ in the definition (58)
(see also the explanations about the construction of (59) and has a dimension 1/time.

This nondimesionalization does not change the meaning of the exponential relaxation
function but avoids any doubts about the definition of the fractional order α as [63].

1− α

α
=

τ

t0
⇒ α =

1
1 + τ/t0

(62)

The Atangana–Baleanu derivative of Caputo sense (ABC) with B(α) = 1 can be rescaled as [64]

ABCDα
a+ f (t) =

1
1− α

z∫
0

d f (s̄)
ds̄

Eα

[
−
(

t̄− s̄
τ̄

)α]
ds̄,

1− α

α
=

(
τ

t0

)α

= (τ̄)α, t̄ =
t
t0

, z = s/t0

(63)

In detail, we have
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ABCDα
a+ f (t) =

1
1− α

z∫
0

d f (s̄)
ds̄

{
∞

∑
k=0

1
Γ(αk + 1)

[
−
(

t̄− s̄
τ̄

)α]k
}

ds̄ (64)

Therefore, the argument of the Mittag-Leffler kernel Eα(−Z) is Z = [α/(1− α)](t− s)α

and consequently we get [64](
1− α

α

)k
=

(
τ

t0

)k
⇒ α =

1
1 + (τ/t0 )

(65)

The results are the same as established for the Caputo–Fabrizio operator [64–66].
Hence, the fractional order α introduced through λ = α/(1− α) in the generalized

formulation of the derivatives has a physical meaning and is strongly related to the char-
acteristic time scales of the relaxation process modeled. In this context, the case with
the Caputo–Fabrizio operator is more physically clear due to the large background of
exponentially decaying processes.

3. Fading Memory Approach (Formalism) and Concept of Model Development
3.1. Fading Memory Concept

The Boltzmann linear superposition functional [16] for hereditary viscoelasticity with
a time-dependent memory kernel (correlation function) R(t, τ) is

ϕ(x, t) = A1[vx(x, t)] + A2

t∫
0

R(x, t− τ) vx(τ)dτ (66)

The fading memory concept relating the flux to its gradient, for simple materi-
als [67–69] is modeled by the following integrodifferential equation

j(x, t) = −A1
∂C(x, t)

∂x
− A2

t∫
−∞

R(t− τ)
∂C(x, τ)

∂x
dτ (67)

as a manifestation of the Boltzmann linear superposition functional 66). In (67) the transport
coefficients A1 and A2 are diffusivities. The history value problem for (67) addresses the
following integral [69]

d(t) =
0∫

−∞

R(t− τ)
∂C(x, τ)

∂x
dτ (68)

allowing to give a function C(x, t) on (−∞ < t ≤ 0) From (67) and (68) it follows that

∂

∂x
j(x, t) = −A1

∂2C(x, t)
∂x2 − A2

t∫
0

R(t− τ)
∂2C(x, τ)

∂x2 dτ +
∂

∂x
d(t) (69)

Since C(x, t) is a causal function (vanishing for t < 0) and considered only for 0 < t < ∞
we accept d(t) = 0⇒ ∂

∂x d(t) = 0, and therefore (69) can be rewritten as

∂

∂x
j(x, t) = −A1

∂C(x, t)
∂x

− A2

t∫
0

R(t− τ)
∂C(x, τ)

∂x
dτ (70)

Reducing (69) and setting the lower terminal of the memory integral to zero have deep
physical meaning when applying hereditary integrals. The essence is well expressed by
Hilfer in [70] that in fractional operators, the time is not the chronological time (instant time)
but the intrinsic time of the process (the time of duration), starting at the point accepted as t = 0.
Hence, in the context of the reduction of (69) to (70), there is no process before t = 0.
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The deep thermodynamic sense of the fading memory formulation is that the non-
locality represented by the convolution term works for short times, while for long times,
we get the first term in (70), i.e., the instant reaction of the system. Moreover, models
constructed with the fading memory principle obey: the causality principle (through the
convolution term) [26–28], thermodynamic consistency [71,72], and model observability
(objectivity) [73–75].

Further, if A1 = 0, that is, the process modeled has no long-time asymptotically stable
state, the result is a model close to the Continuum Time Random Walk (CTRW) without a
stationary state [76,77], and applying the continuity equation to such flux, we get

∂C(x, t)
∂t

=
∂

∂x
j(x, t)⇒ ∂C(x, t)

∂t
= A2

t∫
0

R(t− τ)
∂C(x, τ)

∂x
dτ (71)

To a greater extent, the model (71) mimics the master equation [77,78]; this is only a remark,
and we will not elaborate on it further in this study but refer readers to [79–81] where this
issue was developed in detail regarding Prabhakar-type memory.

Remark 5. Fading memory concept in the case of heat conduction is well applicable to the so-called
simple materials [21,82] where the flux is proportional to the temperature gradient (the term
was coined after the work of Storm [82]), as in all examples studied here.

3.2. Model Build-Up Concept

Let us take a look at the flux definition of (67) where the relaxation (memory) function
can be presented as M(t) = δ(t) + R(t) such that (67) expressed as a convolution product

j(x, t) =
[
−∂C(x, t)

∂x

]
∗M(t) =

[
−∂C(x, t)

∂x

]
∗ [A1δ(t) + A2R(t)] (72)

The two main requirements for R(t) are: it should be completely monotone, regardless
of the fact that it is singular or non-singular, and that its first derivative dR(t)/dt = Rt(t),
should also be completely monotone.

The two main requirements for R(t) are: it should be completely monotone, regardless of
whether it is singular or non-singular at t0+, and that its first derivativedR(t)/dt = Rt(t)
should also be a completely monotone function.

Then, the main step in the construction of the flux constitutive model is the use Rt(t)
instead R(t), that is

j(x, t) =
[
−∂C(x, t)

∂x

]
∗M(t) =

[
−∂C(x, t)

∂x

]
∗ [A1δ(t) + A2Rt(t)] (73)

Let us consider the convolution term alone and use integration by parts to clarify things.

t∫
−∞

Rt(t− τ)
∂C(x, τ)

∂x
dτ =

t∫
−∞

∂C(x, t)
∂x

dR(t− τ) =

=
∂C(x, τ)

∂x
dR(t− τ)

∣∣∣∣t
−∞
−

t∫
−∞

R(t− τ)
d

dτ

[
∂C(x, τ)

∂x

] (74)

The term = ∂C(x,t)
∂x dR(t− τ)

∣∣∣t
−∞

is zero when we have: R(t) is a causal function and the initial

conditions corresponding to a virgin material (medium) are C(x, 0) = C(0, 0) = C(∞, t) =
C(−∞, t), Cx(x, 0) = Cxx(x, 0) = 0 (signaling problem). As a result, we get
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t∫
−∞

Rt(t− τ)
∂C(x, τ)

∂x
dτ = −

t∫
−∞

R(t− τ)
d

dτ

[
∂C(x, τ)

∂x

]
dτ (75)

Denoting ∂
∂x C(x, t) = f (x, t) and setting the lower terminal at zero, we get a constriction of

Caputo-type fractional derivative that is

CDα
t f (x, t) =

M(α)

N(α)

t∫
0

R(t− τ)
d f (x, τ)

dτ
dτ (76)

where the pre-factor M(α)/N(α) that only takes into account fractional order, but it
is determined by the type of memory kernel (see Section 2.2 and the developments in
the sequel).

The flux can therefore be expressed as

j(x, t) = −A1
∂C(x, t)

∂x
− A2

CDα
t

[
∂C(x, t)

∂x

]
(77)

In this case, the hereditary term is generically expressed as a fractional derivative of
the Caputo type without any kernel-specific information. Then, applying the continuity
equation ∂C

∂t = − ∂q
∂x we get

∂C(x, t)
∂t

= A1
∂C(x, t)

∂x
+ A2

CDα
t

[
∂C(x, t)

∂x

]
(78)

For α = 1, this model reduces to the local diffusion equation.

Remark 6. Specific comment is required regarding the following exposition before moving on to
the modeling method. Assuming that the kernel of the most straightforward scenario is built first,
the model build-ups are demonstrated inductively. The model build-ups are illustrated deductively,
which suggests that the kernel of the most straightforward scenario is constructed first. When
the same approach is used to handle ever-more complex kernels, the resulting fractional operator
structures gradually become more complex. The approach taken here is more instructive than the one
frequently used in the literature, which starts with the most complex kernel and gradually creates
simpler kernels by lowering the complexity parameters.

4. Heat Conduction Models with Mittag-Leffler-Type Memories: Examples
4.1. Heat Conduction with Infinite Flux Speed (Local in Time)

Here we start with simple heat conduction, local in time, which will allow us to see
how the approach developed here upgrades it towards non-local versions expressed in
terms of fractional operators. The energy conservation (continuity) equation is

∂
(
ρCpT

)
∂t

= − ∂q
∂x

(79)

If the constitutive equation is (Fourier law)

q(x, t) = −k
∂T(x, t)

∂x
(80)

we get the local in-time heat conduction model (Fourier model)

∂
(
ρCpT

)
∂t

= k
∂2T
∂x2 (81)
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or with constant density ρ = const. and heat capacity Cp = const. as

∂T
∂t

= a
∂2T
∂x2 , a =

k
ρCp

(82)

where a = k
ρCp

is the thermal diffusivity.

4.2. Heat Flux with Exponential Memory Kernel

Consider a virgin semi-infinite material (medium) with initial and boundary condi-
tions (signaling problem)

T(x, 0) = T(∞, t) = T(−∞, t) = 0, Tx(x, 0) = Txx(x, 0) = 0, T(0, t) = Ts (83)

These conditions will be valid for all examples developed in the sequel.
We start with the simplest case when the kernel is

e1
1,1(−λt) = exp(−λt),

d
dt

[
e1

1,1(−λt)
]
= −λ exp(−λt) (84)

which will allow an easier understanding of the technology of the solution. This develop-
ment follows the results of [66].

Hence, we consider an exponential memory (Jeffrey’s kernel) R(t) [83] with a finite
relaxation time τ (and λ = 1/τ )

R(t− s) = exp
(
− t− s

τ

)
, Rt(t) = −

1
τ

exp
(
− (t− s)

τ

)
(85)

If we now apply the energy balance (79) (with ρCp = const.), the result is the Cattaneo
equations [23] modeling only the relaxation part of the heat conduction (the RHS of (86))

∂T(x, t)
∂t

= − a2

τ

t∫
0

exp
[
−
(

t− s
τ

)]
∂T(x, s)

∂x
ds, a2 =

k2

ρCp
(86)

The Fourier law is the Cattaneo equation’s limit τ → 0 resulting in (82)
Now, let us accept the construction of the relaxation kernel (73), namely

M(t) = k1δ(t) + k2Rt(t)⇒ M(t− s) = k1δ(s) + k2
1
τ

exp
(
− (t− s)

τ

)
(87)

In (87) δ(s) is the Dirac delta function, while a1 and a2 are the effective thermal conduc-
tivity and the elastic conductivity. Then, the heat flux can be expressed as

q(x, t) = −k1
∂T(x, t)

∂x
− k2

τ

t∫
−∞

e−(
t−s

τ ) ∂T(x, s)
∂x

ds (88)

The energy balance (79) yields

∂T(x, t)
∂t

= a1
∂2T(x, t)

∂x2 + a2λ

t∫
−∞

e−λ(t−s) ∂2T(x, s)
∂x2 ds, λ =

1
τ

(89)

Here a1 = k1/ρCp , a2 = k2/ρCp are thermal diffusivities: they have equal dimensions[
m2/s

]
because the exponential second term in (87) is dimensionless.

Denoting F(x, t) = ∂2T(x, t)/∂x2 , for the sake of the simplicity of the expressions,
and after integration by parts in the second term in (89) we get [66].
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λ

t∫
−∞

e−λ(t−s)F(x, s)ds = e−λ(t−s)[F(x, s)− F(x, t)]
∣∣∣t
−∞

+

+ λ

t∫
−∞

e−λ(t−s)[F(x, t)− F(x, s)]ds

(90)

The first term in the RHS of (90), is zero, but the second one matches the definition of
the Caputo–Fabrizio fractional derivative [53] (see also the general construction (75) of a
Caputo-type derivative). Precisely, we have the formulation [53]

CFDα
t =

α

(1− α)2

t∫
−∞

[ f (t)− fa(s)] exp
[
− α

1− α
(t− s)

]
ds, t > 0 (91)

This can be considered as a pro-Caputo (non-normalized) derivative denoted as PCDλ
t . It

can be expressed in two equivalent forms (following the notations used in [53] namely [66]

PCDλ
t F(x, t) = λ

t∫
−∞

e−λ(t−s)[F(x, t)− F(x, s)]ds =

= λ

t∫
−∞

e−λ(t−s) dF(x, s)
dt

ds

(92)

where the rate constant λ ∈ (0, ∞) controls the kernel. If we like to satisfy the condi-
tions: α ∈ [0.1] ⇒ 1/λ ∈ [0, ∞] we get λ(α) = α/(1− α) : the desired properties are
obtained, namely

1
λ
=

1− α

α
∈ [0, ∞], α =

1
1 + 1/λ

=
λ

1 + λ
∈ [0, 1],

α

(1− α)2 =
λ

(1− α)
(93)

Further, following the definition of the Caputo–Fabrizio derivative [53] and consider-
ing the lower limit of integral at zero, we have [66]

CFDα
t T(x, t) =

N(σ)

σ PCDβ
t T(x, t) =

N(σ)

σ

t∫
0

e
−α

1−α (t−s) dF(x, s)
dt

ds =

=
M(α)

1− α

t∫
0

e
−α

1−α (t−s) dF(x, s)
dt

(94)

In the terms used here σ = 1/λ = (1− α)/α ∈ [0, ∞] , while N(α) and M(α) are
normalization functions [53] (see (58) and (76)).

Turning on (89) in terms of T(x, t) and taking into account the last expression of (94),
we get [66]

∂T(x, t)
∂t

= a1
∂2T(x, t)

∂x2 + a2(1− α)CFDα
t

∂2T(x, t)
∂x2 , t > 0 (95)

Equation (95) models transient heat conduction with a damping term expressed through
the Caputo–Fabrizio fractional derivative. For α = 1 we get the Fourier Equation (82).

If the Jeffrey kernel is only considered (in the present context (84)), for instance, then
the equivalent form of (95) is (86) accounting only for the elastic part of heat diffusion and
the result in terms of PCDα

t is [66].
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∂T(x, t)
∂t

= −a2β

t∫
0

exp[−β(t− s)]
∂T(x, s)

∂x
ds⇒

⇒ ∂T(x, t)
∂t

= −a2
α

1− α PCDα
t

[
∂T(x, s)

∂x

] (96)

As a result, we could see that the Caputo–Fabrizio derivative of a damping term was
produced directly by the fading memory approach.

Remark 7. It is worth noting and drawing attention to an incorrect interpretation of the Caputo–
Fabrizio derivative based on its exponential kernel. As stated by Tarasov and Tarasova [84]: “ Note
that the memoryless property of the exponential distribution allows us to state that the differential
operator (eq.6 in [84]) (i.e., the Caputo–Fabrizio derivative) cannot be used to describe processes
with memory ” (sic!).

As to the memoryless properties of the exponential function, this is a well-known fact from
the students’ textbooks. However, the memory kernel should be a complete monotone, causal
function, and thermodynamically consistent noting more. The exponential function obeys all of
these requirements [14]. The memory properties of the non-local operator do not depend
on whether the function used as a kernel has a memory or not, outside the context of the
construction of the convolution integral.

The opinion about the Caputo–Fabrizio derivative in [84] could be interpreted either as a deep
misunderstanding of the meaning of non-local operators or as a manipulative statement in the
context of the confrontation [1–7] between some trends in fractional calculus (see the very beginning
of the Introduction) rather than from a serious scientific perspective.

In addition, without continuing the discussion on the use of exponential memories, we refer to
the book of Uchaikin [85] (in section 2.1.3 Memory) where the same standpoint based on memoryless
behavior of the exponential function is expressed.

4.3. Heat Flux with Mittag-Leffler (One-Parameter) Memory Kernel

Now, using the relation (26) we constitute a new relaxation (memory) function for the
heat flux [86]

RML = k1δ(t) + k2λ
Eα,0(−λtα)

t
= k1δ(t) + k2

d
dt
[Eα,1(−λtα)] (97)

The second term in (97) is a monotonically decaying function, singular at t→ 0, and thus,
obeys all necessary properties to be used as a memory kernel. Then, the heat flux with
memory can be expressed as [86]

q(x, t) = −k1
∂T(x, t)

∂x
− k2λ

t∫
−∞

∂T(x, s)
∂x

d
ds
[
Eα,1

(
λ(t− s)α)]ds (98)

Now, the integration by parts of the integral (denoting F(x, t) = ∂T(x, t)/∂x ) in (98) yields

t∫
−∞

Eα,1
(
λ(t− s)α)F(x, s)dλs = Eα,1

(
(t− s)α)[F(x, s)− F(x, t)]

∣∣t
−∞+

+

t∫
−∞

Eα,1
(
λ(t− s)α)∂F(x, s)

∂s
dλs

(99)

The first term in the RHS of (99) is zero, while the second one matches the definition of the
Atangana–Baleanu derivative fractional derivative (56).

The coefficient λ ∈ (∞, 0) can be mapped by (see the same relations in [66] (see (93)
used earlier)
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λ =
α

1− α
∈ [0, ∞], α =

1
1 + 1/λ

=
λ

1 + λ
∈ [0, 1] (100)

Then, assuming the lower limit in the Stieltjes integral at zero (the causality principle), we
have a new expression for the second term of the heat flux with a memory [86]

qe = −a2

t∫
0

Eα,1

[
− α

1− α
(t− s)α

]
d
ds

[
∂T(x, s)

∂x

]
ds (101)

We can recast the integral in (101) as the elastic component of the flux qe because it resembles
how the ABC derivative is constructed. [86].

qe = −a2(1− α)

 1
1− α

t∫
0

Eα,1

[
− α

1− α
(t− s)α

]
d
ds

[
∂T(x, s)

∂x

]
ds

 =

= −a2(1− α)ABCDα
t

[
∂T(x, t)

∂x

] (102)

Consequently

− ∂qe

∂x
= a2(1− α)

t∫
0

Eα,1

[
− α

1− α
(t− s)α

]
d
ds

[
∂2T(x, s)

∂x2

]
ds =

= −a2(1− α)ABCDα
t

[
∂2T(x, t)

∂x2

] (103)

Finally, the energy conservation equation yields [86]

∂T(x, t)
∂t

= a1
∂2T(x, t)

∂x2 + a2(1− α)ABCDα
t

[
∂2T(x, t)

∂x2

]
(104)

For α = 1, it reduces to the Fourier equation.
Based on the fading memory formalisms for the heat flux, we found that the ABC

derivative spontaneously manifests itself when a suitable memory kernel (97) is incorpo-
rated into the constitutive equation.

4.4. Heat Flux with Prabhakar Memory Kernel

After the two prior examples, which used relatively simple kernels, we now attempt to
create a fractional derivative using the Prabhakar kernel and the fading memory formalism.
Therefore, applying (36) and its first derivative (43) we get for the heat flux with relaxation
function defined as

RPB = k1δ(t) + k2
d
dt

[
eγ

α,β(−λtα)
]
= k1δ(t) + k2

[
tβ−2Eγ

α,β−1(−λtα)
]

(105)

Then, the heat flux can be formulated as

q(x, t) = −k1
∂T(x, t)

∂x
− k2

t∫
−∞

∂T(x, u)
∂x

d
du

[
eγ

α,β(t,−λuα)
]
du (106)

Assuming for the sake of simplicity λ = 1, and applying integration by parts in the second
term of (106), and what mutatis mutandis, we get

q(x, t) = −k1
∂T(x, t)

∂x
− k2

t∫
0

eγ
α,β(t,−uα)

d
du

[
∂T(x, u)

∂x

]
du (107)
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In general, the second term in (107) mimics the fractional derivative of the Caputo type.
Alternately, by using the Laplace transform on (106) and accounting for the convolu-

tion product in the second term, we obtain (see (38))

L[q(x, t)] = L
[
−k1

∂T(x, t)
∂x

]
− k2L

[
d
dt

eγ
α,β(−λtα)

]
×L

[
∂T(x, t)

∂x

]
(108)

that is

q(x, s) = −k1
∂T(x, s)

∂x
− k2

[
sαγ−β+1

(s + λ)γ

]
× ∂T(x, s)

∂x
=

= −k1
∂T(x, s)

∂x
− k2

[
sαγ−β

(s + λ)γ

]
× s

∂T(x, s)
∂x

(109)

The inverse transformation L−1[q(x, s)] yields

q(x, t) = −k1
∂T(x, t)

∂x
− k2

t∫
0

eγ
α,β(t,−λuα)

d
du

[
∂T(x, u)

∂x

]
du (110)

The second term in (110) has the construction of Caputo-type with the Prabhakar memory
kernel (see (49)).

Assuming a normalization function N(α) = (1− α) and settingλ = α/(1− α) (110)
can be reformulated as follows without loss of generality

q(x, t) = −k1
∂T(x, t)

∂x
− k2(1− α)

 1
1− α

t∫
0

eγ
α,β(t,−λuα)

d
du

[
∂T(x, u)

∂x

]
du


λ =

α

1− α
, t > 0

(111)

Now, applying the energy balance equation, we have

∂T(x, t)
∂t

= a1
∂T(x, t)

∂x
+ a2(1− α)

 1
1− α

t∫
0

eγ
α,β(t,−λuα)

d
du

[
∂T(x, u)

∂x

]
du

,

λ =
α

1− α
, t > 0

(112)

For α = 1, the non-locality in (112) is absent, and it reduces to the Fourier model.
The construction

CP
H D

γ
α,β f (t) =

1
1− α

t∫
0

eγ
α,β(t,−λuα)

d
du

f (u)du, λ =
α

1− α
, 0 < α < 1, t > 0 (113)

is a fractional operator (derivative) that uses a base point zero but does not exactly match
the definition (49). The differences result from the fact that (49) is formulated constitutively,
mathematically correct (but with no physics behind it), and similar to the traditional Caputo
derivative. They also result from the definition of the Prabhakar fractional integral (45) (in
a Riemann–Liouville sense) [38,41,43,45,49].

Hence, we may present (112) as

∂T(x, t)
∂t

= a1
∂T(x, t)

∂x
+ a2(1− α)

{
CP
H D

γ
α,β

[
∂T(x, t)

∂x

]}
(114)

It reduces to the Fourier model for α = 1.
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The Laplace transform of CP
H D

γ
α,β f (t), with the assumption

1
∑

k=0
s−k−1 f (k)(0+) = 0, for

the sake of simplicity, yields

L
[

CP
H D

γ
α,β f (t)

] .
= L

[
eγ

α,β(−λtα)
]
×L[ f (t)] .

=
sβ−αγ

(s + λ)γ × f (s) (115)

Comparing to (38) (see also (52)), we see that the Laplace transform is the same, which is a
nice result.

Furthermore, as it was shown in Section 2.2, it is easy to see, and straightforwardly
developed, that for some particular cases, the kernel of CP

H D
γ
α,β f (t) reduces to memory

functions of well-known fractional operators. For instance, we obtain the Atangana–
Baleanu derivative for γ = β = 1.

Additionally, it is evident that for γ = 1 we have e1
α,β,λ(−λtα) , a kernel based on the

two-parameter Mittag-Leffler function

e1
α,β,λ = tβ−1Eα,β(−λtα) (116)

This enables the definition of a novel derivative (which has not yet been studied), namely

CP
H D1

α,β f (t) =
1

1− α

t∫
0

tβ−1Eα,β(−λtα, τ)
d f (τ)

dτ
dτ (117)

If λ = α/(1− α) , it can be aligned to the ABC definition and reduced to it for β = 1.

5. Experiments with Other Known Kernels

In this section, we clearly show how well-known memory kernels related to the
Mittag-Leffler functions can be incorporated into constructions of fractional operators of
Caputo-type.

5.1. Rzanitsyn Kernel

This is a composite function defined as [87–89] (singular at t0+)

MR(α, t; λ) =
tα−1

Γ(α)
exp(−λt), 0 < α < 1 (118)

which is a product of a particular case, the Sonine kernel tα−1

Γ(α) (known as the kernel of
fractional integration or Gel’fand-Shilov distribution) [90,91] and the exponential decaying
function.

It can be presented as a product of two particular versions of the Prabhakar kernel
(see (44))

MR(α, t; λ) = eγ
α,β(λ = 0, t)× e1

1,1(−λt) (119)

or in terms of the two-parameter Mittag-Leffler function as

MR =
tα−1

Γ(α)
E1

1,1(−λt) (120)

The Laplace transform of MR is (see Equation (25) for the special case α = β = 1)

L[MR(α, λt)] =
1

Γ(α)
1

s + λ
(121)

The derivative d
dt MR(α, t; λ) is (recall the definition (25) with α = β = 1) is
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d
dt
[MR(α, t; λ)] =

t−1

Γ(α)
E1,0(α, t; λ) (122)

which is singular at t0+ with a Laplace transform (see (121))

L
[

d
dt

MR(α, λ, t)
]
=

1
Γ(α)

s
s + λ

(123)

Assuming λ = α
1−α , we get

MR(α, t) =
tα−1

Γ(α)
E1

1,1

(
− α

1− α
t
)

, 0 < α < 1 (124)

d
dt
[MR(α, t)] =

t−1

Γ(α)
E1,0

(
α, t;

−α

1− α

)
, 0 < α < 1 (125)

Now, we may write the heat flux constitutive equation as

qR(x, t) = −k0
∂T(x, t)

∂x
− k2

t∫
0

(t− τ)−1

Γ(α)
E1,0

(
α, t;

−α

1− α

)
∂T(x, t)

∂x
dτ (126)

Then, what is mutatis mutandis, we get

qR(x, t) = −k0
∂T(x, t)

∂x
− k2

t∫
0

MR

(
α, t;

−α

1− α

)
d

dτ

[
∂T(x, τ)

∂x

]
dτ (127)

and a heat diffusion equation

∂T(x, t)
∂t

= a0
∂T(x, t)

∂x
+ a2(1− α)

t∫
0

MR

(
α, t;

−α

1− α

)
d

dτ

[
∂T(x, τ)

∂x

]
dτ (128)

With the Rzhanitsyn kernel, we, therefore, defined a fractional derivative of the Caputo
type while assuming a normalization function N(α) = 1− α, namely

RCDα
t f (t) =

1
1− α

t∫
0

MR

(
α, t;

−α

1− α

)
d

dτ
[ f (τ)]dτ (129)

5.2. Miller–Ross Kernel

The Miller–Ross function (MR) function is defined as

MMR(α, λt) = tα
∞

∑
k=0

(λt)k

Γ(α + k + 1)
=

∞

∑
k=0

λktk+α

Γ(α + k + 1)
tα (130)

It is defined as the D−α
t [e(λt)] = Iα

t [e(λt)] as the α − th integral of the exponential
functione(λt)

It can be represented as the two-parameter Mittag-Leffler function by [31]

MMR(α, λt) = tαE1,α+1(λt), 0 < α < 1 (131)

The Laplace transform of the MR function is

L[MMR(α, λtα)] =
1

sα−1

(
1− λ

s

)−1
,
∣∣∣∣λs
∣∣∣∣ < 1 (132)
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The time derivative of the MR function is

d
dt
[MMR(α, λt)] =

d
dt

∞

∑
k=0

λktk+α

Γ(α + k + 1)
= tα−1

∞

∑
k=0

(k + α)λktk+α

Γ(α + k + 1)
(133)

and through the Laplace transform , with the ruleL
[

d
dt f (t)

]
= sL[ f (t)]− f (0) = s f (s)− f (0)

L
[

d
dt

MMR(α,−λtα)

]
= s

[
1

sα−1

(
1 +

λ

s

)−1
]
= s2−α

(
1− λ

s

)−1
,
∣∣∣∣λs
∣∣∣∣ < 1 (134)

because MMR(α,−λtα)(t = 0) = 0.
Then, if we define a relaxation function d

dt [MMR(α,−λt)] = d
dt [t

αE1,α+1(−λt)] =
RMR(α,−λt) such that RMR(α,−λt) and MMR(α,−λt) are monotonically decaying func-
tions, we may write the heat flux constitutive equation as

qMR(x, t) = −k0
∂T(x, t)

∂x
− k2

t∫
0

(t− τ)αE1,α+1
(
−λ(t− τ)α)∂T(x, τ)

∂x
dτ (135)

Then, following the integration by parts in the second term of (135), and applying all steps
as in the preceding examples, as well as faster by the Laplace transform of qMR(x, t)

qMR(x, s) = −k0
∂T(x, s)

∂x
− k2

t∫
0

s

[
1

sα−1

(
1 +

λ

s

)−1
]

∂T(x, s)
∂x

ds, 0 < α < 1 (136)

Then, a rearrangement of the second term in (136) yields

t∫
0

s

[
1

sα−1

(
1− λ

s

)−1
]

∂T(x, s)
∂x

ds =
t∫

0

[
1

sα−1

(
1 +

λ

s

)−1
][

s
∂T(x, s)

∂x

]
(137)

remembering that ∂T(x,0)
∂x = 0, as the initial condition defined at the beginning. This allows

expressing the hereditary term with the MR function as a memory kernel, namely

qMR(x, t) = −k0
∂T(x, t)

∂x
− k2

t∫
0

MMR
[
−λ(t− τ)α]∂T(x, t)

∂x
dτ, 0 < α < 1, t > 0 (138)

Now, without loss of generality, we may assume −λ = − α
1−α , as well as defining the

normalization function N(α) = (1− α). Thus, we may formulate a Miller–Ross fractional
operator of Caputo-type, namely

MRCDα
t f (t) =

1
1− α

t∫
0

MMR

[
− α

1− α
(t− τ)α

]
d

dτ
[ f (τ)]dτ. (139)

Applying the energy conservation equation with the flux expressed as (138) we get

∂T(x, t)
∂t

= a0
∂2T(x, t)

∂x2 + (1− α)a2
MRCDα

t

[
∂T(x, t)

∂x

]
(140)

For α = 1, Equation (140) reduces to the local Fourier equation.
To further explain the recently developed result, it is important to draw your attention

to the fact that a fractional integral with MR function is defined in [92] as (in a Riemann–
Liouville style) (see also [93,94])
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MR Iα,λ
0+ f (t) =

t∫
0

MR
[
−λ(t− τ)α] f (τ)dτ (141)

and based on it, a fractional Liouville–Sonine derivative was proposed as[92]

MR
LS Dα

t f (t) =
d
dt

[
MR Iα,λ

0+ f (t)
]
=

d
dt

t∫
0

MR
[
−λ(t− τ)α] f (τ)dτ (142)

5.3. Rabotnov Kernel

The Rabotnov function is defined originally as [89,95]

MRab(α, λt) =
tα−1(

1
λ

)α

∞

∑
k=0

(−1)k(λt)αk

Γ[α(k + 1)]
, λ =

1
τk

,−1 < α < 0 (143)

and can be presented alternatively as [31]

MRab(α, λ) = tα
∞

∑
k=0

λktk(α+1)

Γ[(k + 1)(α + 1)]
], −1 < α < 0 (144)

or in terms of two-parameter Mittag-Leffler functions as [31]

MRab(α, λ) = tαEα+1,α+1

(
λtα+1

)
, MRab(α, λ) = tα−1Eα,α(λtα) (145)

For α = 1 the function MRab(1, λ) reduces to the exponential function. However, when
α→ 0 it goes to 1

2 δ(t) [89].
Its time derivative, applying (25) to the second version of (145), can be expressed as

d
dt
[MRab(α, λ)] = tα−2Eα,α(λtα) (146)

The original Rabotnov function (143) is a growing in time function, conceived to model
creep (deformation, extension) of viscoelastic and elastoplastic materials [89], and in such a
case, the kernel in a hereditary integral should be

MRab(−α, λ) = (t− τ)−α
∞

∑
k=0

(−λ)k(t− τ)k(1−α)

Γ[(k + 1)(1− α)]
(147)

A decaying (monotonic) version was used in a new fractional operator known as the
Yang–Abdel-Aty–Cattani (YAC) derivative [92,96,97] (see also [98–100])

MYAC(−λ, tα) =
∞

∑
k=0

(−λ)kt(k+1)(α+1)−1

Γ[(k + 1)(α + 1)]
(148)

Its Laplace transform is [98,99]

L[MRab(λtα)] =
1

sα+1
1

1− λ
sα+1

,
∣∣∣∣ λ

sα+1

∣∣∣∣ < 1 (149)

The time derivative of MRab(λtα) through the Laplace transform is

L
[

d
dt

MRab(λtα)

]
= s

(
1

sα+1
1

1− λ
sα+1

)
=

1
sα

1
1− λ

sα+1

,
∣∣∣∣ λ

sα+1

∣∣∣∣ < 1 (150)
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Now, constructing the heat flux constitutive equation, we get

qYAC(x, t) = −k1
∂T(x, t)

∂x
− k2

t∫
0

[
d
dt

MRab(λtα)

]
∂T(x, τ)

∂x
dτ (151)

Then, applying the Laplace transform to both sides of (151) and taking into account (149),
we have

qYAC(x, s) = −k1
∂T(x, s)

∂x
− k2

t∫
0

[(
1

sα+1
1

1− λ
sα+1

)][
s

∂T(x, s)
∂x

]
ds (152)

The inverse Laplace transform yields

qYAC(x, t) = −k1
∂T(x, t)

∂x
− k2

t∫
0

MRab
(
−λ(t− τ)α) d

dt

[
∂T(x, τ)

∂x

]
ds (153)

Consequently, the application of the energy balance equation results in

∂T(x, t)
∂t

= a1
∂2T(x, t)

∂x2 + a2

t∫
0

MRab

(
− α

1− α
(t− τ)α

)
d
dt

[
∂2T(x, τ)

∂x2

]
dτ (154)

We may suggest again that λ = − α
1−α and normalization function N(α) = 1− α. The result

is a heat conduction equation

∂T(x, t)
∂t

= a1
∂2T(x, t)

∂x2 + a2(1− α)Rab
C Dα

t

[
∂2T(x, t)

∂x2

]
(155)

with damping terms expressed through fractional of Caputo-type with Rabotnov kernel,
defined as

Rab
C Dα

t [ f (t)] =
1

1− α

t∫
0

MRab

(
− α

1− α
(t− τ)α

)
d
dt

f (τ)dτ (156)

This definition differs from the YAC derivative, where the approach uses a fractional
integral of a Riemann–Liouville type [92,96,97]

Rab Iα
t f (t) =

t∫
0

MRab
(
−λ(t− τ)α) f (τ)dτ, f (t) ∈ L(0, ∞) (157)

and a left-sided fractional derivative in the classical (termed Liouville–Caputo derivative)
style is declared, without any derivation from a physical model, namely

RabDα
t f (t) =

t∫
−∞

MRab
(
−λ(t− τ)α) f (1)(τ)dτ (158)

and without any specification of the parameter λ.

Remark 8. This section of the study can be summarized by pointing out that the new derivatives
naturally appear when the constitutive equation for the heat flux is constructed using a proper
Mittag-Leffler memory kernel and the fading memory formalism. The integer-order time derivative
of the energy balance equation is unaffected by the new constitutive equation, and the fractional
derivatives appear as damping terms.
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6. Heat Conduction Model Analysis

Now, after the development of six models with various time-fractional derivatives as
damping terms, we have to discuss:

What are the differences between the models using some of the fractional operators
discussed in this article and those published in the literature?

6.1. A Trivial Example That Is Correct but Might Be Misleading

At the beginning of this discussion, we like to stress the attention on a trivial for the
fractional calculus example. Let us consider again Equation (6), assuming that k(x) =
k = const.(time and space independent thermal conductivity, for the sake of simplicity)
precisely the first version of its RHS, namely

q(x, t) = −kCDα
t

[
∂T(x, t)

∂x

]
(159)

and represent it through its corresponding fractional integral of order 1− α as

q(x, t) = −kI1−α
t

[
∂T(x, t)

∂x

]
(160)

This is a completely casual relationship, in a convolution form, due to the time shift and
history (memory) of the gradient related to the time evolution of the flux. In addition, this
formulation does not consider a long time term (that is, thermal conductivity k1 = 0, while
k2 6= 0). Moreover, taking into account that CD−γ

t f = C Iγ f and with γ = 1− α, we get an
alternative form in terms of the left Caputo derivative, namely

q(x, t) = −CDα−1
t

{
k
[

∂T(x, t)
∂x

]}
(161)

Taking into account that CD−γ
t f = C Iγ f and with γ = 1− α we got (161) Further, since

CDγ
t is an operator left inverse of the fractional integral, we have CDγ

t Iγ = CDγ
t

CD−γ
t f =

D0
t f = f .

Thus, the application of the continuity equation yields

∂T(x, t)
∂t

= kI1−α
t

[
∂2T(x, τ)

∂x2

]
(x, t) = k

{
CDα−1

t

[
∂2(x, t)

∂x2

]}
(162)

Applying to both sides of (162) the Caputo operator of order α− 1 we get

∂αT(x, t)
∂tα

= a
∂2T(x, t)

∂x2 , a =
k

ρCp
(163)

This is the well-known time-fractional diffusion equation. It was correctly derived from
a causal relationship (160). It is correct from both the mathematical and thermodynamic
points of view.

However, when mathematical modeling skills are lacking, this simple equation may be
misleading because it can be formalistically written based on the normal diffusion equation
(when α = 1) by a simple fractional replacement of the integer-order time derivative. This is
the well-known “replacement fractionalization,” which is generally an incorrect operation.
To be precise, such a replacement means that the continuity equation is written as

∂αT(x, t)
∂tα

= −k
∂q(x, t)

∂x
⇒ T(x, t) = −kIα

[
∂q(x, t)

∂x

]
(164)

which contradicts the First Law of Thermodynamics.
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In the case presented here, the manipulations were correct mathematically, but the
replacement is incorrect, and the starting point should be (160) as an element of the fading
memory constitutive equation.

In a general sense, when a long time behavior is not considered (when the memory kernel
goes to zero) as a model of the process (see the comments on CTRW models where stationary
states are missing in the concept), we have to use the general constitutive equation

∂u(x, t)
∂t

= −k
∂j(x, t)

∂x
=

∂

∂x

−k
t∫

0

R(α, t− τ)
d

dτ

[
∂u(x, τ)

∂x

]
dτ

 (165)

The more general flux formulation with k1 6= 0, when the long time behaviour should be
taken into account, is

j = −k1
∂u(x, t)

∂x
− k2

t∫
0

R(α, t− τ)
d

dτ

[
∂u(x, τ)

∂x

]
dτ (166)

Then, after the application of the continuity equation, we have

∂u(x, t)
∂t

= k1
∂2u(x, t)

∂x2 + k2

t∫
0

R(α, t− τ)
d

dτ

[
∂2u(x, τ)

∂x2

]
dτ (167)

In (165)–(167) u(x, t) could be concentration, temperature, or another variable (such
as stress or deformation), and the non-locality is modeled by the memory kernel (relaxation
function, also termed a correlation function), and it is strongly dependent on the physics of
the modeled process. It would be a nice situation if the resulting fractional operator had
semigroup properties, but this is not possible in some cases. The most important issue is
the correct correspondence of the memory kernel to the physical relaxation process [64,65].

In the following section, we will examine some existing diffusion models from the liter-
ature to determine whether or not they confirm the results of the fading memory formalism.

6.2. Heat Conduction and Diffusion Models with Mittag-Leffler Kernels: An Analysis
Garra–Garrappa’s Non-Linear Heat Conduction Model

In the general context of this study, we address a model of a non-linear heat equation
formulated as (section 4 in [43])

Dγ
α,β,λT(x, t) = K(T)

∂2T(x, t)
∂x2 − βT, K(T) = k0Tξ , ξ > 0, t > 0, x ∈ R (168)

The derivative Dγ
α,β,λ was applied in two versions: a non-regularized (Riemann–Liouville

type) derivative (169), and a regularized (Caputo-type) derivative (170), defined as (in the
original notations established in [101]) (see also the definitions in Section 2.2.2),

(0Dα
t + λ)γ f (t) ≡ dm

dtm

t∫
0

eγ
α,αγ(t− u;−λ) f (u)du (169)

C(0Dα
t + λ)γ f (t) ≡

t∫
0

eγ
α,αγ(t− u;−λ) f (m)(u)du (170)

with a Prabhakar integral (see also the definition (45))

(0 Iα
t + λ)γ f (t) ≡ eγ

α,αγ(t; λ) ∗ f (t) =
t∫

0

eγ
α,αγ(t− u;−λ) f (u)du (171)
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In general, this type of non-linearity in the diffusion term, when the equation is local in time,
makes the heat conduction model a degenerate parabolic equation. It is well-known, since
the first solutions in the 50s of the last century, that such degenerate parabolic problems
have solutions moving with finite speeds, in contrast to the case with ξ = 0 where the flux
speed is infinite (see [102] and the reference therein).

Now, for the sake of the coherence of the exposition, we return to the common symbol
used here (let the definitions (169)–(171) remain, demonstrating that different versions of
the symbols used are also possible; in general, there are various notations of these operators,
so the reader should carefully understand the meaning in each particular case).

If we like to construct (derive) such a heat conduction model, we may define the
flux-gradient relationship as

q(x, t) = −
t∫

0

eγ
α,β(λ, t− τ)

[
k0Tξ ∂T(x, t)

∂x

]
=

= − k0

1 + ξ

t∫
0

eγ
α,β(λ, t− τ)

[
∂Tξ+1(x, t)

∂x

] (172)

If the energy balance equation is (1) is applied (neglecting the sink term for the sake of
simplicity), then the heat conduction model would be

∂T(x, t)
∂t

=
k0

1 + ξ

t∫
0

eγ
α,β(λ, t− τ)

[
∂2Tξ+1(x, τ)

∂x2

]
(173)

or in a more compact form as

∂T(x, t)
∂t

=
k0

1 + ξ
P Iγ

α,β

[
∂2Tξ+1(x, t)

∂x2

]
(174)

In the local case when memory is δ(t) it will be

∂T(x, t)
∂t

=
k0

1 + ξ

∂2Tξ+1(x, t)
∂x2 (175)

and the solutions are mainly approximate (see [102]) with convex temperature profiles
(with almost infinite gradient close to the solution front for high values of ξ), in contrast to
the case for ξ = 0 with concave temperature distributions.

Now, the principle question is: how to transform (173) to (168)? Taking into account
that the regularized Caputo-type derivative CDγ

α,β,λ acts as left-inverse of the Prabhakar

fractional integral [41,49] , as well as that CDγ
α,β,λ f (t) = RLCDγ

α,β,λ f (t) at zero initial condi-

tions (see eq. 5.11 in [41]), we may apply CDγ
α,β,λ to both sides of (173) or (174). The result

of this operation is

CDγ
α,β,λ

[
∂T(x, t)

∂t

]
=

k0

1 + ξ

∂2Tξ+1(x, t)
∂x2 (176)

We can see that the left side of (176) is not the same as in (168). That is, the operation
that was successful with the Caputo derivative in Section 6.1 does not work here. The
origin is that (173) is a natural consequence of the constructive flux equation, while (168) is
postulated and could be explained if the continuity equation is defined as

CDγ
α,β,λ[T(x, t)] = −∂q(x, t)

∂x
(177)
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that is an imitation of the First Law of Thermodynamics, where the causality principle is
violated. Despite this, Equation (168) was solved elegantly even though a physical analysis
on its basis is impossible.

Remark 9. We can see that when the models are developed by the “copy-paste” technology, known
as “replacement” in fractional modeling, the outcomes are non-physical. Especially for the Prabhakar
derivative, it is important to stress the fact that all efforts were oriented towards “ framing ” in
Kochubei’s “ general fractional calculus ”, [49], thus, attempting to make it “ unipolar fractional
calculus”. High merits, with good results, but physically inapplicable because Kochubei’s calculus
is almost “ sterile ”, and not related to solutions of physical problems: Bright mathematics where
the results are not provoked by nature and the consequence in fractional modeling is evident: nice
mathematics, as it was done in [43], but with inexplicable results. We may consider all these
studies, and others of the same style (products of replacement fractionalizations), as mathematical
experiments, with elegant mathematics and still expecting relevant physical interpretations.

Remark 10. Despite the strong verdict in the previous remarks, there are some good cases when
the results are adequate and provide new information, such as modeling relaxations in anomalous
dielectrics [60,101], diffusion with non-static stochastic resetting [103], generalized Langevin
equation [104], anomalous diffusion [105], even though the models already exist, just the memory
kernels are changed.

After this analysis, we will skip similar models with Miller–Ross [94] and Rabotnov
derivatives [96,97,100], where the models are obtained by replacements.

7. Fading Memory Approach or Volterra Equations?

The results developed the fading memory formalism and the construction of the
Stieltjes integral

t∫
0

R(t− τ)
d f (τ)

dτ
dτ (178)

lead to the formulation of normalized fractional operators of Caputo type, following the
definition of Stieltjes integral that f (τ) is a function of bounded variation.

However, if the constitutive equations are of the Volterra type, such as (10), the
hereditary term is

t∫
0

R(t− τ) f (τ)dτ (179)

The construction (179) allows formulations of both fractional integrals and fractional
derivatives of a Riemann–Liouville type (as in the studies devoted and analyzes here on
the Prabhakar calculus)

Iα
t f (τ) ≡

t∫
0

R(t− τ) f (τ)dτ (180)

Dα
t f (τ) ≡ dm

dtm

t∫
0

R(t− τ) f (τ)dτ, m = 1, 2, 3 . . . . . . (181)

The kernel R(t) in both formulations depends on the physics of the modeled relaxation pro-
cess.

Taking into account that the “driving force,” i.e., the reason the heat flux to “flow” is
the temperature gradient ∂T/∂x (for simple materials [18–21,67,69,71]), then the construc-
tion (178) of the hereditary term is physically motivated. Hence, the physics of the process
motivates the model, not the formal and voluntary use of fractional operators.
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The application of Volterra equations in the process of generation of fractional opera-
tors with different kernels is beyond the scope of this study, but we refer to [89], where there
are many examples of this approach applied in the early studies on fractional modeling in
viscoelasticity.

8. Final Comments and Outcomes

Now, after this long study with many analyses and remarks, the main questions are

• What the main achievements are?
• How the systematic approach applying the fading memory formalism allows construc-

tions of physically adequate fractional models?

Since developing this study, many explanations and specific remarks were made; the
answers to these questions can be briefly outlined as

1. One of the principal achievements of this study is that it shows how different
fractional operators appear in physical models, avoiding unmotivated replacement frac-
tionalizations. The emphasis was on different versions of the Mittag-Leffler functions as
memory kernels.

2. We demonstrated only six examples, but there is no limit to developing new ones if
the constitutive equations are properly formulated.

3. We emphasize the importance of correct formulations of constitutive equations
because they express physical laws relating to causes and effects in mathematical forms.

4. Therefore, the first step is to correctly formulate a constitutive equation with a
hereditary term involving a memory kernel connected to the underlying physics of the
modeled process. Then, the balance equation yields the final model (to which various
initial and boundary conditions can be applied). However, the final models are not direct
expressions of physical laws where hereditary terms can be inserted by replacements.

5. Some comments on existing heat conduction models confirm the standpoint of
point 4. There are many articles with questionable results (see, for instance, the comments
of Hilfer in [10] on physics of fractional models) where the final model is fractionalized by
replacement, and the results that cannot be interpreted because the basic physics of the
modeled process is violated.

We believe that this study will provide necessary and enough instructive information
on how fractional modeling should be done. There is no need for high mathematics to
formulate the constitutive equation correctly with a certain memory term and to get a correct
model. High mathematics applied to incorrect models does not provide useful information
and could be related to mathematical experiments, not to mathematical modeling of real-
world phenomena.

The example of heat conduction used here is merely one to illustrate the general idea
behind the physical basis of the formulation of fractional operators. This technique can
be applied to a wide variety of other physical processes that exhibit memories and have
properly formulated constitutive equations.
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