
Citation: Kaur, P.; Kaur, K.; Singh, K.;

Kim, S. Early Forest Fire Detection

Using a Protocol for Energy-Efficient

Clustering with Weighted-Based

Optimization in Wireless Sensor

Networks. Appl. Sci. 2023, 13, 3048.

https://doi.org/10.3390/

app13053048

Academic Editors: Luigi Pomante

and Gianluigi Ferrari

Received: 13 February 2023

Revised: 20 February 2023

Accepted: 22 February 2023

Published: 27 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Early Forest Fire Detection Using a Protocol for Energy-Efficient
Clustering with Weighted-Based Optimization in Wireless
Sensor Networks
Puneet Kaur 1,*, Kiranbir Kaur 1, Kuldeep Singh 2 and SeongKi Kim 3,*

1 Department of Computer Engineering & Technology, Guru Nanak Dev University, Amritsar 143005, India
2 Department of Electronics Technology, Guru Nanak Dev University, Amritsar 143005, India
3 National Centre of Excellence in Software, Sangmyung University, Seoul 03016, Republic of Korea
* Correspondence: puneetbaath@gmail.com (P.K.); skkim9226@smu.ac.kr (S.K.)

Abstract: Wireless sensor networks (WSNs) have proven to be incredibly useful for forest applications
that rely on sensing technologies for event detection and monitoring. This radical sensing technology
has revolutionized data gathering, analysis, and application. Despite the many advantages of
this technology, one key drawback is the rapid drain on sensor batteries caused by their intensive
processing activities and communication processes. The effectiveness of sensor nodes is strongly
influenced by two factors: the amount of energy they consume and the length of their coverage
lifetimes. Using our proposed method, we can find fire zones in a forest, detect and monitor battlefield
surveillance, combat monitoring and intruder detection, and then wirelessly send all the information
to a central station. So, extending the life of WSNs is essential to ensure that Sensor Nodes (SN) will
always be available. Our proposed EEWBP (energy-efficient weighted-based protocol) technique
uses a composite weighted metric that includes system elements such as the node degree, residual
energy, the number of neighbors’ nodes, average flying speed, and trust value, which are evaluated
separately and then added together to help in cluster-building and node-scheduling processes. Our
proposed protocol makes it easy to set up many clusters of SNs, each with their own cluster head
(CH). This way, data can be sent between clusters in a way that uses the least amount of energy and
makes coverage last longer. After putting our cluster-based routing strategy in place, we tested how
it worked and evaluated it with different network parameters. The simulation results show that
EEWBP consumes less energy and maintains a higher level of consistency in the CH than coverage
preserving clustering protocol (CPCP), coverage clustering protocol (CACP), coverage aware unequal
clustering algorithm (CUCA), and low-energy adaptive clustering hierarchy (LEACH). EEWBP also
shows a better packet delivery rate and an improvement in first-node death.

Keywords: clustering; wildfire; IoT; efficient; smart city; LEACH; routing protocol; WSN

1. Introduction

Devastating human communities and forest ecosystems alike, forest fires have emerged
as a global security concern. Such devastation can lead to climatic shifts and the greenhouse
effect, among other adverse outcomes. An intriguing fact is that humans cause the majority
of forest fires, and because of this, early detection of forest fires is crucial if we are to reduce
the amount of damage that these blazes inflict. Wireless Sensor Networks (WSNs) and
comparable sensing technologies should be deployed citywide to facilitate the provision of
these new services. These sensors, once deployed, self-organize into ad hoc networks to
guarantee worldwide connectivity despite their varying and sometimes minimal ranges [1].
Once installed and set up, these sensors can be used to keep tabs on all sorts of data, from
motion to temperature to humidity to the detection of a fire, so that immediate safety
measures can be taken [2]. They can even set off other actions, directly or indirectly, like
turning on a light when they sense motion. Small, lightweight, cheap, and low-powered
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sensor nodes are the building blocks of WSNs [2,3]. These nodes can collect sensor data,
process it, aggregate it, and then send it directly to the base station (BS) through the wireless
channel or relay it to the BS via their neighboring nodes.

Each node in a WSN has a nonreplaceable battery [4–8] and uses energy to collect,
process, and send data; hence, these networks are typically used in remote sensing ap-
plications. This means that in times of crisis, there needs to be effective communication
amongst sensor nodes so that aid can be sent more quickly [3]. It may be difficult or ex-
pensive to replace worn-out batteries in certain circumstances [4–7], such as in inaccessible
places. Since communication and sensing activities reduce a sensor node’s battery or power
source capacity, designing energy-aware solutions is crucial for extending the lifetime of
WSNs. Due to computational and storage limitations in such small and energy-constrained
sensors, designing energy-efficient routing strategies for WSNs is challenging [5,6]. To
make wireless sensor networks (WSNs) last longer, we offer a new protocol called EEWBP,
which is an improved version of weighted clustering. WSNs are wireless networks that can
only connect through a base station (BS) and routing is intricate because they have a short
battery life, which makes it hard to plan routes. WSN defines a vast network of SNs that
keep track of a comprehensive layout of monitoring tasks, such as health monitoring [7,8],
environmental supervising, and military intelligence information gathering [1–4]. The BS
and a slew of sensor nodes make up a wireless sensor network. SN gather information
about their surroundings and impart it to the Base Station or sink via intermediary nodes
for analysis [2]. Any protocol for WSNs must consider the network’s lifespan as a primary
concern since sensor nodes in WSNs are often powered by batteries, limiting the amount
of energy available for use and output. Recent developments in WSNs have employed
various logical strategies to get over the restrictions placed by traditional WSNs, such as
energy gleaning methods, cognitive networking methods, and artificial intelligence-based
techniques [4–7]. Due to their elevated position and increased distance from one another,
the nodes in an airborne network have excellent visibility and communication. Due to tech-
nical constraints, WSNs can only carry a very modest battery. Besides the energy stored in
their batteries, other resources, such as processing speed and data transfer capacity, are also
restricted [5]. WSN topology is not constrained, changes rapidly, and can be distributed to
only a small region, while WSN deployment is either random or structured. WSN interact
like remote-controlled alarm systems or wildfire, whereas WSNs may communicate with
the environment. Unlike casual WSNs, which rely on broadcasting messages, our pro-
posed algorithm uses point-to-point or clustered communication [8,9]. In WSN, researchers
are still working to solve energy limits in homogeneous SNs despite this new phase of
WSN research and low energy supply has prompted a systematic approach to creating
energy-efficient, lifetime-enhancing algorithms [3–5]. WSN must improve coverage and
network lifespan to meet the demands of new emerging scenarios and applications. The
sensor nodes in our network have the same energy, hardware, and transmission capabilities
since we will work on homogenous sensor networks [4–6]. It is essential to remember that
each sensor node has a different battery power drainage rate. A cluster head and several
active member nodes work within a single cluster. To send the data to the BS, the cluster
head has to aggregate and broadcast it through the cluster member nodes. The nodes
in the cluster gather the data and relay it to the cluster’s central node (CH) [4]. Cluster
members generally use less energy than cluster heads [1,2]. Clustering methods in WSNs
can improve the three primary issues: scalability, network lifetime, and energy efficiency.
Clustering divides a network into SNs, called Cluster Members, linked together through
the CH. The CMs watch over their particular environments and regularly relay the data
they gather to the CHs. Clustering methods prevent the CMs from immediately sending
information to the BS, which will drain the node’s energy very quickly [10–14]. The associ-
ated CHs collect data from their corresponding CMs and send it to the BS in a consolidated
manner. Energy consumption can be reduced due to decreasing the number of messages
sent to BS [6], which is utilized in our proposed technique. Performance criteria such as
energy efficiency, network life expectancy, number of CHs per round, and consistency in
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the number of CH are considered while evaluating clustering algorithms [14–16]. In this
paper, an energy-efficient weight-based protocol (EEWBP) is proposed. There are two pro-
cesses involved in EEWBP: (1) the cluster creation process and (2) the data transmission
process, which divides the monitoring field into groups of sensor nodes or clusters [17].
The SN must be operational in each monitoring area for a more extended time to maintain
comprehensive coverage. For cluster construction, EEWBP employs the weighted-sum
approach. Periodically, the EEWBP makes suitable CMs, and CHs ensure that the network’s
lifetime is maintained during every operation round. The choice of CMs and CHs are
the basic things that provide long-term coverage and efficient efficiency. Residual energy,
sensor node degree, trust value, and flying speed are all weighted value parameters in the
EEWBP algorithm. The weighted-sum approach assigns weights to the various controlling
factors to save energy, extending the monitoring field’s lifespan. Governing parameters are
selected depending on energy and coverage considerations. Node density, distance from
SN to a sink [18–20], and other factors affect network lifespan. So, our current research
mostly ends up involving some crucial parameters like residual energy, node density, trust
value, and SN degree at the same time and chooses a group of active nodes and CHs that
work efficiently as well as in the optimal way.

Our most significant contributions are as follows:

• Reasonable packet data transmission rate and energy-efficient for the WSN nodes
using a novel clustering routing algorithm have been developed in this paper;

• We develop a new function that considers energy efficiency through a cluster formation
process to make the CH excerption process better;

• Surpassing existing systems in terms of their energy consumption, the number of live
nodes, packet delivery rate, and among other metrics too;

• To better comprehend the protocols and related approaches used by WSNs, we provide a
thorough analysis and evaluation of the relevant literature based on clustering parameters.

This paper has been distributed in the following ways: In Section 2, a discussion about
the background of WSN and how it can be utilized. In Section 3, the literature review is
conducted. Section 4 gives a detailed explanation of how our proposed routing protocol
would be put into action. Section 5 shows how the proposed routing protocol is doing
in terms of performance as well as in energy consumption. Section 6 wraps up with a
conclusion and explains the future scope of our research.

2. Background

Building, health, ecological monitoring, security, housing, transportation (cars, aircraft,
ships), and retail are just a few places where innovative technology is applied. However,
just like sentient animals, smart surroundings first rely on sensory data from the physical
world [20,21]. The emergence of sensors has been made feasible by the rapid development
of wireless communication systems, digital electronics, and microelectromechanical system
(MEMS) technology in recent years. The tiny devices can measure the surrounding envi-
ronment’s temperature, pressure, humidity, water content, gas presence, and light intensity.
Despite the many uses for WSNs, their sensor nodes are constrained in several ways. They
have low computational power, limited memory and storage, poor range and bandwidth,
and limited energy [21–23]. One sensor cannot cover large regions due to its short com-
munication range. When many sensors are placed near and linked together, they form a
Wireless Sensor Network (WSN) that can monitor a larger area. The lifespan of a sensor
node, and by extension, the lifetime of the whole network, is determined by its energy
consumption, making this the most crucial factor to consider when developing a WSN. For
optimal network performance, it is essential to strike a balance between the sensors’ energy
restrictions and their resource limits [24,25]. However, when there are many nodes in a
network, conventional direct routing can be inefficient and severely shorten the system’s
lifespan. As a carryover from traditional wired networks, hierarchical or cluster-based
routing is commonly utilized for massive WSNs due to the benefits it provides in terms
of scalability, efficient communication, and fault tolerance. The entire network is broken
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up into smaller clusters in hierarchical systems. Cluster Head (CH) nodes are in charge of
aggregating and fusing information from other nodes in the same cluster [26].

A multi-hop behavior is possible for both inter- and intra-cluster communications
when using this routing method [27]. Therefore, to conserve its remaining energy, a sensor
node will communicate with its nearest neighbor rather than with a neighbor that is further
away. On the other hand, unsupervised learning-based clustering methods try to find a
balance between the amount of data collected and the amount of data sent [28]. Probabilistic
clustering methods predominate in the classic hierarchical-based algorithms. However, as
pointed out by the authors, clustering on WSN remains an NP-hard optimization issue that
cannot be efficiently handled using classical methods [29].

Utilizing methods based on some weighted parameters or bio-inspired Machine Learn-
ing algorithms allows for a more precise solution to the NP optimization of clustering. The
term “optimized clustering algorithms” describes the most recent paradigm shift in cluster-
ing methods. Environmental and biological behaviors algorithms and weighted algorithms
can be considered to build an efficient clustering algorithm [28]. There is always a need for
clustering solutions which should outperform the vast majority of their predecessors in
terms of scalability, reliability, fault tolerance, data delivery, energy consumption, better
coverage of the experimental field, and extended network lifetime [30,31]. At the same
time, the type of application used dramatically impacts how much it costs to set up and
run a network.

Using sensors and cameras, real-time photos, audio, and videos are captured by
WSNs and the data is instantaneously sent to the BS. Following this, the BS evaluates
the data and provides messages, such as alerts, when detecting a disruption or incident.
Multi-WSN scenarios considerably influence human life and activities [24,25]. For example,
340,000 accidental injuries and $10 million yearly costs may be reduced using a multi-WSN
scenario to identify and monitor wildfires [20]. WSNs are also a kind of WSN that are often
used to link hard-to-reach locations in countries prone to natural disasters and military
applications [28]. With the aid of WSNs, traditional networks can autonomously shut down
in the event of a catastrophic disaster (such as an earthquake, hurricane, storm, tsunami,
and dam breakage). Cameras and other sensors prepared to save lives in emergencies can
also be installed, giving a constant aerial view. Direct communication between the SNs
and the BS on the ground may become impractical in large coverage regions. However,
hop-to-hop communication can overcome this problem by using a routing protocol to find
the optimum route/path from the source to the destination [21–25].

Routing protocols are responsible for discovering, establishing, and maintaining
communication routes between two nodes [15–18]. There are several advantages to using
these protocols, including reducing overhead and bandwidth use. Many elements of WSN
routing protocols make them more brutal as they are fixed network protocols but also
include dynamic topology algorithm, mutual intervention, limited battery capacity, and the
restricted resources accessible in SNs. Hence, it is required to use routing information to find
other paths [26]. As a result, communication cannot be limited to the radius of the action of
each device but rather the aggregate of the radius of the action of all devices. Furthermore,
in SN, determining contact paths and their spatial organization is a crucial task. As a result,
these routes are frequently restructured such that the SN may operate in unison [28–31].
Therefore, it is critical that routing be dynamically performed with the WSNs autonomy
being increased and the time between the source and target nodes being reduced [32–34].
With the help of various sensors, WSN are frequently employed to track areas in images or
videos [32–35]. This means that the Quality of Experience (QoE) measures must verify both
video streaming consistency and data transfer effectiveness. Search missions, surveillance,
agricultural monitoring, disaster monitoring, and environmental monitoring have all used
the multi-SN scenario to identify targets (i.e., the location of a target) and to give a birds-eye
perspective for surveillance (weather conditions including such wind and temperature as
well as light intensity and pollution) [34–36]. Using the multi-sensor nodes scenario, traffic
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can also be efferent-monitored and managed [22] as a part of smart city monitoring and
catastrophe management systems.

2.1. Wireless Sensors Network (WSN)

As the name implies, a Wireless Sensor Network (WSN) comprises a collection of
sensors located in different areas of a building or campus that are linked wirelessly. As
can be seen in Figure 1, a sensor node, also known as a mote, is an electronic device that
incorporates a CPU, memory, a transceiver module, a single sensor or many sensors, an
analog-to-digital converter (ADC) [36–38], and a power supply, typically a battery. A
positioning unit and a mobilizing unit are available additions. A sensor node’s sensor(s)
monitors the surrounding environment for changes in the present conditions. To handle
these readings, the CPU at the node first converts them from analog to digital form using
the ADC unit [39–42]. The data processed by the node can be sent wirelessly to other nodes
and a designated sink point, called the Base Station, using the node’s transceiver [43].
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The Base Station can exercise supervisory control over the WSN to which it belongs
and relay relevant data to either human users or/and other networks by using the data
transmitted to itself [44]. By working together, many sensor nodes in a WSN can simultane-
ously collect data from multiple sites of interest dispersed across large regions. Constant
technical progress has made possible the cheap mass production of such sensor nodes,
which despite their diminutive stature [45], have incredibly sophisticated sensing, pro-
cessing, and communication capacities. This is why, even though WSNs were initially
employed for military functions, they currently support an ever-expanding variety of
uses [32].

2.2. Why WSN Is Important in Forest Fire Detection

The protocol for energy-efficient clustering with weighted-based optimization in
wireless sensor networks for early forest fire detection is designed to improve the energy
efficiency and detection accuracy of wireless sensor networks used for forest fire monitoring.
The protocol uses clustering algorithms to group sensors into clusters and assign a cluster
head to each cluster. The cluster head is responsible for collecting data from its member
sensors, processing the data, and sending it to the base station. The optimization of the
clustering is based on weighted factors such as energy consumption, distance between
sensors, and sensing range. This protocol helps to conserve energy in the network and
improve the accuracy of forest fire detection. Wildfires pose a significant hazard to both
human lives and natural resources. As is well known, forest fires can travel great distances
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and burn for weeks or months, posing serious threats to the surrounding environment
and frequently leading to air pollution in neighboring countries. The forests, however, are
typically situated in inaccessible, ungoverned regions. Additionally, the forests typically
include dried wood, trees, and leaves, all of which can be used as fire fuel. Both natural
and human-caused climate change and human activity present risks for forest fires. As
the forest fire is usually discovered after it has already spread across a broad area, putting
out such blazes is an arduous task. As a result, forest fires cause substantial economic and
ecological losses. Further, forest fires cause lasting harm, such as the loss of biodiversity
and the acceleration of climate change. As a result, keeping an eye on forests is crucial
for preventing the damage that might be caused by fires. However, due to its continuous,
prolonged surveillance of the forest, the network designed to detect fires in the woods uses
a great deal of energy. Thanks to its many benefits, the wireless mobile sensor network is
increasingly being used for forest fire detection. These include the fact that the network’s
sensors are able to detect heat from fires, that it can be installed at any time and place, that
it can provide access to information about the sensors’ locations, that it is self-configuring,
that the sensor nodes can function as routers, that it is less expensive than wired sensor
networks, that it is scalable and flexible, and that it is highly reliable. However, the
lifetime of the network for forest monitoring is limited by the inefficiency of the routing
protocols in the field of forest fire networks with regard to data transmission and energy
consumption. Energy-Efficient Clustering with Weighted-Based Optimization is a newly
developed routing protocol presented in this study. For forest fire monitoring networks, the
described EECWO protocol takes into account route length between nodes, energy usage,
and the like, to boost network performance. Furthermore, many evaluation metrics are
used to assess LARRR therapies’ efficacy.

2.3. Author Contribution

In addition to providing the reader with assistance in selecting a clustering method
tailored to their particular application’s requirements, this paper’s primary objective is to
provide a concise review of several clustering methodologies [22]. In order to accomplish
this goal, we conducted a comprehensive analysis of the most up-to-date optimized cluster-
ing solutions [40]. As a result, multiple performance parameters are utilized to compare
and assess them. LEACH is a fascinating routing system for WSNs, yet it is plagued with
several flaws that adversely impair its performance. These deficiencies result from many
variables connected to its operation, some of which are highlighted below.

• In subsequent rounds, we will choose the CH without considering the excess energy
of the sensor nodes;

• Therefore, a sensor node with low residual energy will pass away rapidly if it is picked
to be the CH;

• Due to this, the network’s resilience is diminished and its lifetime is shortened;
• Since they are placed near the edge of the clusters, the CHs would lose more energy,

which would hurt the overall performance of the network;
• When it comes to data transmission, CHs that are further away from the BS use up

more energy than CHs that are positioned closer to the BS. Due to this, the lifespan of
the network may be reduced.

We may sum up our primary contributions as follows.

• Create a clustering protocol using weighted parameters. Review the state-of-the-art
WSN clustering;

• Extensive comparison and assessment of the offered algorithms based on the parameters;
• Compared to state-of-the-art algorithms, the proposed one has significantly lower

energy requirements while maintaining or improving performance.
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3. Literature Review

A huge variety of clustering methods are available for maximizing energy efficiency
and increasing the lifetime of a node. Algorithms for this will offer both advantages and
disadvantages. This section reviews some existing research on these algorithms [4,5]. A
longer network lifetime can be achieved by balancing the energy consumption of SN
and distributing the load among them. Uniform/non-uniform/equal/unequal clustering
is possible in these techniques [9]. These clustering techniques employ characteristics
like distance, residual energy, node density, etc., in a probabilistic manner known as the
weighted-sum approach to optimize network lifetime [7]. However, there is still room
for improvement in these energy-efficient clustering algorithms to maximize each node’s
lifespan. Algorithms for energy-efficient power consumption are commonly based on
battery conservation, node scheduling, load balancing, coverage area size, clustering,
and routing techniques [13]. These algorithms reduce energy usage as much as possible
to maximize network longevity and coverage. We will discuss several newly proposed
guidelines that deal with energy and coverage in the following.

Low-energy adaptive clustering hierarchy (LEACH) [1] is a first-of-its-kind WSN
clustering routing technique that chooses CHs based on rotation and a random value.
LEACH operations are done in rounds; each round has two parts: setting up and staying
steady. During setup, a CH is chosen, a cluster is made, and a Time Division Multiple
Access (TDMA) schedule is given to each member node. In the CH selection process, each
node comes up with a random precedence value between 0 and 1. If the random number
that SN comes up with is less than T(n), it becomes CH. Choosing the CH based on residual
power is vital to how well a network works and how long it lasts.

The network can live longer if the chosen CH is a sensor node with the most energy
left out of all the cluster members. Based on residual energy, node location, and neighbors’
numbers, the Improved-Low-energy adaptive clustering hierarchy (I-LEACH) [5] clustering
routing system selects the CHs. There are considerations for additional characteristics that
affect the network’s lifespan, as they are not in the original LEACH algorithm’s CH selection.
The residual energy, the number of neighbors’ nodes, and the distance to the BS are all
accounted for in the threshold function of the I-LEACH approach. Coverage Preserving
Clustering Protocol (CPCP) [6] was presented to preserve coverage through CH selection
approaches. The CPCP considers numerous cost parameters that will affect the lifespan
and range. In addition, it prioritizes SN with a high deployment density as CHs, active
nodes, and routing nodes. It is a good solution for network coverage. However, CPCP has
a colossal processing burden on sensors, making it inefficient. Choosing a CH and active
node in a randomly dispersed network can be more accessible with the Coverage-Aware
Clustering Protocol (CACP). CACP, on the other hand, requires each CH to submit the
aggregated data straight to the sink. As a result, the CHs die more quickly and consume
more energy.

Centralized Low-energy adaptive clustering hierarchy (LEACH-C) [7] is a centralized
clustering algorithm that uses the excess energy of nodes to select CHs and thus creates
clusters within the network. The typical LEACH protocol’s efficiency problem is addressed
by LEACH-C, which uses a centralized method to pick the most skilled CH from a pool of
nominated CHs. During the first phase, sensor nodes communicate with the sink to learn
how much energy they have left and where they are. To identify which nodes are to be cho-
sen as CHs, the sink uses these data to calculate the average power of all grounded nodes
in the system. As a result, CHs will be selected from nodes with more energy remaining
than the average in this round. Each stage of this retransmission wastes a small amount of
energy, which is not ideal. The authors of article [20] suggest a jamming-resilient multipath
routing protocol to ensure that purposeful interruption and jamming and isolated and
localized failures do not interfere with the overall performance of networks. The JarmRout
relies on a mix of three critical schemes to accomplish this objective. These are connection
quality, traffic load, and geographic distance schemes. For fast and secure data transfer,
the authors of article [17] suggest a stochastic packet forwarding (SPF) technique. The
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SPF’s fundamental tenet is utilizing a number of real-time network indicators to create
a random selection of forwarding drones. The SPF calculates the forwarding availability
of each candidate drone by objectively allocating the weight to several real-time network
parameters based on the entropy weight theory. To facilitate effective, trustworthy com-
munication and data transfer in network, the authors of paper [31] suggest a link-quality
and traffic-load-aware optimal link state routing protocol (also known as LTA-OLSR). The
suggested link quality system uses the statistical information of received signal strength
indication (RSSI) of packets to discriminate between the connection qualities of a node and
its neighbor nodes. To effectively and safely transmit data packets to ground targets in
WSNs, authors propose a hybrid packet forwarding method, HYBD fwd, in an article [42].
End-to-end routing and delay-tolerant forwarding make up the HYBD fwd. In order to get
data packets from the drone to their final destination on the ground, end-to-end routing
uses a route discovery technique.

The Distributed Energy and Coverage Aware Routing algorithm (DECAR) [12] has
been developed to extend the lifespan of WSN. DECAR solves the problem of data trans-
mission hot spots. Tables 1–3 provide a comprehensive summary of the above material and
reveal the common shortcomings of the algorithms. These difficulties are solved to some
extent by CPCP but the computational cost on sensor nodes is prohibitive. As a result, a
new algorithm, EEWBP, has been developed to address these concerns. To save energy,
EEWBP employs some simple techniques in an algorithm. This reduces the computational
strain on SN, resulting in a more extended period for complete area coverage, flexibility,
and enhanced scalability. There are substantial tactical differences between the cluster
creation processes used in CPCP and CUCA. Our weighted-sum approach chooses the
most efficient CMs and CHs. The remaining energy, node density, and degree of the SN are
all energy and trust value criteria considered when determining weight values. During
cluster creation, the CPCP only feels each sensor node’s energy. However, the EEWBP
considers all factors that have the highest impact on the network’s lifespan.

Table 1. Comparison of various algorithms.

Protocol Published Year Type of Mode Approach Sensing Model Drawbacks

LEACH [1] 2000 Homogenous Centralized Disc

CH nodes are distributed in a
non-uniform manner. CH is
chosen at random and in each
cluster, the nodes are not
spread uniformly.

I-LEACH [5] 2015 Homogenous Centralized Disc

Unlike nodes that receive
distinct data, CH combines
collected data to cut data
transmission costs.

CPCP [6] 2009 Homogenous Distributed Disc Sensor node computation load
is high.

CACP [19] 2012 Homogenous Distributed Hexagonal
Death of CHs owing to direct
transmission of aggregate data.
Useful for small networks only.

LEACH-C [7] 2020 Homogenous Distributed Disc

The position of nodes is
required every time.
Transmission with a single hop
adds an additional overhead to
the sink when centralization
is used.

FBR [8] 2013 Homogenous Centralized Disc No change in sensor load when
communication overhead rises.
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Table 1. Cont.

Protocol Published Year Type of Mode Approach Sensing Model Drawbacks

DEECIC [9] 2012 Homogenous Distributed Disc

Clustering algorithms that are
more energy-efficient than
those that are more coverage
efficient.

ECDC [11] 2014 Heterogeneous Distributed Disc

Routing requires
retransmission of control
packets, consuming additional
energy.

CUCA [15] 2017 Homogenous Distributed Disc Useful for small networks only.

DECAR [12] 2014 Homogenous Distributed Disc Send aggregate data to sink is
not possible in a huge network.

Table 2. Comparability based on certain metrics.

Protocol Energy-
efficient

Position of
Base Station

Number of
Cluster Nodes Number of CH Cluster

Method Mobility

LEACH [1] Yes Outside Unpredictable Uncertain Distributed Static
I-LEACH [5] Yes Outside Unpredictable Certain Distributed Static

CPCP [6] Yes Centre Unpredictable Uncertain Distributed Static
CACP [19] Yes Outside Unpredictable Uncertain Distributed Static

LEACH-C [7] Yes Outside Unpredictable Certain Centralized Static
FBR [8] Yes Outside Unpredictable Uncertain Distributed Static

DEECIC [9] Yes Outside Unpredictable Uncertain Distributed Static
ECDC [11] Yes Outside Unpredictable Uncertain Distributed Static
CUCA [15] Yes Outside Unpredictable Uncertain Distributed Static

DECAR [12] Yes Inside Unpredictable Uncertain Distributed Static

Table 3. Comparability based on physical metrics.

Protocol Network Size
in m2

Number of
Nodes

Location
Aware

Deployment
Model Coverage Type

Residuary
Energy

Involved

LEACH [1] 100 × 100 100 Yes Random No No
I-LEACH [5] 100 × 100 100 Yes Random No Yes

CPCP [6] 200 × 200 400 Yes Random and
non-uniform Area No

CACP [19] 120 × 120 1000 Yes Random and
uniform Area Yes

LEACH-C [7] 100 × 100 100 Yes Random Yes Yes
FBR [8] 150 × 150 1000 Yes Random No

DEECIC [9] 100 × 100 100 No Random Bounded Area Yes

ECDC [11] 200 × 200 100–200 Yes Random and
non-uniform Area and point Yes

CUCA [15] 40 × 40 60–100 Yes Not discussed Area No

DECAR [12] 40 × 40 100 Yes Random and
Grid Area Yes
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4. Proposed Algorithm EEWBP
4.1. Energy Model

This study was carried out to decrease energy consumption during the execution
of the main tasks by WSNS nodes within a network. Therefore, there is a great need for
an effective energy model for the WNSs to increase lifespan and coverage. The energy
categories included in this model correspond to the following operational stages: activation,
channel auditing, receiving packets, packets transmitting, switching, processing, and
shutting off microcontrollers. The proposed EEWBP measures energy dissipation using
a simple radio model. The radio model has a transmitter, amplifier, and receiver. The
transmitter uses energy to execute circuitry operations like a radio signal to broadcast,
amplify, and receive signals.

During data transmission to a receiver, the power amplifier gives off heat and the
receiver uses energy to maintain the circuitry on the receiver end. There are two models
of how information spreads: free space and multipath. Open space or multi-channel
propagation models can be used depending on how far the sender and receiver are from
each other [19]. If the distance is less than a certain threshold, the free space model (fs) is
used. The multipath model (Mp) is used if the distance exceeds the threshold. Equation (2)
shows how much energy it takes to send a message with l-bits at a distance of d.

ETx (l, d) = ETx−elc (l) + ETx−amp (l, d) (1)

lEelc + l ∈fs d2 d < d0

lEelc + l ∈fmp d4 d < d0

d0 =

√∈fs

∈fmp
(2)

Moreover, the energy expected for obtaining a one-bit message is provided as follows.

ERx(l) = lEelc (3)

The electronics energy denoted by Eelc depends upon digital coding, intonation,
filtering, and disseminating of the signal. The amplifier energies (∈fs d2 and ∈fmp d4)
depend upon the distance to the receiver. The novelty of this model is that it has a basic
design that consumes less energy than the potential network in wireless sensor models
with anomalies in which the consumption of energy is relatively high. In the proposed
model, energy is considered a vital indicator of a typical high lifetime of WSNS [18] nodes
in a network. Moreover, this enables energy usage to be optimized for individual node
operations and overall network performance. The analysis done in this paper is described
by monitoring the performance measures that might influence such a model favorably or
unfavorably. These are some key points where this study makes a significant contribution.
As in our suggested model, it is demonstrated that there is a change in network performance,
easy implementation, and no higher processing demands that have led to less consumption
of energy.

4.2. Network Model

1. In our setup, low energy SNs and high energy SNs are the two types of accessible SNs.
Both types of nodes are static (plain nodes);

2. The sink or BS is stationary and intended to be known by other SNs in the center of
the field under surveillance;

3. The networks have the same type of sensor nodes and communication capabilities,
where in all SNs are similar;

4. A unique identification number is issued to each SN;
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5. There is always a limited sensing range for each SN. It is assumed that the SN is in
the middle [3] of the disc and that the SNs can interact with other’s nodes through
changing power levels, depending on their distance from their neighbors;

6. A sensor node’s transmission range is described in 2-D space as the disc-sensing
model and all SNs in the area of its transmission range can acquire the data supplied
from each SN [3];

7. The range of transmission is at least twice that of the sensor range [4], e.g., Trange = 2 × R
sensor, where the range of transmission and sensor range are indicated as Transmis-
sion Range (Trange) and Range of Sensor (RS);

8. The connection between wireless sensor nodes is symmetrical and bidirectional and
the coordinates of them are known to other SNs.

The proposed EEWBP considers an area for WSN with the N number of WSN nodes re-
ferred to as {SN1, SN2, . . . , SNN}. In our proposed protocol, we are using a 100 m × 100 m
space as a monitoring field, the sensor nodes are planted randomly in a circular region
known as a cluster around the sink, and in the core of the network, there is the BS. We as-
sume the following assumptions on the sensor nodes during the design and implementation
phase of EEWBP algorithms.

4.3. Network Operation

Algorithms for EEWBP are made up of two steps.

4.3.1. Cluster Formation Phase

In the first phase, active nodes and CHs were picked to represent a cluster. The
EEWBP sum up assigned weight values according to the criteria as different performance
parameters for every operation. EEWBP identifies active nodes and CHs, and then executes
data transmission operations using the weighted-sum methodology. The data transmission
procedure is executed in the second process. For example, data is sent from CMs to their
respective cluster hosts (intra-cluster communication) and from various designated cluster
hosts to sink hosts (inter-cluster communication) in each cycle of communications. As
part of the EEWBP algorithm, SNs collect information about residual energy and other
parameters. In addition to their coordinates, the SNs know the distance between them and
the distance to the sink. Based on the Euclidian formula, these distance estimates are made.

After each communication cycle, all SNs are used to update their information, con-
sidering the amount of battery power that they have left. As a result, each SN broadcasts
a new packet of information in its cluster radius, corresponding to the sensor’s detecting
range. As soon as each node receives the message, it calculates its Sum weight (Sw). Based
on the excess energy of the SN, the distance between node and sink, the degree of a SN,
and the trust value, Sum weight (Sw) is determined. The procedures required in selecting
active nodes and CHs during the first communication round of EEWBP can be seen in
Algorithm 1 and Figure 2, and the detailed procedure is mentioned below:

1. Dismantle SNs to cover the entire required region;
2. Computation of residual energy Re of each node is done in the starting and if it is less

than the threshold value, then it is skipped from the current round and can participate
only in the next round of communication;

Residual energy = initial energy − current energy (4)

3. Calculation of all the minimum distances between each node to the sink as denoted
by Dist(i,j). To calculate distance among every node to CH and between CH to BS, we
use a Basic Equation (5) known as three-dimensional Cartesian space, in which two
locations have three coordinates each. In order to determine the distance spanning
between two points, A(x1, y1, z1) and B(x2, y2, z2), use the formula:

D2 = (∆x)2 + (∆y)2 + (∆z)2 (5)
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where ∆x = x1− x2 , ∆y = y1− y2 , ∆z = z1− z2;
4. Calculation of each sensor node’s net weight using a weighted-sum equation (Sw)

Sum weight (Sw) = Re × x1 + Avg _FS × x2 + SND × x3 + Nbq × x4 + TTV (6)

The values of x1, x2, x3, and x4 are 0.6, 0.3, 0.2, and 0.1 for particular application;
5. Identification of the SN with the highest value of ‘Sw’ as the active node for a cer-

tain region;
6. Each active node inside its sensing network radius broadcasts an updated packet to

the rest of the network;
7. Calculation of ‘CH wpp’ (CH weighted-sum) using the determined ‘Sw’ of the sensor

node and the distance between it and the sink;
8. Nodes with the lowest ‘CH wpp’ values are picked as candidates for CH for the

specified active nodes;
9. Each selected CH broadcasts an updated packet inside the cluster radius;
10. If residual energy of CH is less than 25% then again CH re-selection process is repeated.

Algorithm 1 CH selection and Cluster Establishment

Start
1: For every SN in network deployed on space;
2: Calculate residual energy Re of every node
3: If (Re < threshold)
4: Skip the node for current round
5: Calculate of all the minimum distances between each node to the sink Dist(i,j).
6: Calculate each sensor node’s net weight using a weighted-sum equation including

Min Avg flying speed, ’SND(degree of a sensor node), nbq(number of neighbors), and
Trust value
7: Highest value of weighted-sum of a SN is denoted as active node
8: Each active node inside its sensing network radius, Transmit an updated packet to the rest of
the network.
9: Calculate the ‘CH wpp’ (CH weighted-sum) using weighted-sum of the sensor node and the
distance between it and the sink.
10: Nodes with the lowest ‘CH wpp’, Declare (Itself as CH);
11: Each selected CH Transmit an updated packet inside the cluster radius
12: End If

End

Residual energy, flying speed, SN density, and other regulating characteristics all play
a role in determining whether a SN is appropriate for use as an active node or CH. In our
proposed algorithm, some key terms are used, which are described as follows:

1. Residual energy, abbreviated as “Re”, is the first performance measure for weight
value. Each simulation cycle ends with some leftover energy from the SN, which is
known as residual energy. The larger the residual energy of the SN, the more likely it
is to become an active node;

2. The next performance measure for the weight value is Average flying speed. Every
node distance covered is divided by the time taken, which is considered flying speed.
Then, the average of all nodes is considered as Avg flying speed. If a node’s flying
speed is less than Avg flying speed, it is disqualified;

3. The ‘SND’ denotes the degree of a sensor node, which is the third performance criteria
for weight value. SND refers to the number of sites in SNi’s sensing range that
are reached. Initiation probability is higher for SNs to become active as it covers
many locations;

4. The next functioning parameter for weight value is a number of neighbors i.e., ‘Nbq’.
Number of neighbors is delineated as several other SNs within its cluster range;
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5. The other considered criteria in the implementation are the Trust Value [13,14] denoted
as (TVL).
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The proposed WSN clustering eventually includes the trust value as a new parameter.
The performance of the SNs is reflected in the level of trust. The trust value will be larger
than the non-cooperative SNs that delay the packet’s propagation to the destination; if
the SN is cooperative, it will forward the packets with minor delays. Direct Trust Value
and Indirect Trust Value [12–15] are two sub values of the trust value. Packet delay will be
utilized to determine which packets are accepted and which ones the Direct Trust rejects.
This decision is put into effect as follows:

If | ∆dl(n, m) <= ∆dl average (n, m)× α the packet is forwarded
Else | the packet is dropped

(7)

where:

• ∆dl(n, m) Sending and receiving packets from one SN n to another SN m might take
some delay;

• ∆dl(n, m) average, is the average delay of packets sent SN n to another SN m;
• α is the threshold constant which can range from 0 to 2. Therefore, Direct Trust can be

calculated as shown in (8):

Hence, Direct Trust [13] can be computed as demonstrated in Equation (8):

Direct Trust (n.m) = Tpf / Tpr (8)

where:

• Tpf is the Total packets requested by SN n to be sent to SN n in the situation when
n 6= m and m is a neighbor of n;

• Tpr is the number of packets sent by SN n to SN m.

Indirect Trust: Indirect Trust between SN n and other SNs m is the sum of the Direct
Trust values for SNs m that are sent to SN n from all neighboring nodes [14,15]. So,
Equation (9) is used to figure out how much Indirect Trust there is:

Indirect Trust (n, m) = ∑iαQ Direct Trust dl(n, m) (9)

Here, the trustor node (SN computing the trust) is n, The Trustee (Neighbor nodes for
n) is called m, and Q is one of the SNs.

Equations (8) and (9) are weighted summation to get the total Trust shown in Equation (10):

Trust (TVL)(n, m) = α× direct trust (n, m) + (1− α)× indirect (n, m) (10)

While there is a constant threshold α, it ranges from 0 to 1.
We have a grid of central points in our deployment-monitoring field. This ensures

that each sensor covers an equal distance from the other. A sum of all SNs weight (Sw)
is computed for each SN in the entire monitoring region. One of the sensors with more
considerable residual energy and faster flying speed is chosen to participate in a commu-
nication round when two or more sensor nodes cover the same area. The SN activates a
communication round by announcing an activation message. The chosen active nodes
can effectively monitor every part of the monitoring region [46,47]. These active nodes
are selected based on how much energy they use, how big their sense area is, and how
many nodes are in the area they are monitoring. On the other hand, sleeping nodes are all
nodes that stay inactive [48,49]. All cluster members should be equidistant from the cluster
head in most protocols. Therefore, distance is one of the primary weighted factors in our
suggested formula. It is probably chosen as the CH if it has the lowest space to the most
neighbors and highest Sum weight (Sw) value.
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4.3.2. Data Transmission Phase

Inter and intra-cluster communication in the second stage is known as data trans-
mission. The active nodes use a one-hop mechanism for intra-cluster communication to
transmit their detected data straight to their respective CH. In contrast, in inter-cluster
communication, CHs use a multi-hop approach to convey selective information from one
cluster to another [48]. In this case, the communication path is chosen using the shortest
path technique as shown in Figure 3. As a result, EEWBP selects the most optimal CHs
and active nodes to ensure long-term coverage. A data compression method merges all the
acquired data from all the CH’s. A critical XOR operation is now performed on the data
detected by neighbor nodes to ensure that the CH does not send a copy of this information
to the BS [38–40]. Bit scrambling is accomplished using the XOR algorithm. A “True” result
is deemed to have two copies of the data, whereas a “False” result is considered to have
just one copy. The duplicate-gathered data would not be transmitted if the data sent out
were identical bit for a bit [16]. As a result, duplicate data can be avoided and the amount
of data sent to BS has decreased automatically. Due to this, the entire system is going to
utilize less energy [46].
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5. Performance Analysis
5.1. Deployment of Nodes

Consider a 100 m × 100 m square area with N sensor nodes distributed at random
as shown in Figure 4, using the following settings: a total of 50 nJ/bit is the initial en-
ergy, with a maximum transmission distance of 200 m and a data aggregation energy of
5 nJ/bit/message. By our proposed EEWBP method, nodes’ weights are calculated using a
variety of parameters, as shown in the following Table 4. Our optimized weighted clus-
tering method uses less energy than LEACH, CACP, CPCP, and CUCA when it comes to
average node energy consumption or overall power consumption. We have the ability to
lower the number of transmissions by a large margin since our technique selects CH by
using multi-weight parameters like residual energy, the distance between and the degree
of each node, an average flight speed, and a trust value [41].
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Table 4. Feigning Parameter.

Parameter Default Value Parameter Default Value

Monitoring area 100 m × 100 m Amplifier constant [1,2] 10 pJ/bit/m2

Network node count 200 CH energy threshold [2] 10–4 J
Shortest possible path between
nodes 2 m Size of packet [2] 30 bytes

Number of simulations
performed 100 Rate of packets [2] 1 packet/s

Simulation clock time 120 s Detection distance [2] 10 m
Position of BS (50, 50) Size of a cluster [2] 25 m
Initial energy 0.5 J Energy used to send each bit 50 × 0.000000001
Transmission scope 40 m Energy used to receive 50 × 0.000000001
Chance of a node becoming a CH 0.1 Tx/Rx electronics constant [2] 50 nJ/bit

Cluster headcount, cluster construction, and consistency are the most critical fac-
tors that we employ in our evaluation process. Time, energy expenditure, network
lifetime [42–44], and the probability of success are all considered. In our proposed protocol,
MATLAB is used as a simulation platform in this experiment.

5.2. Number of Clusters

It has been seen that an increase in number of clusters will automatically reduce energy
use because the number of nodes will be far from the CH causing a more rapid energy
drainage [45]. A decrease in the number of clusters reduces the number of nodes close to
CHs, increasing the rate at which network energy is used. The number of CHs required
to transmit data to the BS over long distances will also increase if the clusters exceed the
optimal number. In Figure 5, EEWBP has 24% fewer CHs than LEACH, CACP, CPCP, and
CUCA at any given point in network operation.
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5.3. Consistency in Number of CH

Cluster headcount has a significant impact on protocol efficiency, as there will be
additions in node energy consumption and over-consumption of energy. If the number of
CHs is low, the number of SNs per CH will be high and the SN data transmission duration
will be belonged. The total energy consumption of each round of networks grows as the
number of CH increases; it decreases the network’s data fusion efficiency and longevity. In
Figure 6, it can be seen that our recommended EEWBP protocols’ headcounts fluctuation
number is better than LEACH, CACP, CPCP, and CUCA. It is easy to observe that the
cluster headcount in the LEACH protocol swings between 3 ≤ k ≤ 19, 4 ≤ k ≤ 15 in CUCA,
5 ≤ k ≤ 16 in CACP, 4 ≤ k ≤ 18 in CPCA and our proposed protocol swings between
3 ≤ k ≤ 13 which is the most ideal.
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Optimal cluster headcount should be calculated using the weighted value, which
contains several energy characteristics, to reduce the unpredictability of cluster headcounts
in the suggested protocol. This means that the cluster’s total capacity will be reduced to
balance energy usage if many dead nodes are present.

5.4. Cluster Lifetime

The clustering algorithm’s performance is assessed using some very important perfor-
mance measures, such as network longevity as measured by the First Node Dead (FND)
time, Half Node Dead (HND) time, Last Node Dead (LND) time, and residual energy. In
the context of a cluster, a life cycle is a period that elapses between the cluster’s creation
and its eventual demise which is known as FND. The node with the best acceptable value
is selected as CH during the algorithm run and assumes responsibility for managing a
given cluster. There are two portions to the measurement parameter that we may use to
track the life cycle of sensor nodes: the stable period and the unstable period. However,
in our situation, we primarily utilize what is known as the unstable period between the
first and last node deaths. This is generally used for environmental monitoring. If a large
number of SNs dies, the information gathered will not make it to its intended destination
because of the vast spread of SNs. There is uncertainty about the period based on the time
from the FND to the Last Death Node (LND). In the case of many nodes dying, some of
the gathered data cannot be used to adequately analyze the surrounding circumstances.
While evaluating our suggested technique, this research analyzes network life using FND
and reveals evident benefits over the other protocols. Compared with CUCA, CPCP, CACP,
and LEACH, our proposed algorithm has better HND 11.72%, 4.37%, 13.83 as compared
with the above algorithms. Furthermore, the experimentation shows that our proposed
EEWBP algorithm increases LND by 81.48% compared with LEACH; CUCA increased by
56.84% and 64.56% over the CPCP algorithm. Figure 7 illustrates a comparison of resid-
ual network energy at FND, HND, and LND with EEWBP at the three different network
timings [21,50–54].
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5.5. Residual Energy

Data transmission, data reception, and communication with other nodes are the
three main types of node energy consumption. The more time a node is online, the more
evenly its energy use will be spread out. As seen in Figure 8, the suggested protocol’s
energy consumption is more consistent than the LEACH, CACP, CPCP, and CUCA pro-
tocols. Reduced energy usage across clusters and within each one can be achieved with
this approach.
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5.6. Probability of Successful Information Delivery

WSN nodes are known for their high-energy efficiency. A node’s battery life is limited
because of the tiny size of its dry cell. These nodes have a limited quantity of energy and
thus optimizing energy in these nodes is particularly useful to the long-term viability of a
WSN. The three energy-consuming processes for the WSN nodes are sensors, communica-
tions, and motor control. The probability of successfully transmitting the packet to the BS is
an essential aspect for optimizing the energy in WSNs. Grounded on the average number
of packets obtained by the BS, this metric points to how well the packet is transmitted to
the intermediate nodes. According to Figure 9, our suggested protocol can transmit 85% of
packets to BS and has a success rate of 89% as compared with others as their success rate is
LEACH at 34%, CPCP at 71%, and CACP at 63%. A packet’s delivery to BS is more likely
to be successful if the CH is effectively selected, increasing the network’s density. Packet
drops are reduced by using the right count of clusters and the right number of CHs in a
network [53–61].
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6. Discussion and Analysis of Results

This study presents the EEWBP model as a solution to the WSN routing issue. Utilizing
our suggested strategy, one may locate search space solutions that are both energy-efficient
and optimal. The EEWBP approach speeds up the wireless sensors network cluster-building
process, lowers energy use, and increases the likelihood of successful packet delivery by
maintaining a healthy distribution of cluster heads. Additionally, the EEWBP approach
aided in reducing the cost of routing, helped to conserve WSN energy by limiting trans-
mission range, and reduced the amount of unnecessary broadcasting. In Figure 10, a
side-by-side comparison of our suggested procedure with the four previously mentioned
techniques can be seen.
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Every metric used in the evaluation confirms that EEWBP is the best method for
selecting a CH and a cluster’s best neighbor nodes. In contrast, there is no way to agree
on a single algorithm that is as great as CPCP that can perform better if we discuss the
second best algorithm. While SN has a better chance of success over the long term, CACP
does better in the short term. CUCA is the apparent runner-up to our cluster number
and clustering time proposal. Hence, we are unable to even approach the second most
efficient technique. A significant shortcoming of the proposed approach is that it does
not offer any aggregation mechanism to discard the identical packet for processing, even
though doing so would save a great deal of computational work and WSN energy. A
packet scheduling system is necessary to solve these problems and address the congestion
management issue. To further the development of WSNs and the Internet of Things, we
want to build a dynamic model in a heterogeneous environment, along with basic security
measures to protect data and devices [62–65].

7. Conclusions and Future Scope

Wireless sensor networks have significant barriers to deployment due to the need to
conserve battery energy in forest field monitoring. Protocols for network routing have
been devised to maximize the efficiency with which sensors use energy while transmitting
data. This article suggests enhancing the energy-efficient weighted clustering based routing
protocol by using a clustering algorithm in conjunction with a strategy that considers node
degree, residual energy, the number of neighbors’ nodes, average flying speed, and trust
value to choose sensors as cluster heads which are being deployed in the environment to
detect forest fire in an optimized way. In order to minimize the amount of data sent back
and forth between nodes inside a cluster and the base station, the cluster head is chosen
using the optimal weighting factor in the area.

The weighted clustering algorithm developed in this study provides an improved
method for selecting CH in WSNs by picking and combining specified characteristics with
additional restrictions. As a result, our proposed algorithm’s essential contribution is
ensuring that a genuine CH is selected with the best performance parameters, primarily in
signal strength and residual energy. Our proposed scheme addresses both the concerns
of extended network longevity and energy efficiency. The simulation results demonstrate,
evaluate, and compare our proposed method to various routing algorithms on a static
network. In addition, WSN difficulties can be easily tackled using our suggested method
and may be used more effectively in monitoring and surveillance services. In the future,
we can evaluate our proposed approach with several new metrics, such as the number of
SNs increasing, each SN having variation in initial energy, and how many nodes per square
meter are in a particular region.

Our selection procedures limit the transmission of redundant data in areas, preserve
sparse areas for as long as feasible, and lessen the load on the network. Simulations
demonstrate that the new protocol is superior to the old one in terms of network longevity,
including mean sensor lifetime, mean energy dissipation per round, and several dead
sensors after each round. Future research will examine the protocol’s potential for use in
different settings and also try to implement our protocol to flying ad hoc networks so that
wildfire monitoring does not stick to the limitation of fixed nodes.
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