
Citation: Belaroussi, R.; Dai, H.;

González, E.D.; Gutiérrez, J.M.

Designing a Large-Scale Immersive

Visit in Architecture, Engineering,

and Construction. Appl. Sci. 2023, 13,

3044. https://doi.org/10.3390/

app13053044

Academic Editor: Peter Gorm Larsen

Received: 23 January 2023

Revised: 22 February 2023

Accepted: 25 February 2023

Published: 27 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Designing a Large-Scale Immersive Visit in Architecture,
Engineering, and Construction
Rachid Belaroussi 1,* , Huiying Dai 2 , Elena Díaz González 3 and Jorge Martín Gutiérrez 3

1 COSYS-GRETTIA, University Gustave Eiffel, F-77447 Marne-la-Vallée, France
2 ESIEE Paris, University Gustave Eiffel, F-77454 Marne-la-Vallée, France; huiying.dai@edu.esiee.fr
3 Higher School of Engineering and Technology, Universidad de La Laguna,

38071 San Cristóbal de La Laguna, Spain; elediaz@ull.edu.es (E.D.G.); jmargu@ull.edu.es (J.M.G.)
* Correspondence: rachid.belaroussi@univ-eiffel.fr

Abstract: Throughout history, tools for engineering in the building industry have evolved. Due
to the arrival of Industry 4.0, Computer-Aided Design (CAD) and Building Information Modeling
(BIM) software have replaced the usage of pens, pencils, and paper in the design process. This paper
describes the work required to design a large-scale immersive visit of a district under construction
in a suburban area of Greater Paris, France. As part of this real estate project, called LaVallée, we
have access to its city information model: all the BIMs of the works to be carried out including roads,
terrain, street furniture, fountains, and landscaping. This paper describes all the technical operations
necessary for the design of an immersive 3D model with a high level of detail of the neighborhood
with its surroundings. The objective of this technical report was to provide practitioners with feedback
on such an achievement based on industrial-level data. The development of the city model begins
with the registration of all the BIMs from different firms in a common Geographic Information System:
this gives the opportunity to confront the operational requirement of a construction phase and the
actual current practice of architecture firms. A first prototype was developed using the archviz tool
TwinMotion. In order to increase the realism of the model, we describe the creation of a pipeline
in Unreal Engine with the automated tasks of material and mesh replacement and the lighting and
landscape configuration. The main contribution of this work is to give relevant experience on building
such a large-scale model, with the Python script when possible, as well as the necessary manual steps.
It is a valuable contribution to the making of large-scale immersive visits with a high level of detail
and their requirements.

Keywords: immersive visit; digital twin; building information model; city model; architecture;
Unreal Engine

1. Introduction
1.1. Purpose of the Work: An Immersive Visit at the Scale of a Neighborhood

For the construction industry to be completely digital, structured information models
would need to be available at the construction site, where the information is used to shape
the material world. The design phase is mostly digital and is becoming more and more
integrated with BIM.

The presented work in this paper is part of a larger research program of Eco-district
Smart, Sure, Sustainable. The program uses the opportunity of a large construction project
called LaVallée recently started in Paris’s suburbs, France. The district’s spatial extent is
about 500 m × 400 m, part of a larger city called Châtenay-Malabry. The whole district is to
be completed in 2025. We are in the first phase of the project with the first roads being built
and the first inhabitants installed by the end of 2022. Eiffage, the company in charge of the
real estate development, has cofunded a partnership with University Gustave Eiffel. This
allows us to have access to all the construction details. In this work, we had access to all

Appl. Sci. 2023, 13, 3044. https://doi.org/10.3390/app13053044 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13053044
https://doi.org/10.3390/app13053044
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8783-1226
https://orcid.org/0000-0001-7665-114X
https://orcid.org/0000-0002-8367-4363
https://doi.org/10.3390/app13053044
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13053044?type=check_update&version=1

Appl. Sci. 2023, 13, 3044 2 of 27

the BIM files from which we intend to maintain a complete 3D model of the future district
by integrating the new BIM files as soon as they are available. This paper describes the
various operations required to build such a large-scale model, with a close-to-photorealistic
appearance, and how we were able to automate the process.

Figure 1 illustrates the virtual future look of LaVallée district in its urban context:
the purpose of the work is to build an immersive visit of the future district based on
professional BIM architectural files of its buildings.

Figure 1. LaVallée district: location in the city and point of views of the large-scale immersive visit.

In its design, the LaVallée district is physically open to the outside and will offer
services that will be of interest to other residents or users of the surrounding area. To know
the effect of this opening on the potential transit of visitors in the district, as well as the
places of interest for the inhabitants, it is necessary to design visualization tools of the
district in a project situation (i.e., once the eco-district is built).

In this work about the future appearance of the neighborhood, some general objectives
are listed below:

• Visualize the details of the future district in 3D in an immersive tour with virtual
reality glasses (HTC Vive).

• Develop tools to automatically extract basic elements from the high-precision CIM of
the project and integrate the predicted motion of people.

• Predict and characterize the quality of the built environment and urban ambiance, in
static and dynamic scenarios, based on human sensations in virtual reality.

The overall objective of the project is to provide an immersive visit of LaVallée in
which an architectural ambiance study such as the one described in [1] can be conducted in
virtual reality. It requires collecting the BIM files of over 30 buildings, registering them in a
common georeference frame, and automating the material replacement, lighting setup, and
landscape. This paper provides valuable feedback on the holistic approach required to set
up such a large-scale 3D model with the realistic appearances of textures and lighting.

1.2. Applications in Architecture, Engineering, and Construction

Extended reality is a significant modality for the Architecture, Engineering, and
Construction (AEC) sectors, because the constructed world is inextricably linked to three-
dimensional space and because AEC professionals depend significantly on imagery for
communication.

Six broad use cases have been identified:

• Stakeholder engagement: Extended reality may be used to engage potential clients or
the general public in order to create a more realistic version of a developed asset and
to generate more relevant or informed feedback. It may also be quite beneficial in the
real estate industry. The system will give professionals and their clients a complete
picture of the project, reducing the risk of errors and unpleasant surprises. It will let
potential clients inspect homes without physically being present.

• Design support: With the help of extended reality, designers may be able to see how
their decisions will affect the final products and learn more about them.

Appl. Sci. 2023, 13, 3044 3 of 27

• Design review: VR assist in the transmission of design intent, allowing for more
efficient design review; problems can be spotted more easily, and sign-off can be
completed more rapidly.

• Construction support: There are four areas where extended reality may be used to
help with construction. The first is construction planning. In this field, the major
goals of AR and VR are to predict future difficulties and enhance delivery. Virtual
Reality (VR) focuses on generating immersive construction simulations, whereas
Augmented Reality (AR) focuses on seeing virtual objects that can be built on-site.
Tracking construction progress: This is vital because the early detection of schedule
delays is essential for on-time delivery. In construction safety, VR can help to create
safer working environments by assisting with danger detection and inspection. In the
construction industry, when virtual reality is used for training, it reduces the risks that
workers face and improves operations. The last area of involvement is operational
assistance: VR provides tools on construction equipment teleoperation.

• Building operations and management: As AR may offer important information to site
employees who run and maintain buildings, VR might allow for remote operation of
the facility in an immersive environment. Both technologies may be used together to
help field and remote office employees and increase cooperation.

• Training: Virtual reality may create realistic situations in which users gain knowledge
and skills by simulating real-world actions. By mimicking the usage of expensive
equipment, modeling risky locations, decreasing travel expenses, and increasing
health and safety, both AR and VR technologies may minimize the cost of training.

Extended reality technologies, however, are not yet stable and dependable enough
to meet real industrial requirements. One of the main factors limiting acceptance in the
dynamic and severe environment of the construction industry is technical restrictions. One
of them is when consumers have negative reactions to VR surroundings as a result of a
misalignment between what they see and what they perceive. Another problem is cost.
In fact, despite the fact that the cost of establishing VR systems has fallen, considerable
financial investments are still required.

1.3. Related Works: Large-Scale 3D Models in Urban Area

In [2], a detailed review of the applications of 3D city models was given. This study
showed that 3D city models are employed in about 30 use cases that are a part of a multitude
of application domains for environmental simulations and decision support, valuable for
several purposes beyond visualization. Interested readers can refer to [3] for digital twins
from the point of view of the city stakeholders. We focused our work on 3D city models
characterized by a high Level Of Detail (LOD), a measure that indicates their grade and
scale, for architectural and art purposes mainly.

The 3D city models are derived from various acquisition techniques such as pho-
togrammetry, radar and laser scanning [4–6], cadastral drawings [7], extrusion from 2D
footprints [8], or crowdsourced geoinformation [9,10]; all are GIS-based sources of informa-
tion that can sensed and measured because the infrastructure exists. Another more precise
kind of data are architectural BIM models [11], which are high-level-of-detail models and
are already available for future construction or real estate development in progress.

Few city models based on professional BIM are described in the literature. For instance,
in [12], the authors linked an existing BIM to generic simulation models of construction
activities implemented as script game components within a game engine, but only one BIM
was used that modeled a sample house. A meta-analysis of the work available in the field
of BIM’s application can be found in [13]. However, as underlined in [14], there is limited
literature about virtual reality technologies and BIM in AEC: the most-common uses of VR
are safety training [15], project schedule control, collaborative projects [16], design issues,
and construction site layout. However, to our knowledge, no publication has explained
the necessary steps required for the building of a 3D city model based on professional
BIM files.

Appl. Sci. 2023, 13, 3044 4 of 27

Let us cite some examples of realizations with GIS data. Aerometrex created a 3D
model of the entire city of Adelaide, using a combination of photogrammetry data captured
via helicopters and the real-time archviz tool TwinMotion [17]. The firm used the real-time
architectural visualization tool TwinMotion to create a 3D model of Adelaide and the area
surrounding it—around 1000 sq km—using photogrammetry data captured via fixed-wing
aircraft and helicopters.

AccuCities [18] designed a visualization of London’s architectural evolution and the
growth of the city over 1 km2 tiles and its 3D model. The digital city model was captured
from three separate aerial surveys conducted in 2016, 2019, and 2022. The 3D mapping
operation created the 3D model using manual stereophotogrammetry. A simple 3D city
model was first created by extruding building footprint polygons, then updated at a finer
level of detail. They used the archviz tool Unreal Engine as a graphical engine.

The CityGML database 3DCityDB [19] is a repository of free 3D models useful for
urban context display. These are low-level-of-detail models useful to integrate with your
high-LOD architectural BIM. Interested users can see, for instance, a 3D city model of
Berlin portaldeveloped by the Technische Universität München [20]. The interface exploits
publicly available open data in CityGML format, which contain around 550,000 LoD2
building objects (basic roof shape and orientation) within the whole city area (890 km2).

In [21], the authors described how to derive CityGML building models from BIM data.
The conversion of BIM data to GIS data has several challenges due to the differences in the
reference system, level of granularity, and geometric representation methods, as well as
semantic mismatches between BIM and GIS data models. Our approach is the other way
around, since we only integrated GIS data for the urban context of LaVallée into our city
model made of a collection of BIM data.

BIM models are high-fidelity three-dimensional construction plans; they are seldomly
used in large city models because of their relatively large size: typically, a simple four-story
building’s BIM can be 300 Mo large or much bigger. Therefore, practitioners usually use
lower LOD representations, which are more than enough for urban planning purposes, but
are not refined enough to study architectural ambiance from a human centric point of view,
which requires a high level of finesse. This paper gives an example of what is required to
build a 3D city model from BIM data.

2. Design Justification and Research Gap
2.1. From GIS-Based to Professional BIM-Based City Model

Most of the papers available in the literature about digital twins describe the construc-
tion of large-scale 3D models based on GIS data. These models are accurate at a mesoscopic
level, the level of the city, which is adequate for urban planning purposes, but still, they are
low-LOD models. These are typically 2.5D models consisting of a 2D footprint of a building
with its elevation, as shown in Figure 2a, often times with a coarse texture extracted from
aerial photogrammetry or from pictures acquired from a ground vehicle. Researchers
expose their work designing their own tools or using common GIS software. The emphasis
is more on the city scale and number of buildings integrated than on their aesthetics. If
one looks at designing an immersive visit, a level of detail much greater is required, that is
where BIM Level 4 is required. Figure 2b gives an example of the refinement that can be
reached with BIM-based models.

Figure 2. Level of detail of GIS- and BIM-based 3D models. (a) GIS city models are 2.5D models:
footprint plus elevation, with textures. (b) An immersive visit requires a high level of detail.

Appl. Sci. 2023, 13, 3044 5 of 27

While GIS-based approaches are well documented, there is a lack of information
on how a practitioner would proceed if he/she wanted to build a 3D city model from
professional BIM files. AEC consultants use commercial tools such as the cloud-based
technology BIM 360 [22], which facilitates the visualization of the city and existing infras-
tructure. Figure 3a illustrates a point of view of our district of interest: in this parcel are
represented artwork from several buildings, as well as urban furniture data and landscape
data (basically trees). For architectural consideration, BIM 360 is a powerful tool from a
functional point of view, but the textures are mainly representative of what one can find in
a typical virtual world. Such a digital twin is well adopted for design review, construction
support, and stakeholder engagement [23], but lacks realism. It is useful for interaction,
but personal imagination is needed to fill in the gaps of the cold textures’ impression and
improve the immersive experience. Figure 3b illustrates the kind of results that are required
for an immersive visit that would allow aesthetic and architectural ambiance study: much
work is required in terms of texture replacement and lighting configuration. The game
industry is able to deliver such a result using game engines such as Epic Games or Unity
technologies [24], but game designers design graphically their own buildings without the
need for BIM data, which is more a work of art than an integration of industrial processes.

Figure 3. (a) AEC traditional view of buildings: perfectly functional, but cold textured. (b) The same
view produced with a game engine, enhanced in photorealism for a more immersive visit.

2.2. Need for Photorealism

Therefore, there is a lack of information on the process required to build a 3D city
model from a collection of professional BIMs, especially in the case of a real-world scenario
of a large-scale real estate development. For a district designed to house 6000 residents, the
number of AEC firms involved can be very important and the BIM practices can vary from
one company to the other: even with centralized BIM management, some heterogeneity
persists in the production of BIM data.

Another gap to be filled is the visual realism of the digital twin produced from BIMs:
most of the AEC market is focused on the interaction and functionality of the 3D models.
The digital twin should represent all the functions such as facades, gates, accesses, staircases,
urban furniture, and vegetation in a geometrical way fitting the final product, but with
little regard for the realism of their appearance, as illustrated by Figure 3. While realism
is correctly established for indoor environments, as in the case of the virtual tour of the
inside of an apartment, it is problematic if one wants to build a truly immersive visit of the
neighborhood, its outdoor environment, and its public places. Architects are invested in
the design of attractive spaces, but must also consider the senses and emotions that users
may feel through the shapes and material, with maximum expressiveness in a minimum
space. To do so, they can hire a firm to produce a cinematic marketing model of their
building, but this would still need their integration with the work of other companies in
charge of adjacent buildings for a holistic human experience. The subject of architectural
ambiance using virtual reality is seldom tackled in the literature, usually addressed with
mock-ups of structures representing buildings, but never with professional production,

Appl. Sci. 2023, 13, 3044 6 of 27

such as BIM files. The subjective feeling of presence is determined in a virtual environment
by immersion and realism, which have to be integrated in a human experience in the
perception of architectural spaces [25]. It is a necessary part for the study of the neuro-
architecture concept on how architecture can affect our well-being: physically, intellectually,
and emotionally [26]. However, to the best of our knowledge, no effort has been made
in the literature to document the extension of a BIM-based model to a photorealistic
architectural 3D model, especially in the case of a large-scale area requiring a large part of
automation in this task.

2.3. Methodology

To examine BIM as a means of project integration in smart city development, a case
study of a project utilizing Revit, BIM 360, TwinMotion, and Unreal Engine for the im-
mersive visit of a future neighborhood currently under construction was performed. This
project involved existing GIS buildings models in a suburban city of Greater Paris, France.
A total of 30 individual Revit building models were used for the project. For this study, the
digital twin development process was evaluated and documented. The scope of the smart
city is the city of Châtenay-Malabry in the south of Paris’s suburbs.

Figure 4 illustrates the workflow of the design: it goes from AEC software for handling
architectural data to a game engine for photorealism and features’ augmentation. It starts
with the collection of the 3D models by the BIM manager from all the AEC partners of the
project. Each company is responsible for the CAD drawings of the buildings, road networks,
terrain, public places, parking spots, urban furniture including lighting and benches, park
and recreation furniture, fountains, and vegetation. The data are centralized through the
BIM 360 cloud platform. All BIMs are registered to a common coordinate system with Revit
and exported to a TwinMotion project. With this archviz software, it is possible to augment
the project with the urban context of the real estate project, as a form of GIS model of the
surrounding buildings and the network infrastructure of the city. A first prototype was
built, which is very useful for rapid checking and first-hand visualization including the
possibility of using VR head-mounted device. Yet, this prototype has been deemed too
colorful and not realistic enough for a perfect immersion experience. Therefore, we decided
to use the game engine Unreal Engine for the final part of the immersive visit design. In
this article, we describe the automation of the tasks through Python scripts to render a
more photorealistic architecture model of the district. These tasks included the loading
of the TwinMotion prototype from the disk, material replacement for the buildings and
vegetation mesh replacement, as well as the lighting configuration of the complete scene.

Figure 4. Immersive visit design: workflow diagram from AEC artwork data to virtual reality setup.

3. Context: Real Estate Development and Urban Living Lab
3.1. LaVallée: An Urban District under Construction

LaVallée is a real estate development project under construction. The district is
located in a southern suburb of Paris France, specifically in Châtenay-Malabry city, and
its spatial extent is approximately 500 m × 400 m. Figure 5 shows the blueprint of the

Appl. Sci. 2023, 13, 3044 7 of 27

future neighborhood displayed over the current construction site. The construction work
in the area began in 2018 and is expected to be completed by 2025. The real estate project
aims to create an eco-housing district, with a childcare center, school system, secondary
school, gymnasium, stores, an urban farm, and other facilities, which will include more
than 2000 housing units. All of these facilities, which are accompanied by manicured public
areas, embody the essence of the project: a new neighborhood that is concerned with the
quality of life of its residents.

Figure 5. Mass plan of the future LaVallée neighborhood and its situation in the city. Aerial image:
Google Earth Pro.

This enables the city to strengthen its urban and green identity, to revitalize a neglected
space at the city’s entrance, to ensure urban connections with adjacent neighborhoods and
the Parc de Sceaux, and to provide an architectural signature by enhancing the city’s
qualities and heritage.

The program has about 213,000 square meters of surface with:

• 120,000 square meters for residential buildings;
• 24,000 square meters for social housing;
• 40,000 square meters for offices;
• 15,000 square meters for commercial space;
• 14,000 square meters for public utilities (college, school group, gym, nursery, etc.).

The land was purchased at the end of 2017 by the SEMOP group, a new model of
partnership between public and private bodies. The public part is the municipality of
Châtenay-Malabry, while the private part is the Eiffage company. Eiffage is the third-
leading French group in the civil engineering and public works sectors. The SEMOP
or Mixed Economy Company with Unique Operation is driven by an innovative legal
structure: the first of its kind in France to be exclusively specialized in urban development.
The shareholding of SEMOP is made up of Eiffage Aménagement (50%), the EPT Vallée
Sud Grand Paris (34%), and the Caisse des Dépôts et Consignations (16%). Eiffage company
is consequently responsible for the operation’s finance and execution. The City, on its
part, maintains political authority over the project, with the mayor chairing the SEMOP
Supervisory Board and approving operational decisions. SEMOP teams are primarily
responsible for the site’s organization and coordination.

This large-scale project, which is being carried out by a number of different companies,
has been divided into three phases of development (Figure 6), with the last phase due by
2025. As of 2022, the first phase is nearly complete, and the second phase will begin in 2022.

Appl. Sci. 2023, 13, 3044 8 of 27

Figure 6. Three phases of development. ©SEMOP Châtenay-Malabry Parc Centrale.

The first phase of the project involves the full area surrounding the district’s main
street, Cours des Commerces, whilst Phases 2 and 3, by using the main street as the district’s
core, expand radially to the latter. Therefore, once Phase 1 is completed and the procedures
for the second phase are followed, it is possible to bring in the first residents.

3.2. AEC Partners

Between the diverse landscapes of the existing districts in Châtenay-Malabry and the
nearby public park, ensuring consistency is a challenge. The magnitude of the operation
adds additional complexity: it will be constructed in several steps, and there will be
numerous companies involved, all with different working cultures and in different fields:
Architecture, Engineering, and Construction (AEC).

Aware of this pressing need for consistency, the SEMOP chose Arcadis, a global design,
engineering, and management consulting company, to coordinate the project’s various
stakeholders using innovative City Information Management (CIM) processes.

These processes make it possible to create a digital mock-up of the project and share it
with the partners. The collaborative mock-up thus allows the design to be followed and
each building or public space in the project to be constructed. It comprises the entire project
and its surroundings, spanning from the various neighboring districts of Châtenay to
Sceaux Park. The mock-up thus allows Arcadis to ensure the overall harmony of the project
as it progresses and the consistency of future buildings, not only with their environment,
but also with each other. Moreover, it integrates all the data needed to manage flows (water,
electricity, gas, etc.) and calculates their environmental impact.

Arcadis has not only implemented the collaborative digital mock-up, but also has
defined the rules to ensure that all stakeholders on the job site use the same codes and un-
derstand each other. Figure 7 shows in detail all partners involved in Phase 1 of the project,
with the particular parcels (lots) they are in charge of. As can be seen, around thirty opera-
tors and stakeholders intervene in Phase 1 and provide their own architectural drawings.

Arcadis uses the BIM 360 cloud platform to organize and monitor the district’s
various components and partners. BIM360 is a cloud-based construction management
platform that improves the efficiency and performance of projects. It enables project
members to anticipate, optimize, and manage all aspects of project performance through
real-time connectivity.

BIM managers have drafted the technical agreement between all of the project’s
partners to ensure optimal platform utilization. All the district blueprints are stored on the
platform, including the following:

Appl. Sci. 2023, 13, 3044 9 of 27

Figure 7. AEC partners of project for Phase 1. The real estate project is divided into: planners, urban
project management, service providers, and environment and landscape operators.

• The district’s general documentation (renamed ZAC);
• 3D general topography, which is the terrain map;
• Urban planning: streetscape including urban furniture and fountains;
• Road network and sidewalks;
• Landscape: green elements of the district, trees, and vegetation;
• Models of real estate parcels not modeled (3D extrusion);
• BIM models of modeled real estate parcels (lots);
• Networks (RSX) classified by job type: gas distribution networks, high-voltage elec-

tricity networks, low-voltage electricity networks, drinking water networks, telecom-
munications networks, public lighting networks, rainwater networks, waste water
networks, and heating networks.

• Structures.

With a comprehensive folder system, it is simple to work on multiple areas at the
same time while maintaining a general overview of the progress. The technical agreement
contains rules that must be adhered to by all parties involved in the development of the
project, such as the requirement that they all utilize the same codes and coordinate systems.
BIM management has complete access to all of the files, whilst the rest of the partners
can only modify, load, and save the folders that are specifically used for their purposes,
depending on their field of application.

4. Designing the Immersive Visit
4.1. Buildings’ Repositioning

The data collected from the BIM 360 collaborative platform are first analyzed. The
format of the analyzed files is Industry Foundation Classes (IFC), which is a standardized
format for the purpose of describing the data in the building and construction sector.

The reference system is RGF93 CC49, and the elevation levels are NGF69. Since 1989,
RGF93 has been the French three-dimensional geodetic system using Lambert93 (official
projection for maps of France) based on the European ETRS89 system and compatible with

Appl. Sci. 2023, 13, 3044 10 of 27

the ITRS global reference system. Thus, the common coordinates enable connecting the
owners’ digital models. However, analyzing these data, it can be seen that, being made
by various architectural firms, the models of the definitive buildings, collected in the last
folder in BIM 360, did not respect the same georeferenced coordinates. Each structure had
its own Cartesian reference frame.

An IFC file contains all of the building’s attributes, from the type of material to the
location of each individual point within the structure. This final characteristic enables
the examination of the Cartesian system of local reference. A Matlab parser was made to
read the IFC files and extrapolate only the data of interest. Along with the parcels, the
road infrastructure was assessed, which was divided into three phases (Phase 1, Phase 2,
and Phase 3), and the mass plan was assessed as well. The mass plan is a general map of
the district.

Because partners of the real estate project failed to choose the same reference point
in their BIM, an alignment procedure was required. The map of LaVallée district, along
with the absolute coordinates of the different parcels, different roads, and the mass plan, is
represented in the following illustration (Figure 8). All the IFC files had to be aligned to
the point Ω, manually using Revit, which was time consuming since there are six parcels,
one mass plan, and three road networks. Note that just the operation of loading an IFC file
under Revit can take up to five to ten minutes. Figure 8 illustrates the resulting model after
IFC repositioning.

Figure 9 shows the diagram of the operations required to assemble and reposition
the IFC files collected from BIM 360: once joined in a common Revit project, it can be
imported into a TwinMotion project using the direct link plugin available under Revit or
the Datasmith exporter for more recent versions of Revit.

Figure 8. Left: Phase 1 of LaVallée on Revit with its parcels (lot), buildings and the road network
(VOI). Right: absolute reference points of the parcels and the streets.

Figure 9. Workflow of the construction of the TwinMotion project.

Appl. Sci. 2023, 13, 3044 11 of 27

4.2. TwinMotion Prototype

A first prototype of the immersive visit was made using archviz TwinMotion, as shown
in Figure 10. Phase 1 of the real estate development modeled includes Parcels A, H, N,
J, and G, which have been constructed and are illustrated, while Parcel O is now under
construction, as well as the road networks, urban furniture, and landscape elements.

After completing the project in Revit and transferring it to TwinMotion, the latter was
used to improve the district’s characteristics, including material selection and landscape
coloring. This application enabled a vivid view of the district’s buildings, streets, and
urban and landscape furnishings. Therefore, TwinMotion is a particularly useful tool in
designing a virtual immersive visit at such a large scale. There are some specificities that
one should be aware of: in TwinMotion 2021, the project is very large with 5.2 Go of storage
space, but it has good compatibility with the VR headset. With Steam, the demo runs fully
in all parts of the district with the HTC Vive pro glasses, with no lags using a high-end
PC with an Intel(R) Core(TM) i9-9980HK octocore CPU 2.40GHz, 64 Go RAM, with an
NVIDIA Quadro RTX 4000 graphical card. With the same PC and the demo converted
under TwinMotion 2022, the project was subjected to a high reduction to 800 Mo: the demo
runs in 2D and loads much faster, but the VR HTC Vive headset demo becomes stuck
on the still portion of the field of view. Until now, we have not tested it in TwinMotion
2023 and cannot say if this bug has been fixed. Table 1 gives an overview of the principle
characteristics of this first prototype of the immersive visit.

Figure 10. TwinMotion visualizations with the reality of the construction site.

Table 1. Prototype size and specificity of archviz TwinMotion versions.

Size of the Project TM 2020 TM 2022

24.2 M polygons 5.2 Go 800 Mo
77.8 k objects VR ready VR not working

0.7 Gb textures

TwinMotion is a powerful architectural visualization software, and it is recommended
if one wants to build a fast prototype of a professional 3D city model from BIM files, as
it is compatible with Revit. It also has modification capabilities that can be nice for quick
corrections. Our only concern was that the resulting buildings and environment were
perhaps too colorful, as shown in Figure 10: we compared the resulting buildings and
landscape to the reality of the construction site and found it too cartoonish, which can be
nice for urban planning purposes and a quick demonstration, but can introduce a bias if

Appl. Sci. 2023, 13, 3044 12 of 27

one is looking for a more photorealistic immersive experience. Another problem is that if
we wanted to add dynamic features to the scene such as moving persons or cars following
a precalculated or real-time scenario, which is not possible with TwinMotion. Therefore,
we decided to investigate the further possibilities brought by Unreal Engine.

4.3. Manual Work and Theoretical Elements in Unreal Engine

In this part, we see what can be manually done to improve the architectural model in
TwinMotion and in Unreal Engine. Many features used in Unreal have some equivalent
in TwinMotion, but the impossibility of using scripting in TwinMotion becomes the main
argument to use Unreal Engine instead for every step detailed below.

4.3.1. Improvement with TwinMotion

The source files of our models have the .ifc extension. Those files can be opened in Re-
vit, and then, thanks to a Unreal Datasmith Plugin, the resulting Revit file can be imported
into TwinMotion. The model used in Unreal Engine comes from the TwinMotion prototype.

At this stage, two operations can be massively performed manually under TwinMotion
to enhance the prototype, in order to place the 3D model in its city and the placement of
more realistic vegetation:

• Import the urban context: The urban context of a project is a square zone selected from
a world map, from which the software extracts a rough 3D model of the surrounding
city, which corresponds to a group of white parallelepipeds placed above a gray plane.
A context is useful to fill up spaces in an architectural project and then give a better
impression of realism. Figure 11 illustrates the urban context extracted for this project.

• Manual tree replacement: For each species of tree, we have to find an equivalent
in TwinMotion, either by species or by shape. Nevertheless, in order not to weigh
down the file of the virtual tour any further, we may not replace all the trees with their
estimated equivalents, performed following Table A1 of Appendix A. The equivalences
by shape was performed manually, by checking the settings of each TwinMotion
tree’s form (age, height, and season) and then personalizing them accordingly; see
Figure A1.

Figure 11. LaVallée model with urban context from TwinMotion.

Appl. Sci. 2023, 13, 3044 13 of 27

The resulting prototype in TwinMotion was the one used for further improvements in
Unreal Engine (UE).

4.3.2. Import of the 3D models in the game engine

With Unreal Engine, importing an FBX or OBJ file is simple and fast. Nevertheless,
the projects we are working on use 3D models from architecture-oriented software, such
as Revit or Naviswork, which requires additional various steps to achieve a decent result.
In this part, we discuss how to import the various file extensions that we can import into
Unreal, the methods that can be used to do this, and then, the small possible operations to
fix some import problems.

Figure 12 illustrates the main source files that can be imported for architectural
data handling:

• IFC .ifc files and CAD files can be imported directly by Unreal.
• TwinMotion project .tm files can be imported by using Datasmith if the TwinMotion

plugins are enabled.
• Other files such as Naviswork or Revit files (.nwd, .rvt) should be converted to the

.udatasmith format first.

Therefore, specific plugins have to be enabled, as represented in Figure 12. The Python
editor script plugin also has to be selected for automation purposes.

Figure 12. Examples of workflow with the Datasmith exporter plugin.

Some limits of imports in general are as follows:

• When importing several 3D models, one may want them to be in a different location
than the one in their source file. Neither Datasmith nor Dataprep give us that option,
and then we should manually move the highest parent actor of our imported model
to move the whole model correctly.

• When creating Unreal assets equivalent to the objects of the source file, for some
plugins, some objects (such as cameras or light objects) are not taken into account
or can be badly created. For instance, the materials created may be visually totally
different from the ones used in the source file (it is possible to have blank materials
instead of realistic ones). In this case, we need to develop a way to automatically
change the materials, which is explained below.

• The Unreal Engine plugins seek to create a hierarchy that resembles the source file
as much as possible. Knowing that, it is sometimes necessary to be careful with the
model in some software, in order not to obtain an over-weighted file. For instance,
when importing a 3D model from Sketchup, the model of a tree may be imported in

Appl. Sci. 2023, 13, 3044 14 of 27

Unreal by creating an actor for each mesh of a leaf (which is resource consuming and
can cause some visual problems in the unreal project).

4.4. Creation of an Automated Pipeline in Unreal Engine

TwinMotion is not a 3D modeling software, nor a software that enables scripting. To
solve some of those issues, we intend to develop tools from Unreal Engine that would
enable more options. By using scripting, for instance, we can automatize the replacement
of a group of buildings or program micro-mobility movements.

The choice of using Unreal Engine was made by knowing that TwinMotion and Unreal
were both developed by EpicGame, so we expected an easier setup of the various tools
in Unreal.

4.4.1. How to Use Unreal Python Scripting

Setting up a virtual tour of LaVallée requires knowing some features of Unreal that
may help make the rendering more efficient, the plugins to download, making a specific
headset usable, and the possible ways to experience the visit in immersive VR (one can
check the VR performance features in the documentation with the link: https://docs.
unrealengine.com/4.26/en-US/SharingAndReleasing/XRDevelopment/VR, accessed on
22 February 2023).

After setting up the project appropriately, one can then use Unreal Python scripting to
make the process of importing and massively modifying specific elements in the model
faster. This section presents a short introduction on how one can use scripting to automatize
most of the steps that are usually performed manually by practitioners. It also explains
which Unreal tools can be used for which purposes and how to use the Unreal scripting
documentation to find if an idea is doable with Unreal available assets or functions.

What are not detailed in this part are all the different ways to achieve the same results
and all the prototype algorithms tested during our experimentation. The following methods
tend to be more efficient or easy-to-use than some brute-force methods that do not use
certain existing functions or assets.

Installations before Executing Script

• Enable the Editor Scripting Utilities plugin
(Python Editor Script Plugin is enabled by default);

• Download the Python scripts and config files shared alongside this article.

There are various ways to execute Python scripts: the main ways one can use a Python
file or chunk of code are illustrated in Figure 13.

Figure 13. After import, execute Python script from files or using OutputLog.

https://docs.unrealengine.com/4.26/en-US/SharingAndReleasing/XRDevelopment/VR
https://docs.unrealengine.com/4.26/en-US/SharingAndReleasing/XRDevelopment/VR

Appl. Sci. 2023, 13, 3044 15 of 27

The Unreal Python scripting documentation is available at the following address
and is an important source of information: https://docs.unrealengine.com/4.27/en-US/
PythonAPI/, https://docs.unrealengine.com/4.27/en-US/PythonAPI/, accessed on
22 February 2023.

The pieces of script we worked on are partly visible in the explanations below. The whole
scripts are in the Jupiter Notebook returned alongside this paper as additional material.

Generally useful Unreal classes and functions: People who use Python scripting
generally work on the persistent-level actors. The most-obvious functions one may think
of are those that enable spawning/deleting actors, selecting some actors, selecting some
assets found in the content browser, etc. Figure A2 shows an extract of the most-useful
functions needed for basic interactions with actors that exist at the persistent level or with
available assets that one wants to spawn at that level.

Many of these functions help write a simple script faster. For instance, when replacing
the material of an actor, one needs to know how to access the reference of the actor’s
material list. Actually, one has to change the material from its MeshComponent (and not
from its StaticMesh. . .). Instead of writing every little step to access and change the material
for each actor of a list, it is easier to know the existence of the function (cf. Figure A2):
unreal.EditorLevelLibrary.replace_mesh_components_materials_on_actors(...)

How to read the Unreal documentation of this paper: the form of the documentation
that we chose needs to be explained, although it is straightforward. We did this manually
with the following conventions:

• Each gray rectangle represents an Unreal class;
• At the top of a rectangle, there are the class name and, sometimes, a legend;
• Below this, there are the class functions or properties:

– If the line begins with a dot, this means that one can use it directly by calling it
from the class, as in unreal.XClassName. f unction(...) or in
unreal.XClassName.Xproperty = ValueO f CorrectType;

– If there is no dot, this means that this is a property that is used by calling it within
the functions that obtain or set the editor property, e.g.,
unreal.XClassName.get_editor_property(property_name) or in
unreal.XClassName.set_editor_property(property_name, ValueO f CorrectType);

• A thin-line arrow helps to indicate the type of a property or function’s result.
As an example: . f unction −→ unreal.XClassName[...description...];

• A thick arrow helps to indicate a class’s hierarchy. In other words:
unreal.ClassA =⇒ class that inherits or implements ClassA

• A line beginning with “//” is a comment;
• The tables of functions can be read intuitively.

4.4.2. Automatic Loading of the 3D Models with Datasmith

For the pipeline, we decided to directly import the 3D models of the TwinMotion
prototype with Datasmith. There are other Datasmith-related Unreal classes, as illustrated
by Figure A3 of Appendix B, but those are apparently not relevant to import the models.
To do so simply, one only needs to construct a DatasmithScene from the file that contains
the model and then import it. The corresponding code can be found in Appendix B. The
most-important functions are the one that loads a TM project and the one that removes an
element of the loaded scene.

ds_file_on_disk = r"C:\Users\Usuario\MyTwinMotionProject.tm"
ds_scene_in_memory = unreal.DatasmithSceneElement.

construct_datasmith_scene_from_file(ds_file_on_disk)

For our 3D models, even though the useless elements can be deleted after the import,
we chose to do this beforehand, which can save a bit of the memory space when auto-saving.
For this purpose, there is the function:

unreal.DatasmithSceneElement.remove_mesh(mesh)

https://docs.unrealengine.com/4.27/en-US/PythonAPI/
https://docs.unrealengine.com/4.27/en-US/PythonAPI/
https://docs.unrealengine.com/4.27/en-US/PythonAPI/

Appl. Sci. 2023, 13, 3044 16 of 27

4.4.3. Some Generalities about Actors and Their Components

Some functions to replace some actor’s materials or meshes can be found, but one
would not know about how this is basically performed (in the most-similar way to the
manual one). Figure 14 helps visualize what is happening.

Figure 14. Unreal documentation: some Unreal classes that are useful to know when performing
material and mesh replacement.

When importing a mesh in Unreal visibly in the viewport, one can see it as a StaticMesh,
contained in a StaticMeshComponent, contained in a StaticMeshActor. The StaticMesh-
Component is used so that it can override the material of the imported asset (which enables
having actors with the same mesh, but different materials) instead of changing the Static-
Material of the asset (which could change the material of actors using the same mesh or an
invisible result in the viewport).

4.4.4. Automating Material Replacement

At this stage of the UE prototype, there is the necessity to replace the material. The
created materials, during an import from TwinMotion files or others, can often be blank
and flat. Instead, we need to replace those default materials with realistic ones such as the
one available in UE illustrated in Figure 15.

Figure 15. Example of realistic materials available in Unreal Engine.

Using the assets of existing plugins seems to be the easiest and fastest way. The
TwinMotionContent plugin would be enough with its large panel of assets, including

Appl. Sci. 2023, 13, 3044 17 of 27

materials. Yet, if we want to only change materials with some similar TwinMotion material,
we may use a smaller plugin such as TwinMotionMaterial (which already weighs around
9 Go). The material assets of the plugins are MaterialInstances.

How to determine material equivalences: we can expect the names of the original
unrealistic materials to be explicit enough for a person to understand their equivalents
in real life. For instance, if a material is called “old_copper”, one can easily find a similar
realistic material and replace it manually.

To avoid doing everything manually, we intuitively want to create tables with two
columns: one for strings s to search in a material name and another for a realistic material
reference that would replace the material that contains string s. This is exactly what a
DataTable is used for. A DataTable is a grouping of records that all share common properties,
which can then be accessed by row references or row keys. In other words, it is a simple
key value store.

One MaterialSubstitutionDataTable can be created manually by adding rows (a string
to search + a replacement material). When using a Dataprep function to use the DataTable,
the replacement is performed by checking the name of each filtered actor by reading each
row in order: the original material can be replaced according to the first row, but then, also,
according to next rows, etc.

Fast material replacement can be performing using the DataTables and Dataprep
functions. Dataprep assets provide reusable recipes that help with being consistent about
how to import and modify the 3D data; see Figure A4 in Appendix C. Those recipes are
created to reorganize, clean, merge, and modify scene elements before creating the final
assets and actors in an Unreal Engine project.

Assets for material replacement: Instead of a .csv file, we preferred using a more
efficient tool commonly used when importing models with Dataprep. We used several
MaterialSubstitutionDataTables.

It is possible to use only one sufficiently general to be used in the first place in any
file (replace the materials of type “steel” with the realistic materials of type “steel”, and
so on for all materials). Yet, we used several DataTables in order to be more precise in the
replacement. For each mesh, we can try using wisely all the DataTables or using specific
DataTables chosen according to the name of the mesh.

How to be more precise in the replacement: Instead of being satisfied with a general
DataTable, which would only contain the general ideas of the materials, we wanted to
be more specific. For instance, using several DataTables enabled us to be precise if the
replacement metallic-like material should be old looking or not.

The set of DataTables was created using the references of the assets in TwinMo-
tionMaterial plugin. In the plugin, the materials are classified by the following looking
characteristics: brick, ceiling, concrete, fabric, glass, grid, ground, leather, marble, metal, modeling,
parquet, plastic, roof, stone, tile, wall, which explains the structures of our created DataTables:
Method 1: Material replacement with one DataTable;
Method 2: Material replacement with succession of DataTables;
Method 3: Material replacement with specific DataTables for each mesh; Method 3 is
described with its Python code in Appendix D.

4.4.5. Automating Vegetation Mesh Replacement

Vegetation mesh replacement can be performed using a .csv file and Dataprep func-
tions. Assets for mesh replacement: It would have been possible to create a new form of
DataTable for mesh substitution, but the structure would be such that we would have to
neglect the age of the vegetation. We preferred to use a .csv file with the available tree
names, then indicate the reference according to the age desired by the architect.

Method 1: Replace the meshes of several actors, using a table with a minimum of two
columns (meshes_to_search, loaded_meshes) and the Dataprep library:

def replace_meshes(selected_objs ,meshes_search ,mesh_substitutes):
string_match = unreal.EditorScriptingStringMatchType.CONTAINS
for m_in ,m_out in zip(meshes_search ,mesh_substitutes) :

Appl. Sci. 2023, 13, 3044 18 of 27

unreal.DataprepOperationsLibrary.
substitute_mesh(selected_objs , m_in , string_match , m_out)

Nevertheless, instead of using simple table, one wants to take into account the age
of the tree: when the tree is a “Tige” or an “Arbuste”, one wants to be able to choose the
youngest version from a tree mesh. This means that one would like to create the mesh
replacement table by looking at two keywords in the name of a mesh (the tree species and
an age indicator), which leads us to the second method.

Method 2: Replace meshes by directly setting the MeshComponent of the actor:
There are three StaticMeshes of a tree species: a young (SM_Y), a middle-aged (SM_M), and
an aged (SM_A) version. Most of the time, one would want to access the middle-aged trees.

To access those meshes, directly loading them with the absolute path will not work.
One must enable the TwinMotionContent plugin in the project and then use the path of the
plugin that Unreal understands:
“/TwinMotionToUnrealContent/Library/Vegetation/Trees/”

The Python code for vegetation replacement is given in Appendix A.
Nota Bene: To load an asset located somewhere in the content folder of an Unreal

project, the path to use begins with “/Game/” and uses the directory from the content, as
if the content does not exist. To load an asset located in a plugin, write a path similar to
“/PluginName/RemainingDirAsI f ContentDoesNotExist”.

With such a method, an extract of the result can be seen in Figure 16.

Figure 16. Comparison before and after the vegetation mesh replacement.

4.4.6. Automating Light Settings

The parameters we want to set are illustrated in Figure 17. To do so, we do not want to
directly set all the features in the light objects, because some parameters are only accessible from
their LightComponent. Thus, for the light objects we want to use, we first obtain their LightCom-
ponent, which can be of various classes (unreal.LightComponent, unreal.SkyLightComponent,
etc). See the Python code extract in Appendix E for a further explanation.

Figure 17. Unreal documentation: Unreal classes for lighting.

Appl. Sci. 2023, 13, 3044 19 of 27

In addition to setting the parameters mentioned, do not forget to correctly set the
mobility of those objects. In particular, when using MeshDistanceField, it appears preferable
to set SkyLight to Stationary instead of to Movable.

Figure 18 illustrates the types of modifications for lighting for a scene extracted from
our district of interest.

Figure 18. Before/after light settings.

As a matter of simplicity, in the extract of the code detailed in Appendix E, some
assets’ settings are not shown, such as VolumetricClouds, ExponentialHeightFog, Spher-
eReflectionCapture, etc. To see the whole script (with the whole settings), check the Jupiter
Notebook given alongside this article.

NB: Automatizing the lighting is not as necessary as automatizing the replacement of
the materials and vegetation meshes. It is possible to make all of the settings manually, but
it should be at least checked manually to achieve the best photo-realistic view possible.

5. Results

Let us remind that the goal of our immersive visit was to make a platform on which
architectural studies can be produced. Therefore, the realism of the obtained visit is essential
to the project. Figure 19 illustrates the kind of improvements our method can be bring
compared to a standard TwinMotion project.

One might argue that such a result could be obtained with TwinMotion, but it would
be at the cost of many manual operations. Indeed, the city model of Phase 1 of LaVallée con-
tains 34 buildings, road networks, urban furniture, and landscape vegetation, which would
require a modification at least on the shell of the building. Furthermore, the integration
of the Phase 2 and Phase 3 models that will be collected from the architectural firms can
now be automatically modified: textures, materials, lighting, and vegetation are already
set up, just by running the Unreal Engine Python scripting. Furthermore, TwinMotion
does not allow one to integrate one’s own simulation results such as the motion of people,
bicycles, and cars or other type of results, for instance physical flows such as computer
fluid dynamics.

Figure 20 illustrates the result of Phase 1. As can be seen, various atmospheres are
present in this 3D model of the future district. They represent the various kinds of activities
that will be available to the public. A green leisure area in the shape of a pedestrian way can
be used to assess the effect of vegetation and soft modes of transportation on well-being. A
large shopping strip crosses the entire district. Office space, as well as retail space are also
available, not to mention that the insides of the buildings are also visit-able, even though
we did not illustrate them in this paper.

Appl. Sci. 2023, 13, 3044 20 of 27

Figure 19. Left: TwinMotion project. Right: Unreal Engine scene. The Unreal Engine texture and
lighting conform more to reality than the TwinMotion scene, which is more cartoonish.

Figure 20. Gallery of points of view of the final immersive visit: many various architectural environ-
ments are represented.

6. Discussion

This work was the result of a partnership between a real estate developer, various
architectural firms, a BIM management company, and the academy; this program intends
to use a real estate project under construction as an opportunity to experiment with new

Appl. Sci. 2023, 13, 3044 21 of 27

research concepts in the design of urban environments. The industrial operators were the
providers of all the BIMs used to build our immersive visit of LaVallée: buildings, roads,
landscape, and urban furniture.

The main technical development of this work consisted of assembling these 3D models
into one aggregated large-scale model and enhancing it to make it more realistic. This
research was split into a technical part and a research part, which mainly consisted of
developing possible methodologies for the experiments on architectural environments with
VR tools. To develop the virtual tour, it was necessary to obtain a more realistic model. To
do so with Unreal Engine, several tasks can be carried out manually in the case of a small
model, but due to the large scale of our model, we proposed several ways of developing
the tools to speed up those steps and automate them.

During this work, we created various sets of Unreal assets and Python scripts to
perform the stated tasks much more simply and quickly. For the research study, we created
more realistic scenes extracted from the global model and improved the global model using
the pipeline implemented with Unreal Python scripting. For the automation of realism
creation process, we built DataTables associated with the assets of the TwinMotionMaterials
plugin and devised scripts related to each step of the whole process. For more technical
details, a Jupiter Notebook is provided as additional material on how to use the assets and
how to manage some potential problems.

Various improvements can be highlighted, such as finding a way to automatize the
correct UV mapping or auto-scaling of our material assets, to avoid any strange texture
projections. We are in the process of adding micromobility elements to make our virtual
scenes dynamic, with people, bicycles, and cars moving at the scale of the district. We will
improve the road network model file by creating a more accurate model and using various
altitudes, which will allows us to think about car spawning strategies.

Optionally, will export the work in an APK file to be able to put the model on Android
for use with VR headsets that allow these kinds of features, such as the HTC Vive Focus,
enabling us to perform VR experiments without wires.

As for the output of the presented project, we are in the process of using the developed
immersive visit of LaVallée in VR study related to architectural environments. We would
like to set up experiments that would bring some answers to some specific questions.
The research subject is not yet definitively defined, but would likely focus on one of the
following points such as: Can VR be or become a tool useful to teach the ability to predict
areas of interest (hot spots) in an urbanism project as large as the LaVallée project? How
can the differences of perception between 2D and 3D be characterized. Other questions
relate to the potential differences of ambiance perception when using an indoor point of
view or an outdoor one of a virtual environment or the influence of photo-realism in the
perception of ambiance.

Author Contributions: Conceptualization, R.B. and J.M.G.; methodology, H.D., R.B. and J.M.G.;
software, R.B. and H.D.; validation, E.D.G. and H.D.; formal analysis, R.B. and H.D.; investigation,
R.B. and H.D.; resources, R.B. and J.M.G.; data curation, H.D.; writing—original draft preparation, R.B.
and H.D.; writing—review and editing, E.D.G. and J.M.G.; visualization, H.D. and R.B.; supervision,
R.B., E.D.G. and J.M.G.; project administration, R.B.; funding acquisition, R.B. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the E3S project, a partnership between Eiffage and the I-SITE
FUTURE consortium. FUTURE bénéficie d’une aide de l’État gérée par l’Agence Nationale de la
Recherche (ANR) au titre du programme d’Investissements d’Avenir (référence ANR-16-IDEX-0003)
en complément des apports des établissements et partenaires impliqués.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to thank Arcadis company for providing the assembled
IFC files of the building model of each parcel.

Appl. Sci. 2023, 13, 3044 22 of 27

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of the data; in the writing of the manuscript;
nor in the decision to publish the results.

Appendix A. Vegetation-Related Elements

Table A1. Table of tree mesh equivalences.

Imported from IFC TwinMotion Tree

Acer Vine maple

Amelanchier Holm oak (by shape)

Betula Sweet birch, grey birch

Carpinus Persian ironwood (by shape)

Fraxinus Manna ash

Liquidambar Sweet gum (young + winter mode)

Malus Apple tree

Parrotia Persian ironwood

Prunus Sweet cherry tree, peach tree

Pyrus Pear tree

Quercus Cork oak

Salix Weeping willow

Tilia Littleleaf linden, American linden

Ulmus Littleleaf linden (by shape)

Zelkova Laurel (by shape)

Mesh replacement code:
tags = ["EV_Arb","ARB","Arbre","Tree"]
default_tree_name = "_QuercusRubra"

same as you if you used default download settings of the plugin:
trees_path= "/TwinMotionToUnrealContent/Library/Vegetation/Trees/"
parsing csv table into table of string with mesh names :
table_file_path = r"C:\Users\Usuario\mesh_replacements.csv"
mesh_table = csv_into_table(table_file_path ,",","\n","\"")

selected_objs = get_all_actors_with_tags(tags)
selected_objs = unreal.DataprepFilterLibrary.filter_by_class(

selected_objs , unreal.StaticMeshActor)
for a in selected_objs :

matches = [x[1] for x in mesh_table
if x[0] in a.get_actor_label ()]

default tree name if no matches
name = default_tree_name
if len(matches) > 0 :

name = matches[0]
full name is ref of the tree
full_name = trees_path + "XF" + name + "/"
if "Tige" in a.get_actor_label () or "Arbuste" in a.get_actor_label () :

full_name += "SM_Y"
else :

full_name += "SM_M"
full_name += name +"_LOD0"
replace mesh using MeshComponent
mc = a.get_component_by_class(unreal.MeshComponent)
sm = unreal.load_asset(full_name)
if sm != None :

Appl. Sci. 2023, 13, 3044 23 of 27

mc.set_static_mesh(sm)
set a random Z rotation to appear less redundant
mc.set_editor_property("relative_rotation",unreal.Rotator(0,0,randint(0,

181)))
reset overriding materials , to get right ones
mc.set_editor_property("override_materials",sm.static_materials)

Figure A1. Example of tree equivalence by shape.

Figure A2. Unreal documentation: some generally useful functions.

Appl. Sci. 2023, 13, 3044 24 of 27

Appendix B. Datasmith Functions and Program to Load a TwinMotion Project

Figure A3. Unreal documentation: Datasmith-related Unreal classes.

ds_file_on_disk = r"C:\Users\Usuario\Documents\TestImport.tm"
ds_scene_in_memory = unreal.DatasmithSceneElement.

construct_datasmith_scene_from_file(ds_file_on_disk)

if ds_scene_in_memory is None:
print("Scene loading failed.")
quit()

#---
Remove any mesh whose name includes certain keywords
#---
ifc_rmv_kw = ["IfcSpace","IfcOpeningElements"]
rwd_rmv_kw = ["3D","Pieces"]
tm_rmv_kw = ["RPC_Femme","RPC_Homme"]

remove_keywords = list that depends on file extension [...]
meshes_to_skip = [] # set of mesh actors whose name is in rmv_kw

Remove all the meshes we don’t need to import :
for mesh in meshes_to_skip:
ds_scene_in_memory.remove_mesh(mesh)

Set import options [...]

Destination folder must start with /Game/ :
result = ds_scene_in_memory.import_scene("/Game/MyImportedScenes")

For our TwinMotion file created from an IFC file , delete Actors

Appl. Sci. 2023, 13, 3044 25 of 27

whose 1st material name is "IfcSpace", "IfcOpeningElement" [...]

#---
Finish import
#---
if not result.import_succeed:
print("Importing failed.")
quit()

Clean up the Datasmith Scene.
ds_scene_in_memory.destroy_scene ()

Appendix C. Dataprep-Related Elements

Figure A4. Unreal documentation: Dataprep useful functions.

Appendix D. Python Code for Material Replacement

#---
METHOD 3 : Material replacement with specific DT for each mesh
#---

selected_objs = unreal.EditorLevelLibrary.get_all_level_actors ()
selected_objs filtered by name or by class [...]
unreal.DataprepFilterLibrary.filter_by_class (...)
unreal.DataprepFilterLibrary.filter_by_name (...)

Array that track unchanged Actors :
untouched_objects = unreal.Array(unreal.Object)
List of keywords associated to each DataTable
DTofDT_keys = unreal.StringTableLibrary.get_keys_from_string_table

(’/Game/Tests_lib/DataTables/Table_of_DT.Table_of_DT ’)

Determine and use appropriate DT for each obj :
for obj in selected_objs :
obj_mcomp = obj.get_component_by_class(unreal.MeshComponent)
obj_mat_prev = obj_mcomp.get_materials ()
for key in DTofDT_keys :
if obj.get_name () in key :
value = unreal.StringTableLibrary.

get_table_entry_source_string(’/Game/Tests_lib/
DataTables/Table_of_DT.Table_of_DT ’,key)

DT = unreal.load_asset(key)
Using one DT on one obj :
unreal.DataprepOperationsLibrary.

substitute_materials_by_table([obj], DT)
obj_mat_next = obj_mcomp.get_materials ()
if obj_mat_prev == obj_mat_next :
untouched_objects.append(obj)

For untouched_objects , you can e.g. use Method 2 [...]

Appl. Sci. 2023, 13, 3044 26 of 27

Appendix E. Setting Up the Lighting Automatically

#---
Spawn sky lighting objects [...]
#---

Sun = unreal.EditorLevelLibrary.spawn_actor_from_class(
unreal.DirectionalLight , location=[0,0,0], rotation=[0,0,0])

Sky = unreal.EditorLevelLibrary.spawn_actor_from_class(
unreal.SkyLight , location=[0,0,100], rotation=[0,0,0])

Atmosphere = unreal.EditorLevelLibrary.spawn_actor_from_class(
unreal.SkyAtmosphere , location=[0,0,200], rotation=[0,0,0])

PPV = unreal.EditorLevelLibrary.spawn_actor_from_class(
unreal.PostProcessVolume , [0,0,400], rotation=[0,0,0])

#---
Setting mobility to get correct lighting [...]
#---

unreal.DataprepOperationsLibrary.set_mobility(
[Sun ,Atmosphere], unreal.ComponentMobility.MOVABLE)

unreal.DataprepOperationsLibrary.set_mobility(
[Sky], unreal.ComponentMobility.STATIONARY)

#---
Find components to set properties [...]
#---

SunComp = Sun.get_editor_property("light_component")
SunDirComp= Sun.get_editor_property("directional_light_component")
SkyComp = Sky.light_component # R-O
AtmosComp = Atmosphere.sky_atmosphere_component # R-O

PPVSettings = PPV.settings

#---
Set properties (examples) [...] whole code in the Notebook
#---

SunComp.set_intensity(15)
SunDirComp.set_atmosphere_sun_light(True)

SkyComp.set_editor_property("real_time_capture",True)
SkyComp.set_editor_property("cloud_ambient_occlusion",True)

PPV.enabled = True
PPV.unbound = True
PPVSettings.auto_exposure_min_brightness = 0.35
PPVSettings.auto_exposure_max_brightness = 0.6

References
1. Gómez-Tone, H.C.; Martin-Gutierrez, J.; Bustamante-Escapa, J.; Bustamante-Escapa, P. Spatial Skills and Perceptions of Space:

Representing 2D Drawings as 3D Drawings inside Immersive Virtual Reality. Appl. Sci. 2021, 11, 1475. [CrossRef]
2. Biljecki, F.; Stoter, J.; Ledoux, H.; Zlatanova, S.; Çöltekin, A. Applications of 3D City Models: State of the Art Review. ISPRS Int. J.

Geo-Inf. 2015, 4, 2842–2889. [CrossRef]
3. Lehtola, V.V.; Koeva, M.; Elberink, S.O.; Raposo, P.; Virtanen, J.P.; Vahdatikhaki, F.; Borsci, S. Digital twin of a city: Review of

technology serving city needs. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 102915. [CrossRef]
4. Tomljenovic, I.; Höfle, B.; Tiede, D.; Blaschke, T. Building Extraction from Airborne Laser Scanning Data: An Analysis of the State

of the Art. Remote Sens. 2015, 7, 3826–3862. [CrossRef]
5. Nys, G.A.; Poux, F.; Billen, R. CityJSON Building generation from airborne LiDAR 3D point clouds. ISPRS Int. J. Geo-Inf. 2020,

9, 521. [CrossRef]
6. Djahel, R.; Vallet, B.; Monasse, P. Detecting openings for indoor/outdoor registration. Int. Arch. Photogramm. Remote Sens. Spat.

Inf. Sci. 2022, XLIII-B2-2022 , 177–184. . [CrossRef]
7. Van Oosterom, P.; Bennett, R.; Koeva, M.; Lemmen, C. 3D land administration for 3D land uses. Land Use Policy 2020, 98 .

[CrossRef]

http://doi.org/10.3390/app11041475
http://dx.doi.org/10.3390/ijgi4042842
http://dx.doi.org/10.1016/j.jag.2022.102915
http://dx.doi.org/10.3390/rs70403826
http://dx.doi.org/10.3390/ijgi9090521
http://dx.doi.org/10.5194/isprs-archives-XLIII-B2-2022-177-2022
http://dx.doi.org/10.1016/j.landusepol.2020.104665

Appl. Sci. 2023, 13, 3044 27 of 27

8. Biljecki, F.; Ledoux, H.; Stoter, J. Generating 3D city models without elevation data. Comput. Environ. Urban Syst. 2017, 64, 1–18.
[CrossRef]

9. OpenStreetMap Buildings. Available online: https://osmbuildings.org/ (accessed on 22 February 2023).
10. Fan, H.; Kong, G.; Zhang, C. An Interactive platform for low-cost 3D building modeling from VGI data using convolutional

neural network. Big Earth Data 2021, 5, 49–65. [CrossRef]
11. Kolbe, T.H.; Donaubauer, A. Semantic 3D City Modeling and BIM. In Urban Informatics; Shi, W., Goodchild, M.F., Batty, M., Kwan,

M.P., Zhang, A., Eds.; Springer: Singapore, 2021; pp. 609–636. [CrossRef]
12. Osorio-Sandoval, C.A.; Tizani, W.; Pereira, E.; Ninić, J.; Koch, C. Framework for BIM-Based Simulation of Construction Operations

Implemented in a Game Engine. Buildings 2022, 12, 1199. [CrossRef]
13. Khan, A.; Sepasgozar, S.; Liu, T.; Yu, R. Integration of BIM and Immersive Technologies for AEC: A Scientometric-SWOT Analysis

and Critical Content Review. Buildings 2021, 11, 126. [CrossRef]
14. Alizadehsalehi, S.; Hadavi, A.; Huang, J.C. From BIM to extended reality in AEC industry. Autom. Constr. 2020, 116, 103254.

[CrossRef]
15. Yu, X.; Yu, P.; Wan, C.; Wang, D.; Shi, W.; Shou, W.; Wang, J.; Wang, X. Integrating Virtual Reality and Building Information

Modeling for Improving Highway Tunnel Emergency Response Training. Buildings 2022, 12, 1523. [CrossRef]
16. Du, J.; Zou, Z.; Shi, Y.; Zhao, D. Zero latency: Real-time synchronization of BIM data in virtual reality for collaborative

decision-making. Autom. Constr. 2018, 85, 51–64. [CrossRef]
17. A Virtual Clone of Adelaide. Available online: https://www.twinmotion.com/en-US/spotlights/a-virtual-clone-of-adelaide-

for-digital-twin-and-smart-city-applications (accessed on 22 February 2023).
18. AccuCities 3D Models. Available online: https://www.youtube.com/c/AccuCities3DCityModels (accessed on 22 February 2023).
19. Yao, Z.; Nagel, C.; Kunde, F.; Hudra, G.; Willkomm, P.; Donaubauer, A.; Adolphi, T.; Kolbe, T. 3DCityDB—A 3D geodatabase

solution for the management, analysis, and visualization of semantic 3D city models based on CityGML. Open Geospat. Data,
Softw. Stand. 2018, 3, 5. [CrossRef]

20. Semantic 3D City Model of Berlin. Available online: https://www.3dcitydb.org/3dcitydb/visualizationberlin/ (accessed on
22 February 2023).

21. Sun, J.; Olsson, P.; Eriksson, H.; Harrie, L. Evaluating the geometric aspects of integrating BIM data into city models. J. Spat. Sci.
2020, 65, 235–255. [CrossRef]

22. Onungwa, I.; Olugu-Uduma, N.; Shelden, D.R. Cloud BIM Technology as a Means of Collaboration and Project Integration in
Smart Cities. SAGE Open 2021, 11, 21582440211033250. [CrossRef]

23. Davila Delgado, J.M.; Oyedele, L.; Demian, P.; Beach, T. A research agenda for augmented and virtual reality in architecture,
engineering and construction. Adv. Eng. Inform. 2020, 45, 101122. [CrossRef]

24. Jungherr, A.; Schlarb, D.B. The extended reach of game engine companies: How companies like epic games and Unity technologies
provide platforms for extended reality applications and the metaverse. Soc. Media Soc. 2022, 8, 20563051221107641. [CrossRef]

25. Homolja, M.; Maghool, A.H.; Schnabel, M.A. The Impact of Moving through the Built Environment on Emotional and
Neurophysiological State—A Systematic Literature Review. 2020. Proceedings of the 25th CAADRIA Conference. Media.
Available online: http://papers.cumincad.org/data/works/att/caadria2020_051.pdf (accessed on 22 February 2023).

26. Medhat Assem, H.; Mohamed Khodeir, L.; Fathy, F. Designing for human wellbeing: The integration of neuroarchitecture in
design—A systematic review. Ain Shams Eng. J. 2023, 14, 102102. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.compenvurbsys.2017.01.001
https://osmbuildings.org/
http://dx.doi.org/10.1080/20964471.2021.1886391
http://dx.doi.org/10.1007/978-981-15-8983-6_34
http://dx.doi.org/10.3390/buildings12081199
http://dx.doi.org/10.3390/buildings11030126
http://dx.doi.org/10.1016/j.autcon.2020.103254
http://dx.doi.org/10.3390/buildings12101523
http://dx.doi.org/10.1016/j.autcon.2017.10.009
https://www.twinmotion.com/en-US/spotlights/a-virtual-clone-of-adelaide-for-digital-twin-and-smart-city-applications
https://www.twinmotion.com/en-US/spotlights/a-virtual-clone-of-adelaide-for-digital-twin-and-smart-city-applications
https://www.youtube.com/c/AccuCities3DCityModels
http://dx.doi.org/10.1186/s40965-018-0046-7
https://www.3dcitydb.org/3dcitydb/visualizationberlin/
http://dx.doi.org/10.1080/14498596.2019.1636722
http://dx.doi.org/10.1177/21582440211033250
http://dx.doi.org/10.1016/j.aei.2020.101122
http://dx.doi.org/10.1177/20563051221107641
http://papers.cumincad.org/data/works/att/caadria2020_051.pdf
http://dx.doi.org/10.1016/j.asej.2022.102102

	Introduction
	Purpose of the Work: An Immersive Visit at the Scale of a Neighborhood
	Applications in Architecture, Engineering, and Construction
	Related Works: Large-Scale 3D Models in Urban Area

	Design Justification and Research Gap
	From GIS-Based to Professional BIM-Based City Model
	Need for Photorealism
	Methodology

	Context: Real Estate Development and Urban Living Lab
	LaVallée: An Urban District under Construction
	AEC Partners

	Designing the Immersive Visit
	Buildings' Repositioning
	TwinMotion Prototype
	Manual Work and Theoretical Elements in Unreal Engine
	Improvement with TwinMotion
	Import of the 3D models in the game engine

	Creation of an Automated Pipeline in Unreal Engine
	How to Use Unreal Python Scripting
	Automatic Loading of the 3D Models with Datasmith
	Some Generalities about Actors and Their Components
	Automating Material Replacement
	Automating Vegetation Mesh Replacement
	Automating Light Settings

	Results
	Discussion
	Vegetation-Related Elements
	Datasmith Functions and Program to Load a TwinMotion Project
	Dataprep-Related Elements
	Python Code for Material Replacement
	Setting Up the Lighting Automatically
	References

