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Abstract: Social recommendation systems can improve recommendation quality in cases of sparse
user–item interaction data, which has attracted the industry’s attention. In reality, social recommen-
dation systems mostly mine real user preferences from social networks. However, trust relationships
in social networks are complex and it is difficult to extract valuable user preference information,
which worsens recommendation performance. To address this problem, this paper proposes a social
recommendation algorithm based on multi-graph contrastive learning. To ensure the reliability of
user preferences, the algorithm builds multiple enhanced user relationship views of the user’s social
network and encodes multi-view high-order relationship learning node representations using graph
and hypergraph convolutional networks. Considering the effect of the long-tail phenomenon, graph-
augmentation-free self-supervised learning is used as an auxiliary task to contrastively enhance node
representations by adding uniform noise to each layer of encoder embeddings. Three open datasets
were used to evaluate the algorithm, and it was compared to well-known recommendation systems.
The experimental studies demonstrated the superiority of the algorithm.

Keywords: social recommendation; self-supervised learning; graph convolutional network

1. Introduction

With the advancement of the Internet, social platforms, such as WeChat, Weibo, and
Twitter, have become an essential part of people’s daily lives. More and more users like
to express their opinions and present their hobbies on these platforms, and the interac-
tions between users result in a wide range of consumption behaviors. Moreover, social
homogeneity [1] and social influence theory [2] demonstrate that connected users in so-
cial networks have similar interest preferences and continue to influence one another as
information spreads. Based on these findings, social relations are frequently integrated into
recommender systems as a powerful supplement to user–item interaction information to
address the problem of data sparsity [3], and numerous social recommendation methods
have been developed. Social recommendation algorithms based on graph neural networks
have demonstrated improved performance recently and helped advance recommendation
technology; however, these models still have certain drawbacks.

1. Interaction data are sparse and noisy. Most recommendation models utilize su-
pervised learning techniques [4,5], which substantially rely on user–item interaction data
and are unable to develop high-quality user–item representations when data are sparse.
As a result, cold-start problems usually occur. In addition, GNN-based recommendation
algorithms must aggregate and propagate node embeddings and their neighbors during
training, which amplifies the impact of interaction noise (i.e., user mis-click behavior),
resulting in confusion with regard to user preferences.

2. The effect of the long-tail phenomenon. Due to the skewed distribution of inter-
active data [4], the recommendation algorithm only emphasizes a portion of some users’
mainstream interests, resulting in underfitting of the sample tail distribution and trapping
of the user’s interest in the “filter bubble” [6], which is known as the long-tail phenomenon.
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3. Noise in social relationships. Existing recommendation models are generally
based on the assumption that users in social networks have similar item preferences.
However, the formation of social relationships is a complicated process that can be based
on interests or pure social relationships. Users may have completely different preferences
for certain items, but this is not always the case. The model becomes noisier as a result of
this assumption, which makes it difficult to effectively incorporate user characteristics and
recommendation targets in social networks.

Present work. In view of the above limitations and challenges, this paper proposes an
improved social recommendation model—graph-augmentation-free self-supervised learn-
ing for social recommendation (GAFSRec). Here, we applied self-supervised contrastive
learning to recommendation with the goal of increasing the mutual information for the
same user/item view, thereby reducing the reliance on labels and resolving the first and
second issues mentioned above. Most contrastive learning techniques currently in use
(such as random edge/node loss) improve the consistency of nodes across views through
structural perturbations [4,7–9]. However, the most recent research demonstrates [10] that
data augmentation can still be accomplished without structural perturbation by adding the
proper amount of random uniform noise to the original image. As a result, we employed
the method of adding sufficiently small and uniform noise to the graph convolution layer
of the recommendation task to achieve cross-layer comparative learning. This technique
can operate in the embedding space, making it more effective and simpler to use, and it can
subtly attenuate the long-tail phenomenon. The third problem was solved by using both
explicit and implicit social relationships, employing hypergraph convolutional networks to
mine users’ high-order social relationships, and adding the role of key opinion leaders to
prevent extra social noise from affecting user preferences.

To improve efficiency, we employed a multi-task training technique with recommenda-
tion as the primary task and self-supervised contrastive learning as an auxiliary task. We first
created four views using a social network graph and a user–item interaction graph: user–item
interaction graph, explicit friend social graph, implicit friend social graph, and user–item
sharing graph with explicit friends. Graph encoders (a graph convolutional network and
hypergraph convolutional network) were then built for each view to learn the users’ high-
order relational representation. To avoid the difficulties caused by data sparsity in modeling,
we incorporated cross-layer contrastive learning without graph augmentation into GAFSRec,
amplified the variance via a graph convolutional neural network, and regularized the rep-
resentation of recommendations with contrast-augmented views. Finally, we combined the
recommendation task and the self-supervised task within the framework of master-assisted
learning. The performance of the recommendation task was significantly improved after
jointly optimizing these two tasks and utilizing the interactions between all components.

The main contributions of this paper can be summarized as follows:

1. We designed a high-order heterogeneous graph based on motifs, integrated social
relations and item ratings, comprehensively modeled relational information in the
network, and undertook modeling through graph convolution to capture high-order
relations between users;

2. We incorporated the cross-layer self-supervised contrastive learning task without
graph augmentation into network training, enabling it to run more efficiently while
ensuring the reliability of recommendations;

3. We conducted extensive experiments with multiple real datasets, and the comparative
results showed that the proposed model was superior and that the model was effective
in ablation experiments.

The rest of this paper is organized as follows. Section 2 presents related work. Section 3
describes the framework for the multi-graph contrastive social recommendation model.
Section 4 presents the experimental results and analysis. Finally, Section 5 brings the paper
to a close.
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2. Related Work
2.1. Graph-Based Recommendation

To obtain high-order collaborative signals, graph-based recommendation algorithms
employ multi-hop interaction topologies [11,12]. The success of graph convolutional neural
network technology served as inspiration for Feng et al. [10] to develop a hypergraph
representation learning framework that captures the relationship between high-order data
by developing hyperedge convolution operations. Hypergraphs have a flexible topology
and can be used to model complex and high-order dependencies. Additionally, some
recently created recommender systems, such as HyperRec [13], MHCN [9], and HCCF [14],
have begun to use hypergraph topologies to capture high-order interactions among nodes.
HyperRec [13] applies numerous convolutional layers to hypergraphs to capture multi-
level connections in order to describe short-term item correlation features. In order to mine
high-order user relationship patterns, Yu et al. [9] presented a multi-channel hypergraph
convolutional network (MHCN) and created numerous topic-induced hypergraphs. They
also employed self-supervised learning to boost the learning of mutual information shared
between channels. The application of hypergraphs to social recommendations is made
possible by the retention of more high-level information. By simultaneously collecting local
and global cooperation information through a hypergraph-enhanced cross-view contrastive
learning architecture, HCCF [14] overcomes the over-smoothing problem. In comparison,
our system makes use of hypergraph encoders to help create heterogeneous networks,
maintain the collaborative relationship between users and items, and enhance the ability to
identify user preferences.

2.2. Self-Supervised Contrastive Learning

Self-supervised learning is divided into two categories: generative models and con-
trastive models. The goal of creating a model is to reconstruct the input so that the input
and output are as similar as possible using techniques such as GAN [15] and VAE [16]
autoencoders. Contrastive models have recently emerged as an effective self-supervised
framework for capturing feature representation consistency across different viewpoints.

Model contrasts are classified into three types [17]: structure-level contrasts, feature-
level contrasts, and model-level contrasts. Local–local and global–global structural-level
comparison targets exist. SGL [8] is a typical representative, changing the structure of
graphs through local perturbations (node loss, edge loss, and random walk). These data
enhancement and pre-training methods can extract more supervisory signals from the
original graph data, allowing the graph neural network to learn node representation
more effectively. Due to dataset constraints, feature-level comparisons have received less
attention. Model-level comparison can be implemented end-to-end relatively easily, and
SimGCL [10] directly adds noise to the embedding space for enhancement. Experiments
show that, regardless of whether graph enhancement is used or not, optimization of
the contrast loss can help learn representations. To model node embeddings, we used a
cross-layer contrastive learning method without graph augmentation in this study.

3. Proposed Model
3.1. Preliminaries

Let U = {u1, u2, · · · , um} (|U| = m) represent the collection of users and
I = {i1, i2, · · · , in} (|I| = n) represent the collection of items. Since we are focused on item
recommendation, we define R ∈ Rm×n to represent the user–item interaction binary matrix.
For each pair (u, i), rui = 1 indicates that user u has interacted with item i and, conversely,
rui = 0 indicates that user u has not interacted with item i or that user u is not interested
in item i. We represent social relations using directed social networks, where S ∈ Rm×m

represents an asymmetric relation matrix. Additionally,
{

Z(1)
u , Z(2)

u , · · · , Z(l)
u

}
∈ Rm×d and{

Z(1)
i , Z(2)

i , · · · , Z(l)
i

}
∈ Rn×d denote the embeddings of the size d-dimensional users and
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items learned in each layer, respectively. This article uses bold uppercase letters for matrices
and bold lowercase letters for vectors.

Definition 1. Hypergraph.
Let G = (V, E) represent a hypergraph, V a vertex set containing N vertices in the hypergraph,

and E an edge set containing M hyperedges. Each hyperedge ε ∈ E contains two or more vertices and
is assigned a positive weight Wεε. All weights form a diagonal matrix W ∈ RM×M. A hypergraph
is represented by an incidence matrix H ∈ RN×M, which is defined as follows:

Hi,j =

{
1, if vi ∈ V
0, if vi /∈ V

(1)

If the hyperedge ε j ∈ E contains a vertex, then Hi,j = 1; otherwise, Hi,j = 0. The degrees of the
vertices and edges of a hypergraph are represented as follows: Dv = ∑M

ε=1 WεεHiε; De = ∑N
i=1 Hiε.

3.2. High-Order Social Information Exploitation

In this study, we used two graphs as data sources: a user–item interaction graph Gr
and a user social network graph.

We aligned the two networks into a heterogeneous network and divided it into three
sets of views—an explicit friend social graph, an implicit friend social graph, and items
shared by users with explicit friends’ graphs—in order to establish high-order associations
between users in the network. The project-sharing graph of users and explicit friends
describes a user’s interest in sharing items with friends, which can also serve as relationship-
strengthening. The social graph of explicit friends describes a user’s interest in expanding
their social circle. The social graph of implicit friends describes the similar interests a user
shares with similar but unfamiliar users and can alleviate the negative impact of unreliable
social relations.

Taking into account the fact that there are some significant social network structures
that have impacts on the authority and reputation of nodes in the representation of higher-
order relationships as network motifs, we used the motif-based PageRank [18] framework.
PageRank is a general algorithm for ranking users in social networks [19]. It can be utilized
as a measurement standard for opinion-leader mining, impact, and credibility analyses
by assessing the authority of network nodes. However, only edge-based relations are
exploited, with higher-order structures in complex networks being neglected. This aspect
is improved by the motif-based PageRank algorithm. As shown by Figure 1, which covers
the fundamental and significant user social types, the user–item interaction graph splits
the explicit friend social graph into seven motifs. M8, also defined as the user’s implicit
friend social network, represents strangers who share the user’s interests. The relationship
M9–M10, generally described as users’ and explicit friends’ item-sharing graph, is, at the
same time, extended in accordance with friends’ shared buying behaviors.
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When given any motif set Mk, we can calculate the adjacency matrix of the motif using
Table 1.

(AM)i,j = ∑
i∈U,j∈U

1 (i, j occur in Mk) (2)

In Table 1, B = S� ST and U = S− B are the adjacency matrices of two-way and one-
way social networks respectively. Without considering self-connections, Ae = ∑7

k=1 AMK ,
Ai = AM8 , and Aj = AM9 + AM10 , where, in Aj = AM9 + AM10 , we only keep values
greater than 5 for the reliability of the implicit friend pair experiment. Furthermore, the
adjacency matrix for the user–items graph is Ar = R.

Table 1. Computation of motif-based adjacency matrices.

Motif Matrix Computation AMi

M1 C = (U ·U)�UT C + CT

M2
C = (B ·U)�UT + (U · B)�

UT + (U ·U)� B C + CT

M3
C = (B · B)�U + (B ·U)�

B + (U · B)� B C + CT

M4 C = (B · B)� B C

M5
C = (U ·U)�UT + (U ·
UT)�U + (UT ·U)�U C + CT

M6
C = (U · B)�U + (B ·U)�

UT + (UT ·U)� B C

M7
C = (UT · B)�UT + (B ·
U)�U + (U ·UT)� B

C

M8 C = R · RT C
M9 C = (R · RT)� B C
M10 C = (R · RT)�U C + CT

3.3. Graph Collaborative Filtering BackBone

In this section, we present our model GAFSRec. In Figure 2, the schematic overview
of our model is illustrated.

Due to its strong ability to capture node dependencies, we adopted LightGCN [20] to
aggregate neighborhood information. Formally, a general GCN is constructed using the
following hierarchical propagation:

Z(l) = D−1AZ(l−1) (3)

where Z(l) is the l-th layer embedding of the node, and Gq ∈
{

Gr, Ge, Gi, Gj
}

are the four
views, with A being the adjacency matrix and D the degree diagonal matrix of A. We
encoded the original node vectors into the embedding vectors required by each view
through gating functions.

Z(0)
q∈{r,e,i,j} = Z(0) � σ(Z(0)Wq

g + bq
g) (4)

where σ, Wq
g ∈ Rd×d, and bq

g ∈ Rd are the activation function, weight matrix, and bias
vector. q ∈ {r, e, i, j} represents four views. Z(0) denotes the initial embedding vector and
� represents the dot product.

We used the generalization ability of hypergraph modeling to capture more effective
high-level user information. Therefore, in the encoder, a hypergraph convolutional neural
network [21] was used.

Z(l) = D−1AZ(l−1) = D−1
v HWD−1

e HTZ(l−1) (5)

where A = HWD−1
e HT is the Laplacian matrix of the hypergraph convolutional network;

H is the incidence matrix of each hypergraph; Dv and De are the degree matrix of the
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nodes and the degree matrix of the hyperedges; and σ, Θ, and W are activation functions,
learnable filter matrices, and the parameters of the diagonal matrix.
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Considering node influence and credibility, we adopted motifs [18] to construct a
hypergraph. Given the complexity of the actual construction of the Laplacian matrix for
hypergraph convolution (which includes a large number of graph-induced hyperedges),
matrix multiplication can be considered for simplification.

Finally, the hypergraph convolutional neural network can be expressed as:

Z(l)
q∈{r,e,i,j} = D̃

−1
q AqZ(l−1)

q , where D̃q ∈ Rm×m is the degree matrix of Aq. It can be seen
from this that the graph convolutional neural network is a special case of the hypergraph
neural network.

After l-layer propagation, we used the weighting functions and the readout function
to output the representations of all layers, obtaining the following representations:

Zu|q =
1

L + 1

L

∑
l=0

Z(l)
u|q, Zi|q =

1
L + 1

L

∑
l=0

Z(l)
i|q

We applied an attention approach [22] to learn the weights α and aggregate the user
embedding vectors for augmented views.

αq =
exp(aTWaZu|q)

∑
q′∈{e,i,j}

exp(aTWaZu|q′)

where a and W are trainable parameters. The final user embedding Zu and item embedding
Zi look like this:

Zu = ∑q∈{e,i,j} αqZu|q +
L
∑

l=0
Z(l)

u|r

Zi =
1

L+1

L
∑

l=0
Z(l)

i|r
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The ranking score generated by this model recommendation is defined as the inner
product with user and item embeddings:

_
y u,i = ZT

u Zi

To optimize the parameters in the model, we adopted the Bayesian loss function [23].
The main reason was that the Bayesian loss function considers the comparison of pairwise
preferences between observed interactions and unobserved interactions. The loss function
of this model is:

LBPR = − ∑
i∈I(u),j/∈I(u)

ln σ(
_
y u,i −

_
y u,j) + β‖Φ‖2

2

where Φ is a trainable parameter and β is a regularization coefficient that controls the
strength of L2 regularization, prevents overfitting, and is a sigmoid function. Each input
datum is a triplet sample < u, i, j >; this triplet includes the current user u, the positive item
i purchased by u, and the randomly drawn negative item j. The negative item j is the user
u’s unliked or unknown items.

3.4. Graph-Augmentation-Free Self-Supervised Learning

Data augmentation is the premise of self-supervised contrastive learning models, and
they can obtain a more uniform representation by perturbing the structure and optimizing
the contrastive loss. With regard to the learning of graph representations, a study on
SimGCL [10] showed that it is the uniformity of distribution rather than dropout-based
graph augmentation that has the greatest impact on the performance of self-supervised
graph learning. Therefore, we considered adding random noise to the embedding to create
a self-supervised signal that could enhance the performance of the contrastive learning.

Z̃
(l)

= D−1AZ̃
(l−1)

+ ε(l)

where ε is the added random uniform noise vector, and the noise direction is in the same
direction as the embedding vector, ε = x � sign(z), x ∈ Rd ∼ U(0, 1). The embedding
representation added with perturbation retains most of the information of the original
representation, as well as some invariance.

By applying different scales of embedding vectors to the current node embedding, the
perturbed embedding vectors can then be fed into the encoder. The embedding vector of
the final perturbed node is expressed as:

Z̃ =
1

L + 1

L

∑
l=0

Z̃
(l)

We regarded augmented views from the same node as positive examples and aug-
mented views from different nodes as negative examples. Positive auxiliary supervision
promotes the consistency of predictions among different views of the same node, while
negative supervision strengthens the divergence between different nodes. Formally, we
adopted the contrastive loss InfoNCE [24] to maximize the consistency of positive examples
and minimize the consistency of negative examples:

LU
cl = − ∑

u∈U
log exp(sim(z̃(k)u ·z̃u)/τ)

∑v∈U exp(sim(z̃(k)u ·z̃v)/τ)

LI
cl = − ∑

i∈I
log exp(sim(z̃(k)i ·z̃i)/τ)

∑j∈I exp(sim(z̃(k)i ·z̃j)/τ)

where z̃(k)u = z̃(k)u /‖z̃(k)u ‖2 represents the k-th layer L2-regularized embedding vector com-
pared with the final layer embedding, sim(a, b) represents the dot-product cosine similarity
between normalized embeddings, and b. τ is the temperature parameter. The total loss
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function for self-supervised learning includes the contrastive loss for each view user and
the item contrastive loss, as shown in the following equation:

Lssl = ∑
q∈{r,e.i,j}

Lq,U
cl + Lr,I

cl

To improve recommendation through contrastive learning, we utilized a multi-task
training strategy to jointly optimize the recommendation task and the self-supervised
learning task, as shown in the following equation:

L = LBPR + λLssl

where λ is the hyperparameter used to control the auxiliary task.

3.5. Complexity Analysis

In this section, we analyze the theoretical complexity of GAFSRec. Since the time
complexity of LightGCN-based convolutional graph encoding is O(L× |R| × d), the total
encoder complexity of this architecture is less than 4×O(L× |R| × d) because the adjacency
matrix of the auxiliary encoder is sparser than that of the user–item interaction graph.
The time costs of the gate function and the aggregation layer are both O(m× d2). This
architecture adopts BPR loss; each batch contains B interactions, and the time cost is
O(2× B × d). Since the contrasting between positive/negative samples in contrastive
learning increases the time cost, cross-layer self-supervised contrastive learning contributes
a time complexity of 5×O(B×M× d), where M represents the number of nodes in a batch.
Since this model does not involve graph augmentation, the complexity of GAFSRec is much
lower than that of graph-augmented social recommendation models. In our experiments,
with the same embedding size and using the Douban-Book dataset, MHCN took 34 s per
epoch and GAFSRec only took 11 s. Detailed information on the experiments can be found
in Section 4.2.1.

4. Experiments and Results

In this section, we describe the extensive experiments we conducted to validate GAFS-
Rec. The experiments were conducted in order to answer the following three questions:
(1) Does GAFSRec outperform state-of-the-art baselines? (2) Does each component in
GAFSRec play a role? (3) What are the effects of hyperparameters on the GAFSRec model?

4.1. Experimental Settings
4.1.1. Datasets

We conducted experiments using three real-world datasets: Douban-Book [25], Yelp [26],
and Ciao [5]. The statistical data for the datasets are shown in Table 2. In accordance with the
summary provided by Tao et al. [27], we conducted statistical analyses of the three datasets,
which were helpful for the analysis of the results of the subsequent experiments. It was found
that the higher the level of social diffusion was (greater than 1), the greater the possibility
of similar preferences among users was, and the higher the effective social density was, the
lower the scoring density was, indicating that explicit social relationships are very important
for recommendation. We performed fivefold cross-validation with the three datasets and
report the averaged results.
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Table 2. Data statistics for social recommendation datasets.

Douban-Book Yelp Ciao

Users (U-I graph) 12,859 19,539 7375
Users (U-U graph) 12,748 30,934 7317

Items 22,294 22,228 105,114
Feedback 598,420 450,884 284,086

Valid user pairs 48,542,437 51,061,951 5,052,316
Social pairs 169,150 864,157 111,781

Valid social pairs 77,508 368,405 56,267
Candidate user pairs 165,353,881 381,772,521 54,390,625

Valid ratio 29.357% 13.375% 9.289%
Valid social ratio 45.822% 42.632% 50.337%

Social density 0.104% 0.090% 0.209%
Rating density 0.209% 0.104% 0.037%

Social diffusity level 1.561 3.187 5.419
Valid social density 0.160% 0.721% 1.114%

4.1.2. Baselines

We evaluated GAFSRec against 13 baselines spanning different recommendations:

• MF-based collaborative filtering models;
• BPR [23]: a popular recommendation model based on Bayesian personalized ranking;
• SBPR [28]: an MF-based social recommendation model that extends BPR and utilizes

social relations to model the relative order of candidate items;
• GNN-based collaborative filtering frameworks;
• NGCF [7]: a complex GCN-based recommendation model that generates user/item rep-

resentations by aggregating feature embeddings with high-order connection information;
• LightGCN [20]: a general recommendation model based on GCN, improved on the

basis of NGCF by removing linear changes and activation functions;
• DiffNET++ [29]: a GNN-based social recommendation method that simultaneously

simulates the recursive dynamic social diffusion of user space and item space;
• Recommendation with hypergraph neural networks;
• MHCN [9]: a social recommendation method based on a motif-based hypergraph.

It aggregates high-level user information through hypergraph convolutional multi-
channel embedding and utilizes auxiliary tasks to maximize the mutual information
between nodes and graphs and generate self-supervised signals;

• HyperRec [13]: this method leverages the hypergraph structure to model the relation-
ship between users and their interactive items by considering multi-order information
in dynamic environments;

• HCCF [14]: a hypergraph-guided self-supervised learning recommendation model
that jointly captures local and global collaborations through a hypergraph-enhanced
cross-view contrastive learning architecture;

• Self-supervised learning for recommendation;
• SEPT [25]: a social recommendation model that utilizes multiple views to generate

supervisory signals;
• SGL [8]: the most typical self-supervised comparative learning recommendation

model, which uses structural perturbation to generate comparative views and maxi-
mizes the consistency between nodes. The experiment in this study used the structural
perturbation method involving missing edges;

• BUIR [30]: this method adopts two encoders that learn from each other and randomly
generates augmented views for supervised training;

• SimGCL [10]: the latest self-supervised contrastive learning recommendation model. It
uses the no-image-enhancement method and only adds the final embedding obtained
by adding uniform noise in the embedding space for comparison;

• NCL [31]: a prototypal structural contrastive learning recommendation model.
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4.1.3. Metrics

To evaluate all the models, we chose two evaluation metrics: Recall@K and NDCG@K.
Recall@K employs the proportions of each user’s favorite items appearing in the recom-
mended items. Normalized discounted cumulative gain (NDCG) means that the scores for
the relevance of each recommendation result are accumulated and used as the score for the
entire recommendation list. The greater the relevance of the recommendation result is, the

greater the DCG is. The recall rate is defined as: Recall@K = ∑K
i=1 reli

min(K,|ytest
u |)

. The normalized

discounted cumulative gain is defined as DCG@K = ∑K
i=1

2reli−1
log2(i+1) NDCG@K = DCG@K

iDCG@K .

4.1.4. Settings

To ensure a fair comparison, we checked the best hyperparameter settings reported
in the original papers for the baselines and then used grid search to fine-tune all the
hyperparameters for the baselines. For the general setup of all baselines, all embeddings
were initialized with Xavier. The embedding size was 64, the L2 regularization parameter
was β = 0.01, and the batch size was 2048. We optimized all models using Adam with a
learning rate of 0.001 and let the temperature τ = 0.2.

4.2. Recommendation Performance

Next, we verified whether GAFSRec could outperform the baselines and achieve the
expected performance. The purpose of social recommendation is to alleviate data sparsity.
We also conducted a cold-start experiment with the entire training set. The cold-start
experiment dataset only included the data for cold-start users with fewer than ten historical
purchase records. The results are shown in Tables 3 and 4. It can be observed that GAFSRec
outperformed the baselines in general and cold-start cases with all datasets.

4.2.1. Comparison of Training Efficiency

In this section, we report the actual training time to verify the theoretical plausibility
of the method. The reported data were collected using a workstation equipped with an
Intel(R)Core™ i9-9900K CPU and a GeForce RTX 2080Ti GPU. The model depths of all
methods were set to two layers.

As shown in Figure 3, compared with the MHCN and SGL models, GAFSRec demon-
strated longer computation time due to the parallel processing of hierarchical self-supervised
learning tasks in the MHCN model, and the running time also increased with the number
of datasets. For SGL-ED, only the user–item interaction dataset was computed, and most
of the runtime was spent on building the perturbation graph. In the large Douban-Book
dataset especially, the speed of GAFSRec was three times faster than that of MHCN, thus
demonstrating the strong advantage of graph-augmentation-free cross-layer contrastive
learning in terms of operational efficiency.

4.2.2. Comparison of Ability to Promote Long-Tail Items

As mentioned in the introduction, GNN-based recommendation models are easily
affected by the long-tail problem. To verify that GAFSRec could entirely alleviate the
long-tail problem, we divided the test set into ten groups according to popularity. Each
group contained the same numbers of interactions, and the larger the ID of a group was, the
more popular the items were. Then, we set the number of layers to two for the experiments
and verified the long-tail recommendation ability of the model by observing Recall@20.
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Table 3. General recommendation performance comparison.

Dataset Metric BPR SBPR NGCF LightGCN DiffNET++ HyperRec MHCN HCCF BUIR SLRec SGL SimGCL NCL GAFSRec Improvement

Douban-
Book

Recall@20 0.0889 0.0918 0.1167 0.0936 0.0988 0.1394 0.1487 0.1666 0.0982 0.1400 0.1617 0.1629 0.1650 0.1781 6.90%
NDCG@20 0.0682 0.0717 0.0943 0.0770 0.0791 0.1260 0.1329 0.1421 0.0793 0.1263 0.1412 0.1422 0.1416 0.1637 15.17%

Yelp Recall@20 0.0554 0.0665 0.0891 0.0820 0.0852 0.1120 0.1174 0.1157 0.0834 0.1126 0.1146 0.1145 0.1148 0.1292 12.37%
NDCG@20 0.0289 0.0403 0.0533 0.0472 0.0496 0.0690 0.0746 0.0750 0.0482 0.0696 0.0732 0.0729 0.0741 0.0826 10.26%

Ciao
Recall@20 0.0412 0.0312 0.0517 0.0555 0.0477 0.0591 0.0629 0.0647 0.0528 0.0602 0.0635 0.0642 0.0625 0.0692 7.07%
NDCG@20 0.0310 0.0252 0.0379 0.0426 0.0352 0.0400 0.0483 0.0502 0.0419 0.0468 0.0492 0.0501 0.0494 0.0522 3.88%

Table 4. Cold-start recommendation performance comparison.

Dataset Method BPR SBPR NGCF LightGCN DiffNET++ MHCN HCCF SGL SimGCL NCL GAFSRec Improvement

Douban-Book
Recall@20 0.0754 0.1045 0.1135 0.1108 0.1105 0.1755 0.1877 0.1929 0.1924 0.1725 0.1972 2.79%
NDCG@20 0.0388 0.0879 0.0644 0.0631 0.0590 0.1043 0.1098 0.1154 0.1164 0.1024 0.1233 5.94%

Yelp Recall@20 0.0619 0.0696 0.0881 0.0881 0.0917 0.1258 0.1271 0.1322 0.1212 0.1150 0.1330 5.89%
NDCG@20 0.0296 0.0427 0.0415 0.0402 0.0420 0.0610 0.0662 0.0709 0.0625 0.0571 0.0669 11.57%

Ciao
Recall@20 0.0416 0.0413 0.0576 0.0544 0.0519 0.0638 0.0638 0.0605 0.0627 0.0635 0.0731 14.51%
NDCG@20 0.0209 0.0251 0.0330 0.0324 0.0308 0.0340 0.0331 0.0338 0.0339 0.0338 0.0374 9.82%
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Figure 3. The training speeds of the compared methods.

As shown in Figure 4, LightGCN tended to recommend popular items and had
the lowest recommendation ability for long-tail items (as illustrated in the small figure).
Due to sparse interaction signals, it was difficult for LightGCN to obtain high-quality
representations of long-tail items. However, with SimGCL, by optimizing the consistency
of InfoNCE-loss learning representations, long-tail problems could be avoided as much
as was possible, and excellent recommendation performance could be achieved. MHCN
also optimized the InfoNCE loss through global and local comparisons but did not learn
a more consistent representation, resulting in inferior performance to SimGCL when
recommending long-tail items. In contrast, GAFSRec showed outstanding advantages
when recommending long-tail products (such as GroupIDs 1, 2, and 3) and the highest
recall value, but it was not as good as other models for GroupID 10. It can be seen that
learning a more uniform representation by optimizing the InfoNCE loss can enable models
to debias and alleviate the long-tail phenomenon, as well as increasing freshness and
helping to meet user needs.
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Figure 4. The ability to promote long-tail items.

4.3. Ablation Study
4.3.1. Investigation of Multi-Graph Setting

To investigate the influence of high-order relationships in user social networks on
recommendation, we first investigated the impact of individual views on recommendations
by removing any one of the three social relationships’ views and leaving two remaining.
As can be seen from Figure 5, removing any view resulted in performance degradation.
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The bars in the figure (except the complete bar) represent the cases with the corresponding
views removed, while the complete bar represents the complete model.
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Figure 5. Contributions of each graph with different datasets.

Obviously, for the Douban-Book dataset, due to the low effective social density of the
dataset, the explicit user view had little influence on the recommendation, while the recom-
mendation performance of the view lacking the implicit user dropped sharply, indicating
that the implicit user was the user. Items that met user needs were recommended, proving
the key role of implicit users for recommendation. For the Yelp and Ciao datasets, due to
the higher effective social density of the datasets, explicit user views had a greater impact
on the recommendation. Figure 6 visualizes each graph’s attention score (median attention
score for training set users), revealing that the implicit user had the highest attention score,
while the explicit user and the joint graph had low attention scores. According to the
findings shown in Figures 5 and 6, implicit users contributed significantly to the analysis
of user preferences while explicit users played a greater role when the social density was
high, and the joint graph did not necessarily bring greater benefits due to social noise.
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4.3.2. Investigation of Contrastive Learning Setting

In this study, we investigated the impact of contrastive learning on recommendation
through two GCLSRec variants:

1. Removing social recommendation for contrastive learning tasks (without CL);
2. Disabling cross-layer comparison and using the final embedding of each layer em-

bedding to add uniform noise and construct two sets of views for comparison of the
learning task recommendations (CL-c).

The evaluation results are reported in Table 5. It can be observed that not adding
self-supervised contrastive learning (without CL) reduced the accuracy of recommendation,
and when recommending top 40 items, the recommendation performance only improved
slightly, as the aggregation mechanism of GCN can obscure high-order connection infor-
mation. While model recommendation by constructing contrasting views individually
(CL-ours) worked well, constructing contrasting views individually (CL-c) led to high
model complexity and was time-consuming. However, GAFSRec with cross-layer compar-
ative learning could not only guarantee recommendation accuracy but also had remarkably
high recommendation efficiency.

Table 5. Performance comparison of different GCLSRec variants.

Dataset Douban-Book Yelp Ciao

Metric Recall NDCG Recall NDCG Recall NDCG

Top 20

Without
CL 15.318% 13.371% 9.926% 6.175% 5.704% 4.265%

CL-c 17.716% 16.716% 12.870% 8.152% 6.644% 4.942%

CL-ours 17.806% 16.370% 12.922% 8.256% 6.922% 5.219%

Top 40

Without
CL 15.958% 11.379% 14.123% 7.147% 8.633% 5.402%

CL-c 23.038% 18.055% 18.178% 9.815% 8.987% 5.737%

CL-ours 22.943% 17.724% 18.516% 10.045% 8.821% 5.628%

4.4. Parameter Sensitivity Analysis
4.4.1. Influence of λ and ε

We observed the effect on the recommendation performance when the combination of
λ and ε was changed. When λ was [0, 0.01, 0.05, 0.1, 0.2, 0.5, 1], ε was [0, 0.01, 0.05, 0.1, 0.2,
0.5, 1], and the number of model layers was set to two.

As shown in Figure 7, when fixing ε at 0.1, all parameters showed similar trend
changes, and the best performance was achieved at specific λ values (Douban-Book dataset
λ = 0.1, Yelp dataset λ = 0.05, Ciao dataset λ = 0.01). However, when λ was too large
(λ = 0.5, 1), a significant performance drop could be seen.

We fixed λ at the best values for the three datasets, as reported in Figure 8, and then
adjusted ε to observe the performance change. When ε = 0.01, the best recommendation
performance (Douban-Book dataset and Yelp dataset) was achieved. However, when ε was
too large or too small, the recommendation was especially vulnerable to changes in ε, so
the performance declined faster. What can be seen from this is that GAFSRec was more
sensitive to changes in λ, and with ε = 0.01, the model could maintain stable performance.
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4.4.2. Layer Selection for Contrasting

For the recommendations using cross-layer contrastive learning, it is necessary to
choose one of the embeddings of one layer and the final embedding for the comparative
learning. To explore the optimal model depth and compare the choice of layers, we stacked
graph convolution depths from one to five layers. As shown in Table 6, the performance
was the best when the model had a depth of two layers. The performance of GAFSRec
dropped for all datasets as the number of layers increased. The reason may have been that,
as the depth increased, it became more likely to encounter the problem of over-smoothing.
In particular, the performance was best only when the first layer of embeddings was learned
in contrast to the final embedding. Therefore, the model under consideration could directly
select the first layer to compare with the final embedding, making it possible to achieve
better results.
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Table 6. Influence of the depth of GCLSRec.

Datasets Douban-Book Yelp Ciao

Metric Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

One layer 1 17.570% 15.866% 12.739% 8.127% 6.647% 4.982%

Two layers 1 17.806% 16.370% 13.002% 8.272% 6.922% 5.219%
2 17.001% 15.660% 12.280% 8.153% 6.675% 5.080%

Three layers
1 17.557% 15.915% 12.729% 8.137% 6.550% 4.986%
2 17.392% 15.832% 12.671% 8.090% 6.494% 5.006%
3 16.170% 14.745% 12.202% 7.846% 6.456% 4.941%

Four layers

1 17.035% 15.432% 12.427% 7.966% 6.303% 4.877%
2 16.900% 15.417% 12.385% 7.888% 6.217% 4.856%
3 15.835% 14.482% 11.860% 7.624% 5.998% 4.634%
4 15.276% 13.807% 11.211% 7.084% 6.159% 4.783%

Five layers

1 16.761% 15.037% 12.057% 7.676% 6.129% 4.714%
2 16.724% 15.137% 11.985% 7.636% 6.035% 4.685%
3 15.687% 14.210% 11.490% 7.324% 5.911% 4.703%
4 15.132% 13.685% 10.962% 6.952% 5.924% 4.664%
5 14.121% 12.245% 10.634% 6.640% 5.957% 4.623%

5. Conclusions

In this paper, we proposed a graph-contrastive social recommendation model (GAFS-
Rec) for ranking predictions. To fully mine high-order user relationships, the social graph
was divided into multiple views, which were modeled using a hypergraph encoder to
improve social recommendations. In particular, we presented a method of cross-layer com-
parative learning to help maintain the consistency of user preferences. Our experiments
showed that implicit users outperformed datasets with sparse explicit social relations, and
GAFSRec outperformed state-of-the-art baselines using three real datasets. Here, we only
considered incorporating the trust relationships between friends in a social network into
the recommendations. In the real world, however, a social graph with attributes could
better reflect the relationships between users and products. Therefore, exploring social
recommendations with attributes will be our next research direction.
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