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Abstract: Faults in this sensor must be detected on time to ensure the functionality of the entire
system’s architecture and to maintain system balance, which will keep false positive rates low
during the system’s operational period. False positives reduce diagnostic confidence and necessitate
unnecessary and costly mitigation actions, lowering system productivity. It is on this basis that
this study proposes a clustering model algorithm (K-mean clustering) to investigate and manage
the reliability and performance of the sensors. The results from the implementation of the K-mean
clustering method show that the running of the algorithm fits the model correctly, both for the training
of the dataset and for the prediction of the cluster in each of the datasets considered. A reasonable
grouping was found for the two and three clusters considered, which are represented by the colors
(blue, orange, and green). These colors indicate the fault state, non-fault state, normal state, and
abnormal state of the non-intrusive continuous sensor. The simulated results show the fault state in
the blue region and the non-fault state in the orange region for the two clusters, while the normal
state is in the blue region and the abnormal state is in the orange and green regions for the three
clusters considered.

Keywords: non-intrusive continuous sensors; heat exchanger system; K-mean clustering; reliability
and performance

1. Introduction

Heat exchangers are one of the important systems used in the process and power
generation industries [1]. It is used for transferring heat from one medium to another, where
such a medium could be in the form of a gas, a liquid, or a combination of both. The media
could be separated in some applications by a solid wall, or it could be completely mixed
in other applications; however, they are aimed at improving the energy efficiency of such
applications by transferring heat from systems where it is not needed to systems where it
will be more useful [2]. “For example, waste heat in the exhaust of an electricity-generating
gas turbine can be transferred via a heat exchanger to boil water to drive a steam turbine
and generate electricity”. The most common type of heat exchanger is a car radiator, where
the cooling process of the car engine is optimized to make it more efficient.

Heat exchangers work because heat naturally flows from higher temperatures to lower
temperatures. Therefore, if a hot fluid and a cold fluid are separated by a heat-conducting
surface, heat can be transferred from the hot fluid to the cold fluid [3]. Several types of
heat exchangers have been developed for use in steam power generation plants, chemi-
cal processing plants, petroleum refinery plants, buildings, heating and air conditioning
systems, natural gas processing, and space heating and refrigeration units [4]. Despite
the many benefits of the heat exchanger system application in the processing and power
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generation industries, it is often challenged by the formation of unwanted material deposits
on the heat transfer surfaces. These deposited materials, which are in the form of scale,
algae, suspended solids, and insoluble salts on the internal or external surfaces of heat
exchangers [5], are sometimes called “heat exchanger fouling,” and they occur during
process heating or cooling [6].

Although the fouling of heat exchanger systems has been the subject of so much
research in the recent past [7], there are still a lot of contributions and improvements
that are needed to fully understand how to handle and manage some of the specific heat
exchanger fouling problems. Among these problems is how to address reliability issues
(fault diagnosis and prognosis) in the non-intrusive continuous sensors that are used in
heat exchanger systems. Non-intrusive continuous sensors are mainly deployed in heat
exchanger systems for real-time fouling layer detection [8]. These sensors are used as units
for monitoring and controlling the heat exchanger system architecture [9], through which
faults in the system and system performances are determined.

Considering the very important role of these sensors in the heat exchanger systems
used in power generation companies, there is a need for a comprehensive approach to
the reliability and performance management of the sensors used in fault detection in the
system’s architecture. Moreover, a balance is required to keep false-positive rates low
during the operational period of the system. False positives reduce diagnostic confidence
and necessitate unnecessary and costly mitigation actions, lowering system productivity.
The quality of the health management system for the sensors, therefore, can be concluded to
have a direct effect on the performance of the entire system. On this basis, this study seeks
to investigate and propose a model for the evaluation of the reliability and performance of
the sensors used in heat exchanger systems by using a combination of methodologies.

Diagnostic and prognostic analysis methods are fast-growing engineering science
tools that are focused on the prediction and health condition management of engineering
systems and their components based on their current and previous status. The main
goal of the analysis is to provide an accurate prediction of the reliability [10], availability,
performance [11,12], and remaining useful life of the system.

Based on this preposition, they are expected to efficiently monitor and track the health
status of a system during operation and to determine its reliability and availability, as
well as its performance and remaining useful life. Data from the processes are extracted
from relevant features associated with the degradation condition and failure of the system
or components [13] using sensors. In heat exchanger systems, non-intrusive continuous
sensors have been suggested [8]. Recently, it has been found, however, that this sensor is
affected by so many operational and environmental conditions [14].

In order to ensure the functionality of the sensor system, there is a need for a method-
ology and procedure for monitoring and addressing the different problems and challenges
associated with the system. Any fault leading to failure in these sub-systems needs to be
efficiently identified and properly isolated using the limited set of sensor signals avail-
able [15].

Given the importance of non-intrusive continuous sensors developed for real-time
detection of fouling layers in heat exchanger systems, which several companies and heat
exchanger plants have recently adopted, it is critical that an intelligent model is in place
to monitor, evaluate, and study their reliability, availability, and performance. The devel-
opment of an intelligent model is not only important for the heat exchanger system but
will also help to address the several research reports that concluded that the reliability of
sensors in heat exchanger systems is the main barrier to their integration into our everyday
lives in the factory [16].

In this paper, an intelligent model (the K-mean clustering model) is proposed for ad-
dressing and dealing with reliability-related issues in the non-intrusive continuous sensors
used for real-time fouling-layer detection in heat exchanger systems. The contributions of
the research project and model are summarized as follows:
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• The development of the data-driven model for the evaluation of the reliability and
performance of the non-intrusive continuous sensors, which, to the best of my knowl-
edge, has not been used or presented in any other literature for heat exchanger To the
best of my knowledge, this is the first study to develop and deploy intelligent algo-
rithms for the detection of faults in the non-intrusive continuous sensors used in heat
exchanger systems.

• The study contributes to the heat exchanger literature by implementing a new model
algorithm for the reliability management of the sensor used in the heat exchanger
systems. This is important since it assists management in designing an efficient
maintenance policy.

• The use of the model in addressing physical (real-life) reliability problems is another
important contribution.

• To the best of my knowledge, this is the first study to develop and deploy several
intelligent algorithms for the evaluation of the non-intrusive continuous sensors used
in heat exchanger systems.

2. Materials and Methods

In this section, the proposed intelligent data-driven model for addressing and handling
the reliability and performance management issues of the non-intrusive continuous sensors
used in heat exchanger systems is introduced. First, a mathematical model for the reliability
and performance of the non-intrusive continuous sensors is presented; this is followed by
the introduction of the intelligent data-driven model algorithms that will be used in the
analysis of the non-intrusive continuous sensors data.

2.1. Mathematical Model for the Reliability and Performance of the Non-Intrusive
Continuous Sensors

To fully understand the mathematical concept of the problem the research intends to
solve, the following mathematical expression is presented, which describes the challenges
associated with the sensors used in the heat exchanger system architecture. The considera-
tion here is that the sensors are subjected to the following environmental conditions: high
heat, wear, and vibration, which is assumed to affect their reliability and functionality.

Let β be the set of sensor components that constitute the heat exchanger system
architecture such that:

β = {β1, β2, β3, . . . , βn} (1)

β1 =
{

β1
1, β2

1, β3
1, . . . , βz

1

}
(2)

βx =
{

β2
1
n, β2

2
n, β2

3
n, . . . , β2

z
n

}
, αxε α (3)

where βz
1 , βz

1ε β1 are the ath sensor components under the set of sensor components β1
that constitutes the heat exchanger system architecture, and βz

n , βz
nε βn are the zth sensor

components under the set of sensor components βn that constitutes the heat exchanger
system architecture.

Then the reliability and functionality of the heat exchanger system architecture with
the set of sensor components βa

1 at the epoch tx, tx ε t, t = {t1, t2, . . . , tx} can be denoted as
R1
(

βa
1, tx

)
. Similarly, the reliability and functionality of heat exchanger system architecture

with the set of sensor components βz
n at the epoch tx, tx ε t, t = {t1, t2, . . . , tx} can also be

denoted as R1(βz
n, tx).

If the failure rate of the sensor components βa
1 and βz

n is a variable and is given as
Y1
(

βz
n, βa

1, tx
)

at the epoch tx, then according to the basic concept of reliability calculations,
the mean time to failure of the sensor components is therefore given as follows:

M1(βz
n, βa

1, tx) =
1

Y1
(

βz
n, βa

1, tx
) (4)
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If the threshold value for the failure rate of the sensor components βa
1 and βz

n is given
as Ythresh, the sensor components βa

1 and βz
n can therefore be said to have a high optimal

reliability and a low optimal reliability when Ythresh
(

βz
n, βa

1, tx
)
ε {0, 1}. The threshold value

for the failure rate of the sensor components βa
1 and βz

n at epoch tx is therefore given
as follows:

Ythresh(βz
n, βa

1, tx) = 1 (5)

Ythresh(βz
n, βa

1, tx) = 0 (6)

for a high optimal reliability and a low optimal reliability of the sensor components,
respectively. Similarly, the threshold value for the reliability and functionality of heat
exchanger system architecture with the set of sensor components at the epoch tx is given as
Rthresh, where:

Rthresh = Ythresh(βz
n, βa

1, tx)ε {0, 1} ∗ ty (7)

where ty is the overall time.
Equation (7) can be used for the computation of high and low optimal reliability of the

sensor and actuator components in the heat exchanger system architecture.

2.2. Intelligent Data-Driven Model—Clustering Algorithm

The clustering method, which was adopted in this study, is an unsupervised learning
method that takes input features and data and does not require proper labels to predict and
evaluate them. It is a data analysis technique for identifying intriguing patterns in data,
such as fault patterns and groupings. It provides a quick summary of the data that could be
utilized to make inferences. Since the purpose of a clustering task is to find data structures,
the clustering method must therefore be able to determine the number of structures/groups
in the data and how the features are distributed within each group.

Clustering, for example, can be used to detect defects, faults, and anomalies in a system
by using the system’s database or historical data; moreover, the locations of the faults or
defects in the system, as well as the area where errors occur more frequently, can also be
determined using the clustering method. There are several clustering methods that can be
used for this task, including K-mean clustering [17], mini-batch K-means clustering [18],
spectral clustering, Gaussian mixture clustering [17], birch clustering [19], density-based
clustering [20,21], hierarchical clustering, and random forest clustering [22]. All of these
methods can be successfully implemented to address the reliability problems in the sensor.
In this thesis, however, the K-mean clustering model algorithm was proposed, and the
other methods are used for the comparison of the final simulation results.

2.3. K-Mean Clustering

K-means clustering is a vector quantization approach that seeks to partition n observa-
tions into k clusters, with each observation belonging to the cluster with the closest mean
(cluster centers or cluster centroid), which serves as the cluster’s prototype such that the
data space is divided into Voronoi cells as a result of this [23]. Within-cluster variances
(squared Euclidean distances) are minimized by K-means clustering but not the regular
Euclidean distances. The mean optimizes squared errors, while only the geometric median
minimizes the Euclidean distances [24]. The use of K-medians and K-medoids, for example,
can lead to better Euclidean solutions.

There are three main characteristics of k-means that make it very efficient for solving
engineering problems; however, these same characteristics are also frequently seen as its
most significant drawbacks. These characteristics include the following [25]:

1. Euclidean distance, which is used as both metric and variance for measuring the
cluster scatter;

2. The number of clusters k when used as an input parameter; selecting an incorrect
value for k may result in bad results. It is important, therefore, to check the num-
ber of clusters in the dataset when performing diagnostic checks with the k-mean
clustering method;
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3. Finally, the convergence to a local minimum can have an unexpected (“wrong”) result.

Although the problem is computationally challenging, effective heuristic techniques
quickly converge to a local optimum. Both K-means and Gaussian mixture modeling use
an iterative refining method that is comparable to the expectation–maximization algorithm
for mixtures of Gaussian distributions. They both use cluster centers to represent the
data; however, K-means clustering finds clusters with similar spatial extents, whereas the
Gaussian mixture model enables clusters to have diverse shapes.

Definition 1. If a set of observations is given by(x1, x2, x3, . . . , xn), where each of the observations
is a d-dimensional real vector, the K-means clustering, therefore, aims to partition the n observations
into k(k ≤ n) sets S = (S1, S2, S3, . . . , Sk), such that the within-cluster sum of squares (WCSS)
is minimized as much as possible (i.e., variance). The objective, therefore, is given as follows:

argSmin
k

∑
i=1

∑
X∈Si

‖ x− µi ‖2= argSmin
k

∑
i=1
|Si|Var Si (8)

where µi is the mean of points in Si, and it is equivalent to the minimization of the pairwise squared
deviations of the different points within the same clusters.

argSmin
k

∑
i=1

1
|Si| ∑

x,y∈Si

‖ x− µi ‖2 (9)

The overall variance is constant, and this is equivalent to maximizing the sum of
squared deviations between points in various clusters, and it is equal to the between-cluster
sum of squares (BCSS). The algorithm for the implementation of the K-mean clustering
method that has been proposed for the reliability and performance management of the
non-intrusive continuous sensor was developed using the Python 3 programming language,
and it is executed using an online python platform.

3. Results

In this section, the non-instructive continuous sensors used in heat exchanger systems,
which are expected to efficiently monitor and track the health status of the systems during
operation, were investigated to determine their reliability and performance when faced
with harsh operational and environmental conditions. This sensor, which is known to
be very sensitive, is investigated using the clustering methods presented in the previous
chapter. Here, the reliability and performance of the sensor are measured by attempting
to use the clustering model algorithms to detect faults and anomalies in the huge data
they normally generate. In the evaluation of the reliability and performance of the non-
instructive continuous sensor, a case study approach was adopted, as presented in the
section below.

3.1. Case Study of a Non-Instructive Continuous Sensor in a Heat Exchanger System

In this paper, a non-instructive continuous sensor used for monitoring and dealing
with fouling problems in a heat exchanger system in a food manufacturing company was
investigated. The non-instructive continuous sensor, which itself has generated much
data (big data) over the past two years as it relates to the operations of the heat exchanger
system and its components, is believed to conceal knowledge about the sensor, hence
its investigation. First, the following failure modes of the sensors, as shown in Table 1,
are considered.
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Table 1. Failure modes, causes, and effects in the non-intrusive continuous sensor.

Failure Modes Failure Cause Failure Effects

No output
Faulty component No immediate effect,

replacement required

Short-circuiting and
open circuiting

High output Unknown No immediate effect,
undetected failure

Low output Unknown
Excessive oil temperature to TCV;
possible gas turbine emergency

shut-down

Latch-up

Positive or negative voltage
spike on an input or output pin
of a digital chip that exceeds the

rail voltage

Dielectric breakdown Failure of an insulating material Flow of current under applied
electrical stress.

Bridging faults Connection problems

This is particularly important, as the failure modes are also entered as features used
in the evaluation process using the clustering model algorithms for sensor reliability
and performance. In the first instance, a test dataset of 1000 samples is generated, and
two features in some particular period of the sensor’s operation are simulated, in which
three states, that is, the normal state, the abnormal state, and the fault state of the sensor,
are identified. However, this is obtained by splitting the data into two or three clusters,
respectively. The results generated from the two clusters are used to determine the fault and
non-fault states of the sensor. Similarly, the three clusters are used to determine the normal
state of the sensor and the abnormal state. It is worth noting that all of the experiments were
carried out on the same hardware and software platforms, with the following specifications:
Intel(R) Core (TM) i5-3320M CPU @ 2.60 GHz, 4.00 GB RAM.

3.2. Implementation of the K-Mean Clustering Algorithm

Upon the implementation of the K-mean clustering algorithm, the simulated results
from the algorithm are presented in Figures 1 and 2 below. The results with respect to
the two and three clusters used, respectively, in this study, show the two states for the
non-intrusive continuous sensor, that is, the fault state (orange region) and non-fault state
(blue region) for the two clusters, and the normal state (blue region) and the abnormal state
(orange and green region) for the three clusters, respectively. These prepositions, however,
are based on the fault mode rules as presented in [26].
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Similarly, the K-mean clustering algorithm was implemented for the six (6) fea-
tures of the sensor by using the same test dataset of 1000 samples over the same pe-
riod. The simulated results showing the fault state (blue region) and the non-fault state
(orange region) for the two clusters and the normal state (blue region) and the abnor-
mal state (orange and green region) for the three clusters, respectively, are presented in
Figures 3 and 4, respectively.
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From the above-simulated results, it is easy to see that the running of the algorithm
fits the model correctly, both for the training of the dataset and for the prediction of the
cluster in each of the datasets considered. This was simulated in the results for the two and
six-feature datasets, respectively. For the two and three clusters, a reasonable grouping
was found, which was represented by the colors blue, orange, and green. These colors
indicate the fault state, non-fault state, normal state, and abnormal state of the non-intrusive
continuous sensor. The simulated results generate a scatter plot of the dataset, separated
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into different colors in the form of a cluster. The clusters are generated by the association of
the different datasets (observations) using the nearest mean. It can be concluded, therefore,
that with the implementation of the K-mean clustering algorithm for the analysis of data
generated from the non-instructive continuous sensor used in the heat exchanger system,
the reliability and performance of the sensor can be managed effectively. Since the fault
state, non-fault state, normal state, and abnormal state of the sensors, as well as that of the
heat exchanger system, can be easily identified.

3.3. Comparison of the Simulation Results with Similar Clustering Model Algorithms

As stated in Section 3.2, there are several clustering methods that can be used for the
management of the reliability and performance of the non-intrusive continuous sensor;
among them are K-mean clustering, mini-batch K-means clustering, spectral clustering,
Gaussian mixture clustering, birch clustering, density-based clustering, hierarchical clus-
tering, and random forest clustering. All of these methods, however, can be successfully
implemented to address the reliability and performance evaluation problems. In compar-
ing the simulated results presented when the K-mean clustering model algorithm was
implemented, the following model algorithms were applied in this paper to compare the
simulated results: the mini-batch K-means clustering model, the spectral clustering model,
the Gaussian mixture clustering model, and the birch clustering model algorithms. The
simulation is implemented in the online Python 3 platform using the same dataset of
1000 samples obtained from the failure modes (6 features) of the non-intrusive continuous
sensors. The simulated results for the different clustering model algorithms when the
dataset is grouped into two clusters are presented in Figure 5.
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From the simulated results (Figure 5), which compare the different clustering model
algorithms, it is not difficult to see that the running of the algorithm fits the model correctly,
both for the training of the dataset and for the prediction of the cluster in each of the
datasets considered. This was virtualized in the results for the six features dataset, which
was drawn from the failure modes in the non-intrusive continuous sensor in the heat
exchanger system.

For the two clusters, a reasonable grouping was found, and it is represented by the
colors blue and orange. These colors indicate the fault state (orange region) and non-fault
state (blue region) for the mini-batch K-means clustering (A); the fault state (blue region)
and non-fault state (orange region) for the spectral clustering (B); the fault state (blue region)
and non-fault state (orange region) for the Gaussian mixture clustering (C); and finally,
the fault state (blue region) and non-fault state (orange region) for the Birch clustering (D).
The simulated results generate scatter and dense plots of the dataset, which are separated
and identified by the different colors in the cluster. The clusters are generated by the
association of the different datasets (observations) using the nearest mean. In Table 2, the
simulated results for the clustering model algorithms that were implemented for managing
the reliability of the non-intrusive continuous sensor are compared. The results show
consistency with the K-means clustering model algorithm, the spectral clustering model
algorithm, the Gaussian mixture clustering model algorithm, and the birch clustering
model algorithm.

Table 2. Comparison of the simulated results for the different clustering model algorithms when two
clusters are considered.

S/N Clustering Model Algorithms Faults State Non-Faults State

1 K-means clustering Blue region Orange region
2 Mini-batch K-means clustering Orange region Blue region
3 Spectral clustering Blue region Orange region
4 Gaussian mixture clustering Blue region Orange region
5 Birch clustering Blue region Orange region

In comparing the simulated results presented when the K-mean clustering model
algorithm was implemented with three clusters, the following clustering model algorithms
were compared: the mini-batch K-means clustering model, the spectral clustering model,
the Gaussian mixture clustering model, and the birch clustering model algorithms. The
simulation was implemented in the online Python 3 platform using the same dataset of
1000 samples obtained from the failure modes (six features) of the non-intrusive continuous
sensors. The simulated results for the different clustering model algorithms when the
dataset is grouped into three clusters are presented in Figure 6.

From the simulated results (Figure 6), which compare the different clustering model
algorithms, it is not difficult to see that the running of the algorithm fits the model correctly,
both for the training of the dataset and for the prediction of the cluster in each of the
datasets considered. This was virtualized in the results for the six features dataset, which
was drawn from the failure modes in the non-intrusive continuous sensor in the heat
exchanger system.

For the three clusters, a reasonable grouping was found, and it is represented by the
colors blue, green, and orange. These colors indicate the normal state (orange region) and
the abnormal state (green and blue region) for the mini-batch K-means clustering (A); the
normal state (blue region) and the abnormal state (orange and green region) for the spectral
clustering (B); the normal state (blue region) and the abnormal state (orange and green
region) for the Gaussian mixture clustering (C); and finally, the normal state (green region)
and the abnormal state (orange and blue region) for the birch clustering (D). The simulated
results generate scatter and dense plots of the dataset, which are separated and identified
by the different colors in the cluster. The clusters are generated by the association of the
different datasets (observations) using the nearest mean. In Table 3, the simulated results
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for the clustering model algorithms that were implemented for managing the reliability
of the non-intrusive continuous sensor are compared. The results show consistency with
the K-Means clustering model algorithm, the spectral clustering model algorithm, and the
Gaussian mixture clustering model, respectively.
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batch K-means clustering (A), spectral clustering (B), Gaussian mixture clustering (C), and birch
clustering (D).

Table 3. Comparison of the simulated results for the different clustering model algorithms when
three clusters are considered.

S/N Clustering Model Algorithms Normal State Abnormal State

1 K-means clustering Blue region Orange and green region
2 Mini-batch K-means clustering Orange region Blue and green region
3 Spectral clustering Blue region Green and orange region
4 Gaussian mixture clustering Blue region Green and orange region
5 Birch clustering Green region Blue and orange region

The following conclusions can be drawn from the compared simulated results for the
non-intrusive continuous sensor used in heat exchanger systems that were analyzed using
the different clustering model algorithms presented above:
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• When the distribution of the dataset is unknown or unclear, it cannot achieve a perfect
clustering result, even when two or three clusters are used for the analysis.

• A single clustering mean cannot yield a perfect clustering result.
• In clustering applications, traversing the samples several times is unavoidable.

4. Conclusions

In order to manage the reliability and performance of the non-intrusive continuous
sensor, a clustering model algorithm was proposed and implemented using the historical
failure mode data from the sensor. The K-mean clustering model algorithm proposed in
this paper was validated using the following models: the mini-batch K-means clustering
model, the spectral clustering model, the Gaussian mixture clustering model, and the birch
clustering model algorithm. The study can therefore conclude that the clustering method
proposed (the K-mean clustering model algorithm) is an excellent model.

Although the research study’s goal and objectives were met and successfully presented
in the thesis, there are still many suggestions and questions that need to be addressed in
future research work, including:

• What is the algorithm’s performance on each of the features and datasets? The
algorithm’s performance for data other than the data used in this investigation could
be drastically different. It would be fascinating to examine how alternative data, such
as data from other fault modes in the sensor and the heat exchanger system, compared
to those utilized in this study.

• The determination of a faster and more reliable method for estimating the number of
clusters used in the implementation of the model algorithms.

• The need to design a self-learning diagnosis system that employs the proposed tech-
nique updates the model for each new failure and re-estimates the number of clusters
as new data are accumulated. It would be interesting to see if the previous model and
earlier estimates of the number of clusters might be used to speed up the calculation
and maybe increase performance when updating the model as new data are added.
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3. Berce, J.; Zupančič, M.; Može, M.; Golobič, I. A Review of Crystallization Fouling in Heat Exchangers. Processes 2021, 9, 1356.

[CrossRef]
4. Master, B.I.; Chunangad, K.S.; Boxma, A.J.; Kral, D.; Stehlík, P. Most Frequently Used Heat Exchangers from Pioneering Research

to Worldwide Applications. Heat Transf. Eng. 2006, 27, 4–11. [CrossRef]
5. Ibrahim, H.A.-H. Fouling in Heat Exchangers. In MATLAB—A Fundamental Tool for Scientific Computing and Engineering Applications;

IntechOpen: London, UK, 2012; Volume 3.
6. Yang, X.-L.; Gong, Y.; Tong, Q.; Yang, Z.-G. Failure analysis on abnormal bursting of heat transfer tubes in spiral-wound heat

exchanger for nuclear power plant. Eng. Fail. Anal. 2019, 108, 104298. [CrossRef]

http://doi.org/10.1016/j.applthermaleng.2009.02.013
http://doi.org/10.1088/1755-1315/36/1/012012
http://doi.org/10.3390/pr9081356
http://doi.org/10.1080/01457630600671960
http://doi.org/10.1016/j.engfailanal.2019.104298


Appl. Sci. 2023, 13, 3028 12 of 12

7. Zahid, K.; Patel, R.; Mujtaba, I. Development of a dynamic fouling model for a heat exchanger. Chem. Eng. Trans. 2016,
52, 1135–1140. [CrossRef]

8. Rivera, F.; Mishra, D.; Ozadali, F.; Benyathiar, P. Real-Time Detection of Fouling-Layer with a Non-Intrusive Continuous Sensor
(NICS) during Thermal Processing in Food Manufacturing. Sensors 2021, 21, 1271. [CrossRef]

9. Sethi, P.; Sarangi, S.R. Internet of Things: Architectures, Protocols, and Applications. J. Electr. Comput. Eng. 2017, 2017, 9324035.
[CrossRef]

10. El-Koujok, M.; Gouriveau, R.; Zerhouni, N. Development of a prognostic tool to perform reliability analysis. In Safety, Reliability
and Risk Analysis: Theory, Methods and Applications, Proceedings of the ESREL—17th SRA-Europe Conference, Valencia, Spain, 22–25
September 2008; CRC Press: Boca Raton, FL, USA, 2009; Volume 1, pp. 191–199. [CrossRef]

11. Goebel, K.; Saxena, A.; Saha, S.; Saha, B.; Celaya, J. Prognostic Performance Metrics. Mach. Learn. Knowl. Discov. Eng. Syst. Health
Manag. 2012, 147, 20. [CrossRef]

12. Saha, B.; Goebel, K.; Christophersen, J. Comparison of prognostic algorithms for estimating remaining useful life of batteries.
Trans. Inst. Meas. Control. 2009, 31, 293–308. [CrossRef]

13. Coble, J.B. Merging Data Sources to Predict Remaining Useful Life-An Automated Method to Identify Prognostic Parameters.
Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2010. Available online: https://trace.tennessee.edu/cgi/viewcontent.
cgi?article=1735&context=utk_graddiss (accessed on 21 December 2022).

14. Aikhuele, D.O.; Ajayi, S.T. Estimation of the remaining useful life of sensor and actuator component embedded in a complex
mechanical system. Uniport J. Eng. Sci. Res. 2021, 6, 173–179.

15. ElHady, N.E.; Provost, J. A Systematic Survey on Sensor Failure Detection and Fault-Tolerance in Ambient Assisted Living.
Sensors 2018, 18, 1991. [CrossRef] [PubMed]

16. Moore, S.J.; Nugent, C.D.; Zhang, S.; Cleland, I. IoT reliability: A review leading to 5 key research directions. CCF Trans. Pervasive
Comput. Interact. 2020, 2, 147–163. [CrossRef]

17. Patel, E.; Kushwaha, D.S. Clustering Cloud Workloads: K-Means vs Gaussian Mixture Model. Procedia Comput. Sci. 2020,
171, 158–167. [CrossRef]

18. Xiao, B.; Wang, Z.; Liu, Q.; Liu, X. SMK-means: An Improved Mini Batch K-means Algorithm Based on Mapreduce with Big Data.
Comput. Mater. Contin. 2018, 56, 365–379.
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