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Abstract: The information bottleneck (IB) model aims to find the optimal representations of input
variables with respect to the response variable. While it has been widely used in the machine-
learning community, research from the perspective of the information-theoretic method has been
rarely reported regarding variable selection. In this paper, we investigate DNNs for variable selection
through an information-theoretic lens. To be specific, we first state the rationality of variable selection
with IB and then propose a new statistic to measure the variable importance. On this basis, a new
algorithm based on a deep variational information bottleneck is developed to calculate the statistic,
in which we consider the Gaussian distribution and the exponential distribution to estimate the
Kullback–Leibler divergence. Empirical evaluations on simulated and real-world data show that
the proposed method performs better than classical variable-selection methods. This confirms the
feasibility of the variable selection from the perspective of IB.

Keywords: information bottleneck; drop-out-one loss; variable selection; deep learning

1. Introduction

In many problems of interest, researchers always aim to understand which part of the
input variables (features) explain the response variable (output), such as in biomedicine
and financial engineering. The variable selection, in addition to reducing the computational
complexity, also provides insight into the complex relationship between the inputs and
response. Hence, its value is only increasing. To address this problem, many traditional
machine-learning models have been studied for decades. For linear models, numerous
variable-selection algorithms have been proposed, among which, the most well-known
ones include Lasso [1], GroupLasso [2] and Smoothly Clipped Absolute Deviation Penalty
(SCAD) [3]. To be specific, Lasso [1] realized the variable selection by embedding the L1
regularizer into the linear model. GroupLASSO [2] considered the problem of selecting
grouped variables for accurate prediction in regression. SCAD [3] extended the threshold-
ing penalty function and satisfied the mathematical conditions for unbiasedness, sparsity
and continuity.

In these models, the variable importance is measured by the coefficient of each variable.
As an extension of the linear model, the additive models have been proposed to deal with
nonlinear variable selection problems, such as Sparse Additive Models (SpAM) [4,5] and
GroupSpAM [6]. They, respectively, extended the Lasso and GroupLasso with additive
nonparametric regression. Instead of selecting the variable directly, Mukherjee et al. [7]
proposed to learn the gradient at each point in the instance space. On this basis, several
variants of the gradient-learning (GL) model have been devoted to developing alternatives
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for individual purposes, such as sparse [8] and robust [9,10] gradients. Ye and Xie [8]
proposed to learn sparse gradients for variable selection and dimension reduction. To resist
the outliers or heavy-tailed noise, Feng et al. [9] proposed robust loss, and Liu et al. [10]
adopted tilted loss to learn the gradient function. In these models, the variable importance
is measured by the corresponding function. To control the false discovery rate (FDR) of
selected variables, Barber et al. [11] introduced a new variable-selection procedure called
knockoff filter and achieved exact FDR control in the statistical linear model. On this
basis, Candes et al. proposed model-X knockoffs [12] and provided valid inference in a
general setting that the conditional distribution of the response is arbitrary and completely
unknown. In these models, the variable importance is measured by the difference of scores
between the original variable and its knockoff variable. In addition, there also exist several
methods proposed from the perspective of information gain, such as decision tree and
random forest (RF) [13].

Despite the aforementioned studies having achieved satisfactory performance on
variable selection, they are usually limited by the fitting accuracy due to the arrival of the
era of big data. In contrast, deep neural networks (DNNs) have achieved great success on a
wide variety of tasks due to their strong representation and approximation ability. However,
they are largely treated as black-box tools with little interpretability. Therefore, various
attempts have been made to uncover the mysteries of neural networks, among which a
large class of methods is focused on designing new DNNs to uncover the key features. For
example, Lemhadri et al. [14] extended the Lasso and proposed a corresponding DNN
framework, LassoNet. It achieved feature sparsity by allowing a feature to participate in
a hidden unit only if its linear representative is active. Feng et al. [15] fit the DNN using
the sparse group lasso penalty on the first-layer input weights, which resulted in a DNN
that only used a subset of the original features. Agarwal et al. [16] likewise proposed a
neural additive model (NAM), which effectively combined the expressivity of DNN with
the inherent intelligibility of generalized additive models. This model learned a linear
combination of neural networks that each attended to a single input feature. Lu et al. [17]
designed a new DNN architecture (called DeepPINK) with filter-integrated knockoffs,
which improved the interpretability and reproducibility of the DNN by incorporating the
idea of feature selection with a controlled error rate. On the other hand, recent works
also focused on understanding the learning dynamics of DNNs through an information-
theoretic lens. An information-theoretic paradigm for deep learning based on the IB
framework has caused a great deal of concern as well. Schwartz and Tishby [18] suggested
that the goal of the DNN was to optimize the information bottleneck (IB) [19] tradeoff
between compression and prediction, successively, for each layer. They claimed that there
existed two different and distinct phases: the compression phase and fitting phase in
stochastic gradient descent (SGD) optimization. In addition, it was found that most of
the training epochs in standard deep learning were spent on compression of the input to
efficient representation and not on fitting the training labels.

The abstract viewpoint of IB also helps to better understand the field of representation
learning, which is an active research area in machine learning that focuses on identifying
and uncovering potential explanatory factors [20]. It has attracted increasing attention
in many applications, such as out-of-distribution generalization [21], sparse code extrac-
tion [22], semi-supervised classification [23] and geometric clustering [24,25]. However,
research from the perspective of IB has rarely been reported for variable selection. In princi-
ple, the compression and fitting phases in IB are essential to eliminate useless information.
This motivates us to use IB for variable selection. To this end, we investigate the deep
variational information bottleneck (DeepVIB) [26] combined with Drop-Out-One loss [27]
to realize the variable selection. To better highlight the novelty of the proposed method,
we summarize the properties of different variable-selection methods in Table 1, where
these methods are categorized as coefficient-based (the variable importance is measured
by a coefficient, such as Lasso), function-based (the variable importance is measured by
a function, such as additive models and GL), IB-based (through an IB lens, such as the
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proposed method) and DNN-based (through DNNs, such as Lasso Net and the proposed
method). The main contributions of this paper are summarized as below.

• Originality. To our knowledge, we are the first to investigate DNNs for variable
selection through an IB lens.

• New algorithm. A new algorithm based on the DeepVIB and Drop-Out-One loss is
designed to realize the variable selection, in which we provide the estimation of the
Kullback–Leibler divergence by considering the cases of Gaussian distribution and
exponential distribution. The source code is publicly accessed on 21 February 2023 at
Github (https://github.com/ZeonlungPun/vib_drop_out_one_loss/tree/main).

• Empirical performance. Empirical evaluations on simulated and real-world data
show that our method performs better than classical variable-selection methods. This
confirms the feasibility of variable selection from the perspective of IB.

Table 1. Properties of different methods (
√

means satisfying the given information, and×means not).

Methods Lasso SpAM Knockoff GL Lasso Net NAM DeepPINK Ours

Coefficient-based
√

×
√

× × × × ×
Function-based ×

√
×

√
×

√
× ×

IB-based × × × × × × ×
√

DNN-based × × × ×
√ √ √ √

The rest of this paper is organized as follows. Section 2 recalls the background of
IB and VIB. Section 3 states the rationality of variable selection with IB and presents its
computing algorithm with DeepVIB. Section 4 reports the experimental analysis of our
approach. Finally, Section 5 presents our conclusions.

2. Preliminaries

In this section, we recall the necessary definitions and notations involved in the IB and
variational information bottleneck.

2.1. Information Bottleneck

The IB [19] can be viewed as a rate-distortion problem [28], with a distortion function
KL(p(y|x)|p(y|z)) that measures how well Y is predicted from a compressed representation
Z compared to its direct prediction from X. This means that specifying the features of
X is required. The problem can be also formalized as finding a short code Z for X that
preserves the maximum information about Y. For example, we hope to extract the most
useful information in the speech sounds about the words spoken. The IB principle is
formulated as the maximization

I(Z, Y)− βI(X, Z), (1)

where the mutual information I(X, Z) measures the dependence between random variables
X and Z as follows:

I(X, Z) =
∫∫

p(x, z) log
p(x, z)

p(x)p(z)
dxdz. (2)

Intuitively, I(Z, Y) encourages Z to predict Y, and I(X, Z) forces Z to “forget” X. The
hyperparameter β > 0 controls the trade-off between the compression (complexity) and
fitting. From another perspective, β can be also used to control the bias–variance trade-off
in cases where the distribution function is not known and the mutual information is only
estimated from a finite number of samples [29]. The complexity here is measured by the
minimum description length (or rate) at which the observation is compressed.

When β→ +∞, (1) leads to a trivial representation Z that is independent of X, and it
recovers a maximum likelihood objective while β→ 0 [30]. In summary, IB seeks the right

https://github.com/ZeonlungPun/vib_drop_out_one_loss/tree/main
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balance between data fit and generalization by using the mutual information as both a cost
function and a regularizer, which is vital to variable selection [20].

2.2. Deep Variational Information Bottleneck

Although the IB principle is appealing, the difficulties of computing mutual informa-
tion have hindered its application to DNNs. A variational inference to IB (called VIB) was
proposed to overcome this problem by estimating the Kullback–Leibler divergence [26,31],
in which q(y|z) and r(z) are variational approximations to the conditional distribution
p(y|z) and marginal distribution p(z). VIB provided a lower bound of (1) as follows

L =
∫∫∫

p(x)p(y|x)p(z|x) log q(y|z)dxdydz− β
∫∫

p(x)p(z|x) log
p(z|x)
r(z)

dxdz. (3)

Then, the objective is changed to the maximization of L. Contrary to the original IB,
VIB obviates the need for full prior knowledge of the joint distribution p(x, y). Instead, it
works based on a finite sample set, which is easier to estimate.

3. Proposed Method

In this section, we first introduce the rationality of variable selection with IB and
then provide the computational algorithm DeepVIB. The network structure of DeepVIB is
presented in Figure 1.

X 𝑌

𝜇1

𝜇𝐾

𝜎1

𝜎𝐾

𝑍1

𝑍𝐾

Encoder Decoder𝑍 = 𝜇 + 𝜎 ⊙ 𝜖

…

…

…

𝑝(z|x) 𝑞(𝑦|𝑧)

Figure 1. The network structure of DeepVIB. The encoder p(z|x) learns a representation Z from X, in
which the reparameterization trick zi = µi + σi � ε is implemented, and �means the element-wise
product. The decoder q(y|z) uses Z to predict Y.

3.1. Variable Selection with IB

Let X ⊂ Rp be a compact input space and Y ⊂ R be an output space. Denote (X, Y)
as the pair of explanatory and response variables taking values in X ×Y . Assume

Y = f ∗(X) + ε, (4)

where f ∗ : X → Y is an intrinsic target function and ε is a random noise satisfying some
certain conditions, e.g., the zero-mean noise assumption or the zero-mode noise condition.
Let Xj be the j-th feature of X. We also assume that f ∗(X) depends on X only through{

Xj : j ∈ T
}

, where T is an index set of relevant variables and |T| < p is the cardinality of
T. Let Tc = {1, 2, · · · , p} − T be an index set of irrelevant variables.

In another perspective [18], the IB objective is looking for a sufficient statistic Z0,
which is a map of X, and extracts all the information that X has on Y, i.e., satisfying
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I(Z0, Y) = I(X, Y). Since the exact sufficient statistics only exist for very special distribu-
tions, the IB framework only provides for finding approximate sufficient statistics. That
means I(Z0, Y) captures as much as possible of I(X, Y)—not necessarily all of it [18]. Let
Z0 be the sufficient statistic, and this means

Z0 = arg max
Z
{I(Z, Y)− βI(X, Z)}.

Given a Markov chain Y → X → Z0 [19], the elementary data processing inequality
ensures

I(Z0, X) ≥ I(Z0, Y).

Combining the above inequalities, it is trivial to find that

{I(Z0, Y)− βI(Z0, X)} ≤ (1− β)I(X, Y), 0 < β < 1. (5)

Inequality (5) provides the intuition that the IB objective can be approximated by
I(X, Y). Denote X−j as the rest of p− 1 variables after removing the j-th variable. Note that
the I(Xj, Y) and conditional mutual information I(Xj, Y|X−j) can be assumed as 0 for any
j ∈ Tc; the equation I(X, Y) = I(X−j, Y) + I(Xj, Y|X−j) informs us
I(X, Y) = I(X−j, Y). Similarly, the assumptions I(Xk, Y) > 0 and I(Xk, Y|X−k) > 0
imply that I(X, Y) > I(X−k, Y) for any k ∈ T. This means that I(X, Y) will decrease after
removing the relevant variable, while it will not change for irrelevant variables. Together
with inequality (5), a natural idea is that the IB objective will decrease when dropping the
critical variable. Therefore, we propose a new statistic to measure the importance of the
j-th variable

Sj = max
Z
{I(Z, Y)− βI(X, Z)} −max

Z
{I(Z, Y)− βI(X−j, Z)}, j = 1, 2, · · · , p. (6)

A small Sj means the j-th variable Xj tends to be irrelevant.

Remark 1. Intuitively, I(X, Z) measures the useful information of the inputs extracted by the
encoder. It is inversely related with the compression, i.e., the greater the compression, the smaller the
I(X, Z). Combined with I(Z, Y) denoting predictive power, the IB can be seen as extracting the key
information for predicting Y from X. Therefore, utilizing the “information" in the IB to identify the
irrelevant variables is sensible.

3.2. Variable Selection with DeepVIB

To calculate the statistic Sj, we approximate the lower bound in (3) using the empirical
data D = {(xi, yi)}N

i=1, which is independent and identically distributed (i.i.d.) drawn from
(4). We first place all input variables into DeepVIB for training. After convergence, the
resulting empirical VIB w0 is calculated as follows:

w0 =
1
N

N

∑
i=1

[∫
p(z|xi) log q(yi|z)− βp(z|xi) log

p(z|xi)

r(z)
dz
]

. (7)

Here, the p(z|xi) and q(yi|z) in the first term can be easily obtained by the en-
coder and decoder of DeepVIB, respectively. As for the second term, the KL-divergence
KL(p(z|xi)|r(z)) are determined by the distribution of the latent variable r(z) and its pos-
terior p(z|x). In this paper, we consider the Gaussian distribution and the exponential
distribution. The detailed proofs of estimating the KL(p(z|xi)|r(z)) are provided in the
Appendix A.
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Denoting Dj = {(xi,−j, yi)}N
i=1 as the data after removing the j-th variable, we similarly

retrain the DeepVIB model and calculate the empirical VIB wj as follows:

wj =
1
N

N

∑
i=1

[∫
p(z|xi,−j) log q(y|z)− βp(z|xi,−j) log

p(z|xi,−j)

r(z)
dz
]

, j = 1, 2, · · · , p.

During the training of DNN, there are several reasons, such as inconsistent initial-
ization of the weight parameters and randomly chosen samples used in each batch, that
can cause fluctuations over epochs. To eliminate the randomness and make the statistics
stable, a common solution is to calculate the w0 and wj in the later epochs. We denote the
corresponding empirical VIB values at the k-th epoch as wk

0 and wk
j , the final VIB values are

averaged by the last L (called the “reserved length”) epochs, i.e.,

w0 =
1
L

E

∑
k=E−L+1

wk
0, wj =

1
L

E

∑
k=E−L+1

wk
j ,

where E means the number of epochs. Then, the empirical statistics approximating (6) are
calculated by

Ŝj = w0 − wj, j = 1, 2, · · · , p.

The detailed training steps of the proposed method are also summarized in Algorithm 1.

Algorithm 1: Calculation algorithm of DeepVIB

Input : Dataset D = {(xi, yi)}N
i=1, parameter β, the epochs E, reserved length L, a

sequence of scores sets Wj = ∅, j = 1, 2, · · · , p
Output : p empirical statistics
for k in {1, 2, · · · , E} do

Calculate the empirical VIB with dataset D:
wk

0 = 1
N ∑N

i=1

[∫
p(z|xi) log q(yi|z)− βp(z|xi) log p(z|xi)

r(z) dz
]

Store wk
0 in this epoch: W0 = W0 ∪ wk

0
end
Calculate the benchmark VIB: w0 = 1

L ∑E
k=E−L+1 wk

0
for each j in {1, 2, · · · , p} do

Construct the dataset Dj = {(xi,−j, yi)}N
i=1 by dropping the j-th variable

for k in {1, 2, · · · , E} do
Calculate the empirical VIB with dataset Dj:

wk
j =

1
N ∑N

i=1

[∫
p(z|xi,−j) log q(y|z)− βp(z|xi,−j) log

p(z|xi,−j)

r(z) dz
]

Store wk
j in this epoch: Wj = Wj ∪ wk

j

end
end
for each j in {1, 2, · · · , p} do

Calculate the average VIB in the L later epochs: wj =
1
L ∑E

k=E−L+1 wk
j

Score of importance for the j-th feature: Ŝj = w0 − wj

end

4. Experimental Analysis

In this section, we perform several experiments on both synthetic and real datasets in
the nonlinear variable selection problem. Our purpose here is to verify the effectiveness of
the proposed method and to give some empirical comparisons with other classical variable-
selection algorithms, including Lasso [1], Elastic Net [32], SCAD [3], RF [13], AdaBoost [33],
GL [7], SpAM [4], Knockoff [11] and Lasso Net [14].
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4.1. Simulated Experiments

For the simulated data, we consider the ε in (4) following the Gaussian distribution
N (0, 1) scaled by 0.05 and the same target functions f ∗ as adopted in previous papers [9,34].
Among them, f ∗ is non-additive in Examples 1, 2 and 4 and is additive in Example 3.

Example 1. The non-additive model (from [9])

f ∗(x) = x1x2 + (2x3 − 0.5)2 + x4 + x5,

where X = [X1, X2, · · · , X10] are i.i.d. and drawn from the uniform distribution on [0, 1] with
N = 100.

Example 2. The non-additive model (from [9])

f ∗(x) =
x1

0.5 + (1.5 + x2)2 .

In this situation, X = [X1, X2, · · · , X10] are drawn from N (0, Σ) with N = 100, where Σ
denotes the covariance matrix with the (i, j)th entry given by Σi,j = 0.5|i−j|.

Example 3. The additive model (from [9])

f ∗(x) = −2 tan(0.5x1) + x2 + x3 + exp(−x4).

Here, we consider three cases (N, p) = (100, 10), (100, 20) and (200, 50) and both the
correlated and uncorrelated variables, i.e., X ∼ N (0, I) and X ∼ N (0, Σ).

Example 4. The non-additive model (from [34])

f ∗(x) = (2x1 − 1)(2x2 − 1).

In this case, xij =
wij+ηui

1+η , where wij and ui are independently sampled from N (0, 1). When
η = 0, the input variables x1 and x2 are independent, whereas η 6= 0 means they are correlated.
We also consider three cases (N, p) = (100, 10), (100, 20) and (200, 50) with different choices
η = 0, 0.2, 0.5.

As mentioned above, three parameters, including E, L and β, are involved in our
algorithm when performing the variable selection. In the experiment, we generally set E
ranging over [1200, 1500], L ranging over [100, 500] and β ranging over [0.015, 0.8]. For the
compared algorithms, the corresponding parameters are tuned near the default values. The
final values are chosen by cross validation. Finally, each algorithm will give each variable a
statistic that measures the importance.

For simplicity, we assume that the number of relevant variables ptrue is known, and the
first ptrue variables with largest statistics are selected. Three common metrics are adopted to
measure the performance of each algorithm, including TP (the average number of selected
truly relevant variables), FP (the average number of selected truly irrelevant variables)
and STP (the standard deviation of TP). Generally, a higher TP with a lower FP and STP
indicates a better variable-selection algorithm.

We repeated the experiments 20 times with the observation set generated in each
circumstance. The average variable selection results of each algorithm are presented in
Tables 2–4. The optimal results in each circumstance are marked in bold, where DeepVIB
(G) means that p(z) obeys the Gaussian distribution, while DeepVIB (E) indicates the
exponential distribution. The above-reported results tell us the following.
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Table 2. The averaged performance of variable selection (Examples 1 and 2).

Example 1 Example 2

Models TP FP STP TP FP STP

Lasso [1] 4.35 0.65 0.85 1.30 0.70 0.45
Elastic Net [32] 4.55 0.45 0.80 1.50 0.50 0.50

SCAD [3] 4.90 0.10 0.30 1.30 0.70 0.45
RF [13] 4.50 0.50 0.74 2.00 0.00 0.00

AdaBoost [33] 4.75 0.25 0.62 1.90 0.10 0.30
SpAM [4] 5.00 0.00 0.00 1.35 0.65 0.47

GL [7] 4.80 0.20 0.50 1.20 0.800 0.40
Knockoff [11] 4.90 0.10 0.40 1.60 0.40 0.48
Lasso Net [14] 5.00 0.00 0.00 1.85 0.15 0.35
DeepVIB (G) 5.00 0.00 0.00 2.00 0.00 0.00
DeepVIB (E) 5.00 0.00 0.00 2.00 0.00 0.00

Table 3. The averaged performance of variable selection (Example 3).

Σ = I Σi,j = 0.5|i−j|

(N, p) Models TP FP STP TP FP STP

(100, 10)

Lasso [1] 3.50 0.50 1.11 2.50 1.50 1.16
Elastic Net [32] 3.70 0.30 0.78 3.50 0.50 1.07

SCAD [3] 3.85 0.15 0.47 3.50 0.50 1.02
RF [13] 3.90 0.10 0.30 3.75 0.25 0.50

AdaBoost [33] 3.65 0.35 0.65 3.35 0.65 0.96
SpAM [4] 4.00 0.00 0.00 4.00 0.00 0.00

GL [7] 3.45 0.55 0.97 3.20 0.80 1.02
Knockoff [11] 3.70 0.30 0.95 3.55 0.45 1.11
Lasso Net [14] 4.00 0.00 0.00 4.00 0.00 0.00
DeepVIB (G) 4.00 0.00 0.00 4.00 0.00 0.00
DeepVIB (E) 4.00 0.00 0.00 4.00 0.00 0.00

(100, 20)

Lasso [1] 2.65 1.35 1.68 2.10 1.90 1.33
Elastic Net [32] 3.5 0.5 0.97 3.3 0.7 1.14

SCAD [3] 3.55 0.45 1.07 3.5 0.5 0.97
RF [13] 3.65 0.35 0.72 3.65 0.35 0.72

AdaBoost [33] 3.1 0.9 0.88 2.9 1.1 1.09
SpAM [4] 4.00 0.00 0.00 4.00 0.00 0.00

GL [7] 3.40 0.60 0.91 2.85 1.15 1.23
Knockoff [11] 3.35 0.65 1.23 3.30 0.70 1.42
Lasso Net [14] 3.85 0.15 0.65 3.80 0.87 0.20
DeepVIB (G) 4.00 0.00 0.00 4.00 0.00 0.00
DeepVIB (E) 4.00 0.00 0.00 4.00 0.00 0.00

(200, 50)

Lasso [1] 2.00 2.00 1.76 0.85 3.15 0.85
Elastic Net [32] 3.35 0.65 1.31 3.10 0.90 1.09

SCAD [3] 3.35 0.65 1.42 3.70 0.30 0.90
RF [13] 3.55 0.45 0.86 3.40 0.60 0.73

AdaBoost [33] 2.8 1.20 0.40 2.85 1.15 0.90
SpAM [4] 4.00 0.00 0.00 4.00 0.00 0.00

GL [7] 3.25 0.75 1.08 2.65 1.35 1.11
Knockoff [11] 3.00 1.00 1.34 3.05 0.95 1.65
Lasso Net [14] 3.75 0.25 0.88 3.65 0.35 0.96
DeepVIB (G) 4.00 0.00 0.00 3.75 0.25 0.53
DeepVIB (E) 3.80 0.20 0.50 2.00 2.00 0.67
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Table 4. The averaged performance of variable selection (Example 4).

η = 0 η = 0.2 η = 0.5

(N, p) Models TP FP STP TP FP STP TP FP STP

(100, 10)

Lasso [1] 1.80 0.20 0.50 1.85 0.15 0.35 1.85 0.15 0.47
Elastic Net [32] 1.95 0.05 0.21 1.90 0.10 0.30 1.90 0.10 0.30

SCAD [3] 2.00 0.00 0.00 1.95 0.05 0.21 1.95 0.05 0.21
RF [13] 2.00 0.00 0.00 2.00 0.00 0.00 2.00 0.00 0.00

AdaBoost [33] 1.95 0.05 0.20 1.90 0.10 0.30 1.90 0.10 0.30
SpAM [4] 2.00 0.00 0.00 2.00 0.00 0.00 2.00 0.00 0.00

GL [7] 2.00 0.00 0.00 2.00 0.00 0.00 1.95 0.05 0.20
Knockoff [11] 1.90 0.10 0.43 1.95 0.05 0.20 1.90 0.10 0.43
Lasso Net [14] 2.00 0.00 0.00 2.00 0.00 0.00 2.00 0.00 0.00
DeepVIB (G) 2.00 0.00 0.00 2.00 0.00 0.00 2.00 0.00 0.00
DeepVIB (E) 2.00 0.00 0.00 2.00 0.00 0.00 2.00 0.00 0.00

(100, 20)

Lasso [1] 1.80 0.20 0.40 1.75 0.25 0.62 1.15 0.85 0.96
Elastic Net [32] 1.90 0.10 0.43 1.90 0.10 0.43 1.90 0.10 0.43

SCAD [3] 1.90 0.10 0.30 1.90 0.10 0.43 1.80 0.20 0.50
RF [13] 2.00 0.00 0.00 1.95 0.05 0.21 1.85 0.15 0.47

AdaBoost [33] 1.95 0.05 0.21 1.85 0.15 0.47 1.75 0.25 0.62
SpAM [4] 2.00 0.00 0.00 2.00 0.00 0.00 2.00 0.00 0.00

GL [7] 2.00 0.00 0.00 2.00 0.00 0.00 2.00 0.00 0.00
Knockoff [11] 1.85 0.15 0.35 1.85 0.15 0.47 1.90 0.10 0.43
Lasso Net [14] 2.00 0.00 0.00 2.00 0.00 0.00 2.00 0.00 0.00
DeepVIB (G) 2.00 0.00 0.00 2.00 0.00 0.00 2.00 0.00 0.00
DeepVIB (E) 2.00 0.00 0.00 2.00 0.00 0.00 2.00 0.00 0.00

(200, 50)

Lasso [1] 1.50 0.50 0.67 1.25 0.75 0.88 0.80 1.20 0.92
Elastic Net [32] 0.95 1.05 0.66 1.10 0.90 0.62 1.05 0.95 0.49

SCAD [3] 1.90 0.10 0.30 1.85 0.15 0.47 1.75 0.25 0.62
RF [13] 1.85 0.15 0.35 1.85 0.15 0.47 1.85 0.15 0.47

AdaBoost [33] 1.95 0.05 0.21 1.85 0.15 0.47 1.80 0.20 0.60
SpAM [4] 2.00 0.00 0.00 2.00 0.00 0.00 2.00 0.00 0.00

GL [7] 2.00 0.00 0.00 2.00 0.00 0.00 1.95 0.05 0.21
Knockoff [11] 2.00 0.00 0.00 2.00 0.00 0.00 1.95 0.05 0.21
Lasso Net [14] 2.00 0.00 0.00 2.00 0.00 0.00 2.00 0.00 0.00
DeepVIB (G) 2.00 0.00 0.00 1.90 0.10 0.30 1.90 0.10 0.30
DeepVIB (E) 1.85 0.15 0.47 1.80 0.20 0.60 1.40 0.60 0.50

(1) Table 2 shows that the TPs of the proposed DeepVIB (G) and DeepVIB (E) in
Examples 1 and 2 always equal the ptrue, while the FPs and STPs are always 0. This means
that the proposed method can perfectly select all the relevant variables in each experiment.
For comparison, other algorithms always select the irrelevant variables in Example 1 or 2.
This supports the superiority of DeepVIB for variable selection.

(2) Tables 3 and 4 show the performance of all variable-selection algorithms in
Examples 3 and 4. Generally, the performance degrades when p increases or when the
input variables become correlated. This is consistent with the previous phenomenon in
Examples 1 and 2. In particular, the proposed DeepVIB (G) and DeepVIB (E) can select
all the relevant variables in the cases (N, p) = (100, 10) and (100, 20), which is better
performance compared with the other variable-selection algorithms.

(3) From the empirical results in Tables 3 and 4, we also note that DeepVIB (G) provides
consistently larger TPs compared with DeepVIB (E) in the case (N, p) = (200, 50). This
indicates that DeepVIB can achieve better variable selection results when p(z) obeys the
Gaussian distribution. An empirical reason may be that the Gaussian distribution can
generate a larger range on Z compared to the exponential distribution, providing the neural
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network more choices when mapping Y from Z. Hence, we prefer the Gaussian distribution
when estimating the KL(p(z|x)|r(z)) in DeepVIB.

(4) As for other classical variable-selection algorithms, the experimental results rely on
their properties. Methods, such as Elastic Net and SCAD, are proposed for linear models,
and their performance is generally inferior to methods for nonlinear models, such as Lasso
Net and RF, in nonlinear examples. We also note that Lasso Net performed perfectly in
Example 4 but not in Example 3. The reason may be that the input data are drawn from
different distributions and that the target function in Example 3 is more complex than the
one in Example 4. In addition, we can see that SpAM performs well except in Example 2.
An underlying reason is that SpAM was originally proposed with an additional assumption
on the target function for sparse variable selection.

In fact, Example 2 contains x2 in the denominator, which is not coincident with the
additive assumption. In contrast, Examples 1 and 4 can be more like an additive model
except for the interaction term between x1 and x2. Different from SpAM, Lasso Net was
proposed based on DNNs and, thus, does not rely on a specific assumption of the target
function. The strong representation and approximation ability of DNNs ensure that Lasso
Net can achieve satisfactory performance on the four examples. This also supports our
motivation to investigate DeepVIB for variable selection.

To highlight the influence of parameter β in the proposed method, we define a new
static by empirical statistics:

gap = min
k∈T

Ŝk −max
j∈Tc

Ŝj,

where a large gap means better selection results. Performing experiments on Example 2,
the gap vs. β is shown in Figure 2. The experimental results show that the gap achieves the
maximum when β = 0.5 in this situation. It performs better than a small β close to zero (in
cases of total compression).

Figure 2. The gap vs. β in Example 2.

4.2. Real Experiments

We also conducted experiments on three real-world datasets for regression prob-
lems. These data were selected from the UCI machine-learning datasets, including Boston
Housing Price (BHP), California Housing Price (CHP) and Diabetes.

To be specific, the BHP dataset contains 506 observations with 13 input variables,
including the per capita crime rate by town (CRIM), proportion of residential land zoned
for lots (ZN), proportion of non-retail business acres per town (INDUS), Charles River
dummy variable (CHAS), nitric oxides concentration (NOX), average number of rooms per
dwelling (RM), AGE, weighted distances to five Boston employment centers (DIS), index
of accessibility to radial highways (RAD), TAX, pupil–teacher ratio by town (PTRATIO),
the proportion of black people by town (B) and lower status of the population (LSTAT).
These variables are considered as relevant, and 13 irrelevant variables are generated from
the distribution N (0, 1), which are denoted as irre1, . . . , irre13.

The dataset CHP consists of 20,640 instances with eight variables, including the median
household income (MedInc), median age of home (HouseAge), average number of rooms
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(AveRooms), average number of bedrooms (AveBedrms), population, average occupancy
(AveOccup), latitude and longitude. Similarly, we generated 22 additional irrelevant
variables for the same operation. The irrelevant variables, denoted as irre1, . . . , irre22, are
added analogously. For the dataset Diabetes, 442 instances were collected with 10 attributes,
including age, sex, BMI, BP, s1, s2, s3, s4, s5 and s6. An additional 20 irrelevant variables,
denoted as irre1, . . . , irre20, are generated analogously.

Since the truly informative variables are unknown, Table 5 presents the two most-
relevant variables and two most-irrelevant variables in BHP, CHP and Diabetes as selected
by each algorithm. From Table 5, we can see that the proposed algorithm considered the
pseudo-variables as irrelevant and the real variables as relevant in the three datasets. The
selected relevant variables generally coincide with the results selected by other algorithms.

In contrast, the Knockoff and SCAD algorithms incorrectly identified one real variable
as irrelevant in the dataset BHP. The Lasso and Elastic Net algorithms identified one real
variable, while the Knockoff algorithm identified two real variables as irrelevant in the
dataset CHP. The SCAD, RF, AdaBoost and SpAM algorithms incorrectly identified one
real variable as irrelevant in the Diabetes dataset. This also supports the superiority of
DeepVIB for variable selection.

Table 5. Variable selection results on real data.

Dataset Method Most Relevant Variables Most Irrelevant Variables

BHP

Lasso [1] LSTAT, DIS irre7, irre8
Elastic Net [32] CRIM, RM irre9, irre11

SCAD [3] CRIM, RM AGE, irre3
RF [13] CRIM, RM irre6 , irre9

AdaBoost [33] CRIM, RM irre6, irre9
GL [7] CRIM, ZN irre9, irre13,

SpAM [4] RM, AGE irre1, irre3,
Knockoff [11] RM, PTRATIO irre11, INDUS
Lasso Net [14] NOX, DIS irre12, irre13
DeepVIB (G) LSTAT, PTRATO irre13, irre4
DeepVIB (E) LSTAT, CRIM irre9, irre5

CHP

Lasso [1] MedInc, AveBedrms irre7, Population
Elastic Net [32] MedInc, Latitude irre3, Population

SCAD [3] AveRooms, AveBedrms irre6, irre7
RF [13] MedInc, AveOccup irre6, irre9

AdaBoost [33] MedInc, Longitude irre5, irre6
GL [7] MedInc, Longitude irre1, irre4

SpAM [4] MedInc, AveRooms irre18, irre20
Knockoff [11] MedInc, Latitude AveRooms, AveBedrms
Lasso Net [14] MedInc, HouseAge irre7, irre20
DeepVIB (G) MedInc, Latitude irre3, irre6
DeepVIB (E) MedInc, AveOccup irre5, irre12

Diabetes

Lasso [1] BMI, BP irre15, irre19
Elastic Net [32] BMI, BP irre4, irre16

SCAD [3] s1, s5 age, irre1
RF [13] BMI, s5 sex, s4

AdaBoost [33] BMI, s5 age, irre18
GL [7] BMI, s6 irre7, irre12

SpAM [4] BMI, s4 s3, irre14
Knockoff [11] BMI, s5 irre17, irre18
Lasso Net [14] BMI, BP irre5, irre20
DeepVIB (G) BMI, sex irre3, irre5
DeepVIB (E) BMI, s5 irre7, irre9
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5. Conclusions

In this paper, we investigated DNNs for variable selection through an information-
theoretic lens. First, we demonstrated the rationality of variable selection with IB and then
proposed a new statistic to measure the variable importance. On this basis, a new algorithm
based on DeepVIB was designed to compute the statistic where the Kullback–Leibler
divergence was estimated in cases of Gaussian distribution and exponential distribution.
Finally, the experimental results indicated the superiority of DeepVIB over classical variable-
selection methods.

Although the proposed algorithm achieved satisfactory performance, there are still
many problems. For example, the proposed algorithm requires a loop depending on p,
which is time-consuming. In addition, the current variable selection results rely on the
assumption that the number of relevant variables ptrue is known, which is rare in real scenes.
In the future, we will focus on processing the empirical statistics (such as normalization)
and mapping them over a fixed range. In this way, it will be easier to find the optimal
threshold for variable selection.
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Appendix A

In this appendix, we will provide the proofs of the estimation of KL(p(z|x)|r(z)) in
VIB. The parameters in p(z|x) are learned by the encoder, and r(z) is assumed as the
standard distribution.

Case 1: r(z) and p(z|x) obey the Gaussian distribution

r(z) ∼ N (0, I), p(z|x) ∼ N (µ, σ2 I).

In [35], Kingma et al. assumed that the K dimensions of the true posterior Z|X are
approximately independent. Hence, the resulting estimator is

KL(p(z|x)|r(z)) = −1
2

K

∑
j=1

(1 + log σ2
j − µ2

j − σ2
j ), (A1)

where µj and σ2
j are the expectation and variance of the j-th dimension of Z|X , respectively.

Case 2: r(z) and p(z|x) obey the exponential distribution

r(z) = exp (−z)1(z ≥ 0), p(z|x) = 1
σ

exp (− z− µ

σ
)1(z ≥ µ), (A2)

where 1 is an indicator function. For convenience, we first discuss the case K = 1. The
KL-divergence between p(z|x) and r(z) can be written as:
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KL(p(z|x)|r(z)) =
∫ 1

σ
exp (− z− µ

σ
) log

1
σ exp (− z−µ

σ )

exp (−z)
dz

=− log σ +
∫

σ− 1
σ

z
1
σ

exp (− z− µ

σ
)dz +

∫
µ

σ

1
σ

exp (− z− µ

σ
)dz

=− log σ + σ− 1 + µ.

According to the assumption that the K dimensions of Z|X are approximately inde-
pendent [35], the equation above can approximately transform into following:

KL(p(z|x)|r(z)) =
K

∑
j=1

(− log σj + σj − 1 + µj), (A3)

where µj and σj are the location parameter and scale parameter, respectively, of the j-th
dimension of Z|X.
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