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Abstract: Masonry arch bridges are important structures of road and rail networks around the
world. Over several decades of service life, they suffer deterioration and damage. In order to
preserve their functioning, it is necessary to carry out a seismic vulnerability analysis to verify
the current level of safety and, if necessary, take action to reach the standard required by current
codes. For these reasons, a structural analysis of the existing railway bridge built with masonry
arches, located on the San Nicola–Avigliano Lucania line in Potenza, Italy, was carried out. The
seismic vulnerability of the bridge was assessed using the Finite Element Analysis (FEA) method by
subjecting a properly discretized three-dimensional model of the entire structure to a non-adaptive
nonlinear static analysis (pushover). The obtained results do not meet the minimums suggested
by current European Standards. Therefore, a traditional structural rehabilitation intervention was
designed and modeled. The intrados of the arches and the bridge piers were reinforced with a thin
reinforced concrete slab and reinforced concrete jackets, respectively, all connected to the existing
structure by steel bar connectors. By re-performing the pushover analysis of the reinforced structure
using FEA software, it was observed that the new risk indexes satisfy the seismic vulnerability
verification. Thus, the proposed structural rehabilitation is a valid, but not unique, solution to the
problem affecting the existing masonry arch bridge analyzed in this study.

Keywords: masonry arch bridge; nonlinear non-adaptive static analysis; rehabilitation

1. Introduction

Existing masonry arch bridges are of great importance for road and rail networks and
are also invaluable as they are part of architectural and cultural heritage. These ancient
structures were designed many years ago according to semi-empirical rules based on a
few simplified mechanical principles; however, their structural performance is exceptional
in most cases [1]. However, at present, the safety and utilization of these existing bridges
are in danger due to several factors. The performance deficit may be due to progressive
damage from external actions, natural deterioration including material decay, structural
inadequacy, events such as earthquakes, but also increased loads and vehicle speeds to
which bridges originally designed for wagon passage are subjected. Therefore, a realistic
and rigorous seismic structural assessment of masonry arch bridges is essential to preserve
their functionality and cultural, economic, and strategic importance and vulnerability. It is
necessary to carry out a seismic vulnerability analysis of these structures in order to upgrade
them to the safety standard required by current codes if necessary. The relevance and effects
of this problem are better highlighted if we consider the number of existing masonry arch
bridges in the national and international territory that are used by the railway network.
In Italy alone, there are about 56,000 of them, differentiated by arch type, number, and
span length. Currently, there is a large body of literature analyzing the collapse of masonry
arch bridges and masonry arches in general [2–4], reporting different structural models
built according to different levels of accuracy and simplifications. In fact, the difficulty
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of representing the behavior of the resisting material and skeleton sometimes requires
the use of a simplified but effective structural model suitable for the specific case. The
methodologies developed can be based on limit analysis, nonlinear incremental techniques
for two-dimensional arches, and Finite Element Models (FEMs) for three-dimensional
arches, which allow both a complete description of the bridge geometry and detailed
constitutive models.

This paper falls within the field of engineering applications aimed at infrastructure
engineering and proposes a methodology of analysis for seismic vulnerability assessment
and suggests a valid and effective solution for the structural rehabilitation of an Italian
masonry arch railway bridge. A structural analysis of the arch bridge under static and
seismic actions in the current and future strengthened state was carried out on a three-
dimensional FEM generated using Midas FEA NX software [5]. The detailed FE model
is essential for conducting the nonlinear nonadaptive static analysis (pushover), which
also takes into account uncertainties in the material properties and seismic input of the
masonry arch bridge [6,7]. Pushover analyses are common and widely used to evaluate
global structure response and nonlinear collapse mechanisms because they are less complex
than nonlinear dynamic analysis [8]. In fact, the latter is considerably computationally
expensive and requires careful selection of seismic input data, since the results are strictly
influenced by their choice.

Therefore, this study shows a useful methodology of analysis for the seismic perfor-
mance evaluation of an existing masonry arch bridge and proposes a viable structural
rehabilitation solution by using traditional materials and techniques.

2. Materials and Methods
2.1. Bridge Location and Historical Background

The masonry arch bridge situated on the Altamura-Avigliano Lucania-Potenza railway
line, managed by Ferrovie Appulo Lucane, is located at 84 + 703 km. It is in Potenza (PZ)
and it crosses the Tiera stream, a tributary of the Basento river.

It has proved impossible to correctly trace the construction history of this work due to
inadequate, vague, and contradictory information. However, it is certain that the history of
the Appulo Lucane railway began in 1915, initially called Mediterranea Calabro Lucane.
The Acerenza–Avigliano Lucania line (Figure 1a), where the bridge is located, was opened
on 26 May 1930. Over the years, concrete plasterwork on the intrados of the vault and on
the archivolt was made (Figure 1b). There are no reports concerning this work that can
explain the reason for this added plasterwork and the exact period of its realization.
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2.2. Geometrical Data and Materials

A complete new geometric survey was carried out, allowing defining the entire
geometry of the bridge and the type of materials used to produce parts and components.
The bridge (Figure 2a) is overall 30.25 m long and it extends on three round arched spans,
each span being 8.40 m with a rise of 4.20 m. In the transversal direction, the spans have
a deck of 4.60 m. The arches are 0.60 m thick and are made of solid brick masonry and
lime mortar (Figure 2b). The piers measure 3.85 m from the foundation to the springing.
In the longitudinal direction, they are 1.80 m thick corresponding to the ground level and
1.50 m corresponding to the springing section. In the transversal direction, they have a
constant length of 4.00 m. Moreover, they are equipped with semi-circular upstream and
downstream rostrum of 0.75 m radius. Both rostrum and piers are made of squared stone
blocks. The abutments have the same height as the piers; they are 3.00 m in the longitudinal
direction and 4.00 m in the transversal direction. The abutments of the bridge, like the
piers, are made of squared stone blocks. The spandrels have a minimum height of 0.40 m at
the keystone and a maximum height of 5.20 m at the piers and abutments.
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Figure 2. (a) Photo of the arch bridge. (b) Building materials of piers, spandrels, and arches.

The thickness is constant and it is 1.00 m. The spandrels are made of masonry with
square stone blocks (Figure 2b). The abutments and backfill consist of messy stone masonry.
The shallow foundations consist of pads formed by parallelepipeds masonry squared
stone blocks. They have a height of 1.30 m and a cantilever with respect to the piers and
abutments of 0.30 m both in the longitudinal and transversal directions.

A frontal view of the bridge is given in Figure 3 and the section in the longitudinal
direction is given in Figure 4.
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2.3. Mechanical Properties of Materials

The geometric survey was accompanied by extensive investigations and tests in
order to reach a knowledge level (KL2), which indicates a normal knowledge of geometry,
materials, and details according to Eurocode 8 [10]. This KL2 corresponds to a confidence
factor CF = 1.20 (as specified in Table 3.1 of the Eurocode 8, Part 3 [10]).

The design values of the mechanical parameters used in the analyses were calculated
by dividing the average values, obtained from Table C8.5.1 chapter 8 of the Italian Stan-
dard [11], by CF = 1.20. The design values are given in Table 1. For the purpose of the
calculation, the abutments were considered only in terms of mass, neglecting their possible
seismic-resistant capacity.

Table 1. Design values of mechanical parameters of masonry elements.

Element Masonry Typology fd
(N/mm2)

τ0d
(N/mm2)

fv0d
(N/mm2)

Ed
(N/mm2)

Gd
(N/mm2)

w
(kN/m3)

Abutment, piles,
spandrels, foundations

square stone
block masonry 5.83 0.09 0.19 2375 793 22

Arches solid brick masonry and
lime mortar 2.88 0.08 0.17 1250 417 18

Backfill disordered rubble
stone masonry 1.25 0.02 - 725 263 19

fd = average compressive strength; τ0d and fv0d = average shear strength under zero compressive stress (diagonal
tensile failure for irregular and regular texture, respectively); Ed = average value of normal modulus of elasticity;
Gd = average value of tangential modulus of elasticity; w = average specific gravity.
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2.4. Modeling Assumptions

Using Finite Element Analysis (FEA) software, predictive computational models of
actual structure can be built. The knowledge of various information, such as material
properties, applied loads, and constraints, makes it possible to predict the behavior of
existing structures, often with high accuracy levels. The accuracy that can be achieved is
closely related to the used FE mesh; this procedure is called mesh refinement metric.

In this case, the bridge has been modeled using an appropriate FE mesh with an
8-node solid brick finite elements, with refinement at the vaults (Figure 5a), in order to
reduce the error in these particular regions and obtain a sufficiently accurate mesh without
overburdening the model.
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model [12].

The masonry was modeled using the Total Strain Crack Model (TSC), which is suitable
for simulating the behavior of brittle materials such as masonry or concrete. Specifically,
it was decided to use a linear constitutive model for the tensile behavior and a parabolic
constitutive model for the compression behavior (Figure 5b). These constitutive models
are uniquely defined once the following parameters are assigned: tensile strength (ft) and
compressive strength (fc) of squared stone block masonry and solid brick and lime mortar
masonry; compressive fracture energy (Gc); tensile fracture energy (Gf); mesh size (h).

3. Seismic Vulnerability Analysis and Results

For the assessment of the global seismic behavior of the bridge, it was decided to
perform the nonlinear non-adaptive static analysis (pushover). The latter is the most
comprehensive procedure to study the complex structural behavior during an earthquake,
since more information can be obtained than conventional linear approaches [13]. An
in-depth review of the research on nonlinear static seismic analysis procedures can be
found in the FEMA 440 document [14].

The analysis of the Italian masonry arch railway bridge was carried out considering
the two main directions of the bridge according to the dominant bridge behavior and mode
shapes: the longitudinal one, i.e., parallel to the axis of the tracks, and the transversal one,
orthogonal to the previous one.

For each direction, two force distributions were considered, proportional to the main
modal shape (Group1) and proportional to the mass (Group2), as required by Norme
Tecniche per le Costruzioni, chapter 7 [15].

The capacity curve of the structure is described by the base shear force versus displace-
ment at a suitable control point. In this case study, only one control point was considered.
Then, the complex structural behavior analyzed with the MDOF (multi-degree-of-freedom)
capacity curves are converted into the response of an equivalent bilinear SDOF (single-
degree-of-freedom) system.

3.1. Modal Analysis

The basic assumption is that the response of the structure is dominated by a single
mode of vibration for each of the two main directions. Therefore, in order to identify
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the main mode shape, for each considered direction, the first step was a modal analysis.
Figure 6 shows the main mode shape in the longitudinal and transverse directions.
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3.2. Pushover Analysis

Once the main mode shapes were known, four separate pushover analyses were
performed: the first in the longitudinal direction, proportional to the mode (Push. long.
mode); the second in the longitudinal direction, proportional to the masses (Push. long.
masses); the third in the transversal direction, proportional to the mode (Push. transv.
mode); the fourth in the transversal direction, proportional to the masses (Push. transv.
masses). Each analysis provides an ante operam capacity curve (Figures 7 and 8). Having
identified the MDOF capacity curves, these were transformed into bilinear SDOF curves
using the peak areas equivalence criterion (Figures 9 and 10). Indeed, the area of the capacity
curve of the SDOF system exactly reproduces the strain energy of the MDOF system.
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3.3. Result of Pushover Analysis

According to current codes [10,11], verification of the nonlinear static analysis is
satisfied if the following relation (1) is valid for each performed analysis:

Umax ≥ dmax (1)

where Umax is the displacement capacity of the structure and dmax is the required dis-
placement of the actual MDOF system. This displacement is obtained by multiplying the
required displacement of the equivalent system d∗

max by the modal participation factor Γ
(dmax = Γd∗

max). The required displacement of the equivalent system is a function of the
initial proper period associated with the elastic range T* and it is evaluated using Equation
(2) if T* ≥ Tc or Equation (3) if T* ≤ Tc:

d∗max = d∗e,max = SDe(T∗) (2)

d∗max =
SDe(T∗)

q∗

[
1 + (q∗ − 1)

TC
T∗

]
≥ SDe(T∗) (3)

q∗ =
Se(T∗)

F∗
y

m∗

(4)

According to the Italian Standard [11], the behavior factor q* must be less than 3 for
life-saving limit state (SLV); otherwise, the assessment result must be considered negative.

The obtained values of Umax for the four MDOF capacity curves are the following:

• MDOF Capacity Curve Push. long. mode: Umax = 7.6 mm;
• MDOF Capacity Curve Push. long. masses: Umax = 10.4 mm;
• MDOF Capacity Curve Push. trans. mode: Umax = 7.1 mm;
• MDOF Capacity Curve Push. trans. masses: Umax = 7.2 mm.

To evaluate d∗
max, the q* values were calculated:

• equivalent bilinear Push. long. mode: q* = 2.2 < 3;
• equivalent bilinear Push. long. masses: q* = 1.53 < 3;
• equivalent bilinear Push. trans. mode: q* = 3.88 > 3;
• equivalent bilinear Push. trans. masses: q* = 1.25 < 3.

Because in the case of Push. trans. mode q* = 3.88 > 3, the verification in terms of
displacement is “not satisfied”.

3.4. Seismic Vulnerability in Terms of Acceleration

According to chapter 2.12.3.2 of the RFI (Rete Ferroviaria Italiana) Manual [16] and
Italian Standard (Cir. no. 7, chapter 8) [11], seismic vulnerability verification is satisfied if:

ζE,min ≥ 1 (5)

where ζE,min is the minimum seismic risk index among those associated with local and
global collapse mechanisms.

3.4.1. Global Risk Indexes

The generic risk index is given by the ratio of the peak ground acceleration leading to
the collapse of the bridge, ag,C (seismic capacity), to the peak ground acceleration at the site
where the structure rises, ag,D (seismic demand). To assess the seismic capacity, an iterative
procedure was performed to identify, for the four pushover analyses, the seismic spectrum
for which the demand dmax equals the displacement capacity Umax (capacity spectrum)
and the corresponding value of the behavior factor q*.

The obtained results are reported in Table 2.
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Table 2. Capacity spectrum parameters and risk indexes.

Pushover Analysis TR
(a)

(Years)
q* F0

(b) TC*
(s)

ag,C
(g)

ag,D
(g) ζE

Push. long. mode 299 1.81 2.415 0.355 0.167 0.202 0.83

Push. long. masses 816 1.78 2.439 0.394 0.246 0.202 1.22

Push. trans. mode 104 1.94 2.389 0.333 0.103 0.202 0.51

Push. trans. masses 465 1.24 2.445 0.363 0.200 0.202 0.99
(a) TR = return period; (b) F0 = maximum value of the amplification factor of the spectrum in horizontal acceleration.

3.4.2. Local Risk Indexes

Local collapse mechanisms are not identified by the global analysis; consequently, they
must be verified separately. In the present case, one possible local mechanism is spandrel
walls overturning. The calculation of the risk index associated with this mechanism was
conducted using the linear kinematic approach and reference was made only to the SLV
(life-saving limit state) as allowed by Italian Standards [11,15].

To simplify the calculation, as suggested in chapter 2.12.3.2.2.5 of the RFI Manual [15],
the spandrel wall was transformed into an equivalent rectangular wall (Figure 11) with
length L = 30.25 m, equal to the effective length of the spandrel, and height hm equal to the
ratio between the area of the spandrel At = 46.6 m2 and its length L. After performing the
calculations, a risk index associated with the overturning mechanism of the spandrel wall
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4.6. Post Operam Seismic Vulnerability 
For the calculation of the global post operam risk indexes, the same iterative proce-

dure used previously was carried out, obtaining 𝜁E,min = 1.38 at the push analysis. transv. 
mode. Since no spandrel wall reinforcement interventions were performed, as they were 
not necessary, the post operam local risk index is the same as the ante operam one. 

Result of the Post Operam Assessment 
Once the post operam risk indexes were known, Equation (5) was reapplied, obtain-

ing 𝜁E,min = 1.38 > 1. With 𝜁E,min > 1, the seismic vulnerability check of the upgraded bridge 
is “satisfied”. 

4.7. Checking of the Injected Anchors 
Finally, the check of the injected anchors was performed. The strength of these de-

pends on the mechanical properties of the used mortar, the characteristics of the steel bar, 
the anchorage length, the diameter of the hole, and the mechanical properties of the ma-
sonry. Different failure mechanisms can be developed: collapse by sliding of the bar, col-
lapse by sliding of the mortar bulb, or collapse by detachment of the masonry cone [18]. 
The assessment of the anchorages can be considered satisfied if the anchorage length is 
sufficient to avoid the activation of these mechanisms. This result was achieved assuming 
the anchorage lengths (lbm) shown in Figure 21. 

E, loc = 3.9 was obtained.
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3.4.3. Seismic Vulnerability Verification

Once the global and local seismic risk indexes were known, it was possible to apply
the above Equation (5), obtaining
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sonry. Different failure mechanisms can be developed: collapse by sliding of the bar, col-
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The assessment of the anchorages can be considered satisfied if the anchorage length is 
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E,min < 1, the seismic vulnerability
verification of the bridge ante operam is “not satisfied”.

4. Design of Structural Rehabilitation

The risk index obtained was less than the unit, meaning that the existing structure, in
its ante operam configuration, is unable to withstand the design seismic action.

Therefore, the need arises to design reinforcement interventions in order to achieve a
seismic upgrading of the bridge obtaining a risk index greater than or equal to the unit.

After a careful evaluation of different possible reinforcement techniques, the following
traditional types of reinforced concrete (RC) interventions were selected:

• RC linings 30 cm thick on the intrados of the arches and on the vertical load-bearing
elements (Figures 12 and 13);

• RC jacketing of the piers 30 cm thick along a height of 1.00 m (Figures 12 and 13).
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In order to ensure the functionality of the structural intervention, the linings and
jacketing will be connected to the existing structure using steel bars with a diameter of
14 mm (φ 14), chemically anchored using cement-based resin.
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4.1. New Modeling Assumption

The linings and jacketing were modeled using FE solid of the 8-node brick type to
which the mechanical properties of class C25/30 concrete were assigned (Figure 14a).
The steel reinforcements (of the linings and jacketing) and the anchor bars to the existing
structure (φ 14) were modeled through the use of one-dimensional FE called strengthening
elements (Figure 14b) which are able to be “embedded” in the FE solids, representing
concrete and masonry.
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Figure 14. (a) Geometric model of the post operam bridge. (b) Geometric model of the reinforcements
and anchors.

To the one-dimensional FE were assigned the mechanical properties of B450C steel
(fyk = 450 N/mm2: characteristic yield strength; γs = 1.15: partial factor for reinforcing
steel; fyd = 391.3 N/mm2: design yield strength; k: ratio of tensile strength to the yield
stress of the steel; Es = 200 GPa: design value of the elasticity modulus; ftd: design value
of tensile strength; εuk: characteristic strain of steel reinforcement at maximum force; εud:
design strain of steel reinforcement at maximum force, according to Eurocode 2 [17] and
shown in Figure 15).
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4.2. Constitutive Models

The same constitutive model used for the masonry was assigned to the concrete; in
particular, a linear law for the tension behavior and a parabolic law for the compression
behavior (Figure 5b). This choice is appropriate because the TSC model is suitable for
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simulating the behavior of brittle materials such as concrete and masonry. As for steel
a bilinear hardening, the constitutive model was used both in tension and compression
(Figure 15).

4.3. Post Operam Modal Analysis

The seismic rehabilitation intervention was implemented in the FE model and a modal
analysis of the post operam bridge was carried out in order to identify the new main modal
shape for each of the two considered directions (Figure 16).
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4.4. Post Operam Pushover Analysis

Once the new main mode shapes were known, the four post operam pushover analyses
were carried out. The four obtained capacity curves compared with those obtained before
rehabilitation are shown in Figures 17 and 18. As can be seen, the rehabilitation intervention
leads to an improvement in both strength and ultimate displacement. Having identified the
post operam MDOF capacity curves, these were transformed into the post operam bilinear
SDOF curves through the peak areas equivalence criterion (Figures 19 and 20).
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4.5. Check Post Operam Pushover Analysis

In order to identify the d∗
max values, the bilinear capacity curves were compared

with the ADRS (Acceleration Displacement Response Spectrum) seismic spectrum. This
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comparison shows that for the four post operam pushover analyses, T* < TB. Therefore, for
all cases, Equation (3) should be used for seismic verification. Table 3 shows the verification
results. As required by current codes, having obtained Umax > dmax for each pushover
analysis performed, the verification in terms of displacement is “satisfied”.

Table 3. Results check of post operam pushover analysis.

Pushover Analysis q* q*
ass

(a) Displacement Demand d*
max

(mm)
dmax
(mm)

Umax
(mm)

Push. long. mode 1.13 1.13

d∗max =
SDe(T∗)

q∗ass

[
1 + (q∗ass − 1) TC

T∗

]
≥ SDe(T∗)

4.48 5.65 10.4

Push. long. masses 0.80 1.00 4.52 5.70 13.5

Push. trans. mode 1.26 1.26 5.92 6.81 11.0

Push. trans. masses 0.68 1.00 2.28 2.62 12.3
(a) q∗

ass ≥ 1.00: assigned structure factor of the equivalent system.

4.6. Post Operam Seismic Vulnerability

For the calculation of the global post operam risk indexes, the same iterative procedure
used previously was carried out, obtaining
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E,min > 1, the seismic vulnerability check of the upgraded bridge
is “satisfied”.

4.7. Checking of the Injected Anchors

Finally, the check of the injected anchors was performed. The strength of these
depends on the mechanical properties of the used mortar, the characteristics of the steel
bar, the anchorage length, the diameter of the hole, and the mechanical properties of the
masonry. Different failure mechanisms can be developed: collapse by sliding of the bar,
collapse by sliding of the mortar bulb, or collapse by detachment of the masonry cone [18].
The assessment of the anchorages can be considered satisfied if the anchorage length is
sufficient to avoid the activation of these mechanisms. This result was achieved assuming
the anchorage lengths (lbm) shown in Figure 21.
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5. Conclusions

In this paper, a practical procedure has been used in order to evaluate the seismic
safety level of existing masonry arch railway bridges. Specifically, the aim of the research
was to conduct a seismic vulnerability study of the arch bridge located on the San Nicola–
Avignano Lucania line. After taking appropriate measurements to acquire the necessary
information on geometry, materials, and details to obtain a normal knowledge level (KL2),
a three-dimensional model was created with the aid of suitable FE software.

The tools available in the software made it possible to model the geometry of the
bridge quickly and easily, to create an accurate mesh without overweighting the model, and
to adopt a constitutive model suitable for simulating the behavior of brittle materials such
as masonry. The seismic performance of the existing masonry arch railway bridge was eval-
uated using nonlinear non-adaptive static analysis (pushover). The results of the analysis
provided risk indexes that did not meet the minimums required by the current codes.

In this regard, an intervention on the existing structure was studied, modeled, and
analyzed using traditional rehabilitation techniques. The proposed seismic rehabilitation
solution proved to be valid and effective, leading to the verification of the seismic perfor-
mance. The linings and the jacketing work in tension; the former counteract hinge opening
at the intrados due to actions in the longitudinal plane, and the latter counteract hinge
opening at the base of the piers due to actions in the transversal plane.

The proposed structural analysis methodology proved to be a valid tool, able to carry
out a judgment of the seismic performance of an existing masonry arch bridge using a
suitable risk index.

The authors want to highlight that the possible solutions for seismic rehabilitation
through the use of traditional and/or innovative materials and techniques are different
and each requires specific modeling and analyses. For these reasons, the proposed solu-
tion, which is not unique, cannot be generalized for every existing bridge, because the
various characteristics and problems must be properly analyzed to identify and define the
appropriate methodology.
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